Skip to main content

Methods for Generation and Analysis of Fluorescent Protein-Tagged Maize Lines

  • Protocol
Book cover Transgenic Maize

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 526))

Summary

The use of fluorescent proteins to localize gene products in living cells has revolutionized cell biology. Although maize has excellent genetics resources, the use of fluorescent proteins in maize cell biology has not been well developed. To date, protein localization in this species has mostly been performed using immunolocalization with specific antibodies, when available, or by overexpression of fluorescent protein fusions. Localization of tagged proteins using native regulatory elements has the advantage that it is less likely to generate artifactual results, and also reports tissue-specific expression patterns for the gene of interest. Fluorescent protein tags can also be used for other applications, such as protein–protein interaction studies and purification of protein complexes. This chapter describes methods to generate and characterize fluorescent protein-tagged maize lines driven by their native regulatory elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalfie, M., Tu, Y., Euskirchen, G., Ward William, W. and Prasher Douglas, C. (1994) Green fluorescent protein as a marker for gene expression. Science 263 802–805.

    Article  PubMed  CAS  Google Scholar 

  2. Shaner, N. C., Steinbach, P. A. and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat. Meth. 2(12) 905–909.

    Article  CAS  Google Scholar 

  3. Mathur, J., (2007) The illuminated plant cell. Trends Plant Sci. 12(11) 506–513.

    Article  PubMed  CAS  Google Scholar 

  4. Patterson, G. H. and Lippincott-Schwartz, J. (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 297(5588) 1873–1877.

    Article  PubMed  CAS  Google Scholar 

  5. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. and Tsien, R. Y. (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276 29188–29194.

    Article  PubMed  CAS  Google Scholar 

  6. Boute, N., Jockers, R. and Issad, T. (2002) The use of resonance energy transfer in high-throughput screening: Bret versus fret. Trends Pharmacol. Sci. 23 351–354.

    Article  PubMed  CAS  Google Scholar 

  7. Cutler, S. R., Ehrhardt, D. W., Griffitts, J. S. and Somerville, C. R. (2000) Random gfp::Cdna fusions enable visualization of subcellular structures in cells of arabidopsis at a high frequency. Proc. Natl. Acad. Sci.USA. 97 3718–3723.

    Article  PubMed  CAS  Google Scholar 

  8. Koroleva, O. A., Tomlinson, M. L., Leader, D., Shaw, P. and Doonan, J. H. (2005) High-throughput protein localization in arabidopsis using Agrobacterium-mediated transient expression of gfp-orf fusions. Plant J. 41 162–174.

    Article  PubMed  CAS  Google Scholar 

  9. Tian, G.-W., Mohanty, A., Chary, S. N., Li, S., Paap, B., Drakakaki, G., Kopec, C. D., Li, J., Ehrhardt, D., Jackson, D., Rhee, S. Y., Raikhel, N. V. and Citovsky, V. (2004) High-throughput fluorescent tagging of full-length arabidopsis gene products in planta. Plant Physiol. 135 25–38.

    Article  PubMed  CAS  Google Scholar 

  10. Williams, P., Hardeman, K., Fowler, J. and Rivin, C. (2006) Divergence of duplicated genes in maize: Evolution of contrasting targeting information for enzymes in the porphyrin pathway. Plant J. 45 727–739.

    Article  PubMed  CAS  Google Scholar 

  11. Saleh, A., Lumbreras, V., Lopez, C., Kizis, E. D. P.-D. and Pages, M. (2006) Maize dbf1-interactor protein 1 containing an r3h domain is a potential regulator of dbf1 activity in stress responses. Plant J. 46 747–757.

    Article  PubMed  CAS  Google Scholar 

  12. Herrmann, M. M., Pinto, S., Kluth, J., Wienand, U. and Lorbiecke, R. (2006) The PTI1-like kinase ZmPti1a from maize (Zea mays l.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. BMC Plant Biol. 6 22.

    Article  PubMed  Google Scholar 

  13. Marton, M. L., Cordts, S., Broadhvest, J. and Dresselhaus, T. (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307 573–576.

    Article  PubMed  CAS  Google Scholar 

  14. Dresselhaus, T., Amien, S., Marton, M., Strecke, A., Brettschneider, R. and Cordts, S. (2005) Transparent leaf area1 encodes a secreted proteolipid required for anther maturation, morphogenesis, and differentiation during leaf development in maize. Plant Cell. 17 730–745.

    Article  PubMed  CAS  Google Scholar 

  15. Ma, Z. and Dooner, H. K. (2004) A mutation in the nuclear-encoded plastid ribosomal protein s9 leads to early embryo lethality in maize. Plant J. 37 92–103.

    Article  PubMed  CAS  Google Scholar 

  16. Ono, A., Kim, S.-H. and Walbot, V. (2002) Subcellular localization of mura and murb proteins encoded by the maize mudr transposon. Plant Mol. Biol. 50 599–611.

    Article  PubMed  CAS  Google Scholar 

  17. Beardslee, T. A., Roy-Chowdhury, S., Jaiswal, P., Buhot, L., Lerbs-Mache, S., Stern, D. B. and Allison, L. A. (2002) A nucleus-encoded maize protein with sigma factor activity accumulates in mitochondria and chloroplasts. Plant J. 31 199–209.

    Article  PubMed  CAS  Google Scholar 

  18. Taguchi-Shiobara, F., Yuan, Z., Hake, S. and Jackson, D. (2001) The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev. 15 2755–2766.

    Article  PubMed  CAS  Google Scholar 

  19. Rottgers, K., Krohn, N. M., Lichota, J., Stemmer, C., Merkle, T. and Grasser, K. D. (2000) DNA-interactions and nuclear localisation of the chromosomal hmg domain protein ssrp1 from maize. Plant J. 23 395–405.

    Article  PubMed  CAS  Google Scholar 

  20. Ivanchenko, M., Vejlupkova, Z., Quatrano, R. S. and Fowler, J. E. (2000) Maize rop7 gtpase contains a unique, caax box-independent plasma membrane targeting signal. Plant J. 24 79–90.

    Article  PubMed  CAS  Google Scholar 

  21. Landy, A. (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58 913–941.

    Article  PubMed  CAS  Google Scholar 

  22. Chan, A. P., Pertea, G., Cheung, F., Lee, D., Zheng, L., Whitelaw, C., Pontaroli, A. C., SanMiguel, P., Yuan, Y., Bennetzen, J., Barbazuk, W. B., Quackenbush, J. and Rabinowicz, P. D. (2006) The tigr maize database. Nucl. Acids Res. 34 D771–776.

    Article  PubMed  CAS  Google Scholar 

  23. Fu, Y., Emrich, S. J., Guo, L., Wen, T. J., Ashlock, D. A., Aluru, S. and Schnable, P. S. (2005) Quality assessment of maize assembled genomic islands (magis) and large-scale experimental verification of predicted genes. Proc. Natl. Acad. Sci. USA 102 12282–12287.

    Article  PubMed  CAS  Google Scholar 

  24. Wach, A. (1996) PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in. S. cerevisiae. Yeast 12 259–265.

    Article  CAS  Google Scholar 

  25. Rozen, S. and H. Skaletsky (1999) Primer3 on the WWW for general users and for biologist programmers. Meth. Mol. Biol. 132 365–386.

    Google Scholar 

  26. Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A. and Tsien, R. Y. (2002) A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA. 99 7877–7882.

    Article  PubMed  CAS  Google Scholar 

  27. Paz, M., Martinez, J., Kalvig, A., Fonger, T. and Wang, K. (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 25 206–213.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of our maize GFP tagging project for useful discussions. We acknowledge the Iowa State University Plant Transformation Facility for providing excellent transformation services to the public sector. Our research is funded by National Science Foundation Grant DBI # 0501862 to Dave Jackson, Anne Sylvester, and Agnes Chan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mohanty, A., Yang, Y., Luo, A., Sylvester, A.W., Jackson, D. (2009). Methods for Generation and Analysis of Fluorescent Protein-Tagged Maize Lines. In: Scott, M.P. (eds) Transgenic Maize. Methods in Molecular Biology™, vol 526. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-494-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-494-0_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-49-7

  • Online ISBN: 978-1-59745-494-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics