Skip to main content

Role of Silencing Suppressor Proteins

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 451))

Abstract

RNA silencing suppressors, developed by plant viruses, are potent arms in the arm race between plant and invading viruses. In higher plants, these proteins efficiently inhibit RNA silencing, which has evolved to defend plants against viral infection in addition to regulation of gene expression for growth and development Virus-encoded RNA-silencing suppressors interfere with various steps of the different silencing pathways and the mechanisms of suppression are being progressively unraveled. Our better understanding of action of silencing suppressors at molecular level dramatically improved our basic knowledge about the intimate plant-virus interactions and also provided valuable tools to unravel the diversity, regulation, and evolution of RNA-silencing pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. 1. Voinnet, O., Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet, 2005. 6(3): p. 206–20.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Lakatos L., C.T., Pantaleo V., Chapman E.J., Carrington J.C., Liu Y.R, Dolja V.V., Fernández Calvino L., López-Moya J.J., Burgyán J., Comparative study of viral encoded silencing suppressors: small RNA binding is a common strategy to suppress RNA silencing. EMBO J, 2006. 25: 2768–2780.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Mérai, Z., Kerenyi, Z., Kertész, S., Magna, M., Lakatos, L., and Silhavy, D., Double-stranded RNA binding could be a general plant RNA viral strategy to suppress RNA silencing. J. Virol. 2006., 80(12): 5747–56.

    Article  PubMed  Google Scholar 

  4. 4. Baulcombe, D., RNA silencing in plants. Nature, 2004. 431(7006): p. 356–63.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Silhavy, D. and J. Burgyan, Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci, 2004. 9(2): p. 76–83.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Hamilton, A., et al. Two classes of short interfering RNA in RNA silencing. Embo J, 2002. 21(17): p. 4671–4679.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Hamilton, A.J. and D.C. Baulcombe, A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999. 286(5441): p. 950–2.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Plasterk, R.H., RNA silencing: the genome's immune system. Science, 2002. 296(5571): p. 1263–5.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Hannon, G.J. and D.S. Conkhn, RNA interference by short hairpin RNAs expressed in vertebrate cells. Methods Mol Biol. Vol. 257. 2004. 255–66.

    CAS  Google Scholar 

  10. 10. Meister, G. and T Tuschl, Mechanisms of gene silencing by double-stranded RNA. Nature, 2004. 431(7006): p. 343–9.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Voinnet, O., RNA silencing: small RNAs as ubiquitous regulators of gene expression. Curr Opin Plant Biol, 2002. 5(5): p. 444.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Zamore, P.D., Ancient pathways programmed by small RNAs. Science, 2002. 296(5571): p. 1265–9.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Bernstein, E., et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001. 409(6818): p. 363–6.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Nykanen, A., B. Haley, and P.D. Zamore, ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001. 107(3): p. 309–21.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Hammond, S.M., et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000. 404(6775): p. 293–6.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Doench, J.G., C.P. Petersen, and PA. Sharp, siRNAs can function as miRNAs. Genes Dev, 2003. 17(4): p. 438–42.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Hutvagner, G. and P.D. Zamore, RNAi: nature abhors a double-strand. Curr Opin Genet Dev, 2002. 12(2): p. 225–32.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Chen, X., A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2003. 11: p. 11.

    Google Scholar 

  19. 19. Aukerman, M.J. and H. Sakai, Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 2003. 10: p. 10.

    Google Scholar 

  20. 20. Verdel, A., et al., RNAi-mediated targeting of heterochromatin by the RITS complex. Science, 2004. 303(5658): p. 672–6.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Dalmay, T., et al. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 2000. 101(5): p. 543–53.

    Article  PubMed  CAS  Google Scholar 

  22. 22. Mourrain, P., et al., Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 2000. 101(5): p. 533–42.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Himber, C, et al. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. Embo J, 2003. 22(17): p. 4523–33.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Voinnet, O., Non-cell autonomous RNA silencing. FEES Lett, 2005. 579(26): p. 5858–71.

    Article  CAS  Google Scholar 

  25. 25. Bartel, D.P, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281–97.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Chen, X., MicroRNA biogenesis and function in plants. FEES Lett, 2005. 579(26): p. 5923–31.

    Article  CAS  Google Scholar 

  27. 27. Vazquez, E, et al. Endogenous trans-Acting siRNAs Regulate the Accumulation of Arabidopsis mRNAs. Mol Cell, 2004. 16(1): p. 69–79.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Peragine, A., et al., SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev, 2004. .18(19): p. 2368–79.

    Article  PubMed  CAS  Google Scholar 

  29. 29. Allen, E., et al., microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005. 121(2): p. 207–21.

    Article  PubMed  CAS  Google Scholar 

  30. 30. Gasciolli, V., et al. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol, 2005. 15(16): p. 1494–500.

    Article  PubMed  CAS  Google Scholar 

  31. 31. Dunoyer, P., C. Himber, and O. Voinnet, DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet, 2005. 37(12): p. 1356–60.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Szittya, G., et al. Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell, 2002. 14(2): p. 359–72.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Ratcliff, E, B.D. Harrison, and D.C. Baulcombe, A Similarity Between Viral Defense and Gene Silencing in Plants. Science, 1997. 276(5318): p. 1558–60.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Moissiard, G. and O. Voinnet, Viral suppression of RNA silencing in plants. Molecular plant pathology, 2004. 5(1): p. 71–82.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Voinnet, O., Y.M. Pinto, and D.C. Baulcombe, Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A, 1999. 96(24): p. 14147–52.

    Article  PubMed  CAS  Google Scholar 

  36. 36. Li, W.X. and S.W. Ding, Viral suppressors of RNA silencing. Curr Opin Biotechnol, 2001. 12(2): p. 150–4.

    Article  PubMed  CAS  Google Scholar 

  37. 37. Silhavy, D., et al., A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. Embo J, 2002. 21(12): p. 3070–80.

    Article  PubMed  CAS  Google Scholar 

  38. 38. Pruss, G., et al. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates rephcation of heterologous viruses. Plant Cell, 1997. 9(6): p. 859–68.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Anandalakshmi, R., et al., A viral suppressor of gene silencing in plants. Proc Natl Acad Sci USA, 1998. 95(22): p. 13079–84.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Brigneti, G., et al. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. Embo J, 1998. 17(22): p. 6739–46.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Anandalakshmi, R., et al., A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science, 2000. 290(5489): p. 142–4.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Mallory, A.C., et al., HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell, 2001. 13(3): p. 571–83.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Dunoyer, P., et al. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell, 2004. 16(5): p. 1235–50.

    Article  PubMed  CAS  Google Scholar 

  44. 44. Chapman, E.J., et al. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev, 2004. 18(10): p. 1179–86.

    Article  PubMed  CAS  Google Scholar 

  45. 45. Lakatos, L., et al. Molecular mechanism of RNA silencing suppression mediated by pl9 protein of tombusviruses. Embo J, 2004. 23(4): p. 876–84. Epub 2004 Feb 19.

    Article  PubMed  CAS  Google Scholar 

  46. 46. Vargason, J., et al. Size selective recognition of siRNA by an RNA silencing suppressor. Cell, 2003. 115(7): p. 799–811.

    Article  PubMed  CAS  Google Scholar 

  47. 47. Ye, K., L. Malinina, and D.J. Patel, Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature, 2003. 3: p. 3.

    Google Scholar 

  48. 48. Ebhardt, H.A., et al. Extensive 33′ modification of plant small RNAs is modulated by helper component-proteinase expression. Proc Natl Acad Sci U S A, 2005. 102(38): p. 13398–403.

    Article  PubMed  CAS  Google Scholar 

  49. 49. Dolja, V.V., J.F. Kreuze, and J.P Valkonen, Comparative and functional genomics of closteroviruses. Virus Res, 2006. 117(1): p. 38–51.

    Article  PubMed  CAS  Google Scholar 

  50. 50. Koonin, E.V., et al. Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses. Proc Natl Acad Sci U S A, 1991. 88(23): p. 10647–51.

    Article  PubMed  CAS  Google Scholar 

  51. 51. Reed, J.C., et al. Suppressor of RNA silencing encoded by Beet yellows virus. Virology, 2003. 306(2): p. 203–9.

    Article  PubMed  CAS  Google Scholar 

  52. 52. Pazhouhandeh, M., et al., F-box-like domain in the polerovirus protein PO is required for silencing suppressor function. Proc Natl Acad Sci U S A, 2006. 103(6): p. 1994–9.

    Article  PubMed  CAS  Google Scholar 

  53. 53. Qu, F., T. Ren, and T.J. Morris, The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J Virol, 2003. 77(1): p. 511–22.

    Article  PubMed  CAS  Google Scholar 

  54. Deleris et al., A molecular framework for induction and suppression of antiviral RNA silencing in plants. Science, in press.

    Google Scholar 

  55. 55. Chellappan, P., R. Vanitharani, and C.M. Eauquet, MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci U S A, 2005. 102(29): p. 10381–6.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Kasschau, K.D., et al., P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell, 2003. 4(2): p. 205–17.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Thomas, C.L., et al. Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology, 2003. 306.(1): p. 33–41.

    Article  PubMed  CAS  Google Scholar 

  58. 58. Lu, R., et al. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A, 2004. 101(44): p. 15742–7.

    Article  PubMed  CAS  Google Scholar 

  59. 59. Liu, L., et al., Cowpea mosaic virus RNA-1 acts as an amplicon whose effects can be counteracted by a RNA-2-encoded suppressor of silencing. Virology, 2004. 323(1): p. 37–48.

    Article  PubMed  CAS  Google Scholar 

  60. 60. Yehna, N.E., et al. Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J Virol, 2002. 76(24): p. 12981–91.

    Article  Google Scholar 

  61. 61. Dunoyer, P., et al. Identification, subcellular localzation and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J, 2002. 29(5): p. 555–67.

    Article  PubMed  CAS  Google Scholar 

  62. 62. Pfeffer, S., et al., P0 of beet Western yellows virus is a suppressor of posttranscriptional gene silencing. J Virol, 2002. 76(13): p. 6815–24.

    Article  PubMed  CAS  Google Scholar 

  63. 63. Voinnet, O., C. Lederer, and D.C. Baulcombe, A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell, 2000. 103(1): p. 157–67.

    Article  PubMed  CAS  Google Scholar 

  64. 64. Kasschau, K.D. and J.C. Carrington, A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell, 1998. 95(4): p. 461–70.

    Article  PubMed  CAS  Google Scholar 

  65. 65. Kubota, K., et al. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J Virol, 2003. 77(20): p. 11016–26.

    Article  PubMed  CAS  Google Scholar 

  66. 66. Chen, J., et al., Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microrna in host gene expression. Plant Cell, 2004. 16(5): p. 1302–13.

    Article  PubMed  CAS  Google Scholar 

  67. 67. Bucher, E., et al. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol, 2003. 77(2): p. 1329–36.

    Article  PubMed  CAS  Google Scholar 

  68. 68. Cao, X., et al. Identification of an RNA silencing suppressor from a plant double-stranded RNA virus. J Virol, 2005. 79(20): p. 13018–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Burgyán, J. (2008). Role of Silencing Suppressor Proteins. In: Foster, G.D., Johansen, I.E., Hong, Y., Nagy, P.D. (eds) Plant Virology Protocols. Methods in Molecular Biology™, vol 451. Humana Press. https://doi.org/10.1007/978-1-59745-102-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-102-4_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-827-0

  • Online ISBN: 978-1-59745-102-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics