Skip to main content

Purification and Mass-Spectrometry Identification of Microtubule-Binding Proteins from Xenopus Egg Extracts

  • Protocol
Microtubule Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 137))

Abstract

Microtubule-binding proteins are conveniently divided into two large groups: MAPs (microtubule-associated proteins), which can stabilize, anchor, and/or nucleate microtubules, and motors, which use the energy of ATP hydrolysis for a variety of functions, including microtubule network organization and cargo transportation along microtubules. Here, we describe the use of Taxol-stabilized microtubules for purification of MAPs, motors, and their complexes from Xenopus egg extracts. Isolated proteins are analysed using sodium dodecyl sulfate gel electrophoresis and identified by various mass spectrometry and database mining technologies. Found proteins can be grouped into three classes: (1) known MAPs and motors; (2) proteins previously reported as associated with the microtubule cytoskeleton, but without a clearly defined cytoskeletal function; (3) proteins not yet described as having microtubule localization. Sequence-similarity methods employed for protein identification allow efficient identification of MAPs and motors from species with yet unsequenced genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borisy, G. G. and Taylor, E. W. (1967) The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol. 34, 535ā€“548.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Borisy, G. G. and Taylor, E. W. (1967) The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J. Cell Biol. 34, 525ā€“533.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L., and Greengard, P. (1975) Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc. Natl. Acad. Sci. USA 72, 177ā€“181.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., and Kirschner, M. W. (1975) A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA 72, 1858ā€“1862.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Hirokawa, N., Noda, Y., and Okada, Y. (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 10, 60ā€“73.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Morejohn, L. C. (1994) Microtubule binding proteins are not necessarily microtubule-associated proteins. Plant Cell 6, 1696ā€“1699.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Dustin, P. (1980) Microtubules. Sci. Am. 243, 66ā€“76.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Hirokawa, N. (1994) Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr. Opin. Cell Biol. 6, 74ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Cassimeris, L. and Spittle, C. (2001) Regulation of microtubule-associated proteins. Int. Rev. Cytol. 210, 163ā€“226.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Ookata, K., Hisanaga, S., Bulinski, J. C., et al. (1995) Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J. Cell Biol. 128, 849ā€“862.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Lohka, M. J. and Masui, Y. (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220, 719ā€“721.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Murray, A. W. and Kirschner, M. W. (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275ā€“280.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Andersen, S. S. (1998) Xenopus interphase and mitotic microtubule-associated proteins differentially suppress microtubule dynamics in vitro. Cell Motil. Cytoskeleton. 41, 202ā€“213.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Andersen, S. S. L. (1999) Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view. BioEssays 21, 53ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Nachury, M. V., Maresca, T. J., Salmon, W. C., Waterman-Storer, C. M., Heald, R., and Weis, K. (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95ā€“106.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Desai, A., Murray, A., Mitchison, T. J., and Walczak, C. E. (1999) The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol. 61, 385ā€“412.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Murray, A. W. (1991) Cell cycle extracts. Methods Cell Biol. 36, 581ā€“605.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Hyman, A., Drechsel, D., Kellogg, D., et al. (1991) Preparation of modified tubulins. Methods Enzymol. 196, 478ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Castoldi, M. and Popov, A. V. (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83ā€“88.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Brinkley, B. R. (1985) Microtubule organizing centers. Annu. Rev. Cell Biol. 1, 145ā€“172.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Ausubel, F. M., Brent, R., Kingston, R. E., et al. (2005) Current Protocols in Molecular Biology. John Wiley & Sons, Hoboken, NJ.

    Google ScholarĀ 

  22. Gianazza, E., Celentano, F., Magenes, S., Ettori, C., and Righetti, P. G. (1989) Formulations for immobilized pH gradients including pH extremes. Electrophoresis 10, 806ā€“808.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Rabilloud, T., Valette, C., and Lawrence, J. J. (1994) Sample application by ingel rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 15, 1552ā€“1558.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Rabilloud, T., Adessi, C., Giraudel, A., and Lunardi, J. (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307ā€“316.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Tastet, C., Lescuyer, P., Diemer, H., Luche, S., van Dorsselaer, A., and Rabilloud, T. (2003) A versatile electrophoresis system for the analysis of high-and low-molecular-weight proteins. Electrophoresis 24, 1787ā€“1794.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255ā€“262.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850ā€“858.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Shevchenko, A., Sunyaev, S., Liska, A., Bork, P., and Shevchenko, A. (2003) Nanoelectrospray tandem mass spectrometry and sequence similarity searching for identification of proteins from organisms with unknown genomes. Methods Mol. Biol. 211, 221ā€“234.

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Frank, A. and Pevzner, P. (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal. Chem. 77, 964ā€“973.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Shevchenko, A., Sunyaev, S., Loboda, A., et al. (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal. Chem. 73, 1917ā€“1926.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Habermann, B., Oegema, J., Sunyaev, S., and Shevchenko, A. (2004) The power and the limitations of cross-species protein identification by mass spectrometry-driven sequence similarity searches. Mol. Cell. Proteomics. 3, 238ā€“249.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Liska, A. J., Popov, A. V., Sunyaev, S., et al. (2004) Homology-based functional proteomics by mass spectrometry: application to the Xenopus microtubule-associated proteome. Proteomics 4, 2707ā€“2721.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Spudich, J. A. and Lin, S. (1972) Cytochalasin B, its interaction with actin and actomyosin from muscle (cell movement-microfilaments-rabbit striated muscle). Proc. Natl. Acad. Sci. USA 69, 442ā€“446.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Schiff, P. B., Fant, J., and Horwitz, S. B. (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277, 665ā€“667.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Brady, S. T. and Lasek, R. J. (1984) Adenylyl imidodiphosphate (AMPPNP), a nonhydrolyzable analogue of ATP, produces a stable intermediate in the motility cycle of fast axonal transport. Biol. Bull. 167, 503

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Gache, V., Waridel, P., Luche, S., Shevchenko, A., Popov, A.V. (2007). Purification and Mass-Spectrometry Identification of Microtubule-Binding Proteins from Xenopus Egg Extracts. In: Zhou, J. (eds) Microtubule Protocols. Methods in Molecular Medicineā„¢, vol 137. Humana Press. https://doi.org/10.1007/978-1-59745-442-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-442-1_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-642-9

  • Online ISBN: 978-1-59745-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics