Skip to main content

Role of Plant Virus Movement Proteins

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 451))

Abstract

Plant viruses spread from the initially infected cells to the rest of the plant in several distinct stages. First, the virus (in the form of virions or nucleic acid protein complexes) moves intracellularly from the sites of replication to plasmodesmata (PD, plant-specific intercellular membranous channels), the virus then transverses the PD to spread intercellularly (cell-to-cell movement). Long-distance movement of virus occurs through phloem sieve tubes. The processes of plant virus movement are controlled by specific viral movement proteins (MPs). No extensive sequence similarity has been found in MPs belonging to different plant virus taxonomic groups. Moreover, different MPs were shown to use different pathways and mechanisms for virus transport. Some viral transport systems require a single MP while others require additional virus-encoded proteins to transport viral genomes. In this review, we focus on the functions and properties of different classes of MPs encoded by RNA containing plant viruses.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. 1. Atabekov, J.G. and Dorokhov, Yu. L. (1984) Plant virus-specific transport function and resistance of plants to viruses. Adv. Virus Res. 29, 313–364.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Atabekov, J.G. and Taliansky, M.E. (1990) Expression of a plant virus-coded transport function by different viral genomes. Adv. Virus Res. 38, 201–248.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Hull, R. (1989) The movement of viruses in plant. Annu. Rev. Phytopathol. 27, 213–240.

    Article  Google Scholar 

  4. 4. Carrington, J.C., Kasschau, K.D., Mahajan, S.K., and Schaad, M.C. (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8, 1669–1681.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Lucas, W.J. and Gilbertson, R.L. (1994) Plasmodesmata in relation to viral movement within leaf tissue. Annu. Rev. Phytopathol. 32, 387–411.

    Article  CAS  Google Scholar 

  6. 6. Maule, A.J. (1991) Virus movement in infected plants. Crit. Rev. Plant Sci. 9, 457–473.

    Article  CAS  Google Scholar 

  7. 7. Gilbertson, R.L. and Lucas, W.J. (1996) How do viruses traffic on the ‘vascular highway’? Trends Plant Sci. 1, 260–268.

    Article  Google Scholar 

  8. 8. Ghoshroy, S., Lartey, R., Sheng, J., and Citovsky, V. (1997) Transport of proteins and nucleic acids through plasmodesmata. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 27–49.

    Article  CAS  Google Scholar 

  9. 9. Lazarowitz, S.G. and Beachy, R.N. (1999) Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11, 535–548.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Lucas, W.J. (2006) Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes. Virology 344, 169–184.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Rojas, M.R., Hagen, C., Lucas, W.J., and Gilbertson, R.L. (2005) Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43, 361–394.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Roberts, A.G. and Oparka, K.J. (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ. 26, 103–124.

    Article  Google Scholar 

  13. 13. Dangl, J.L. and Jones, J.D., (2001) Plant pathogens and integrated defence responses to infection. Nature 411, 826–833.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Carrington, J.C., Kasschau, K.D., and Johansen, L.K. (2001) Activation and suppression of RNA silencing by plant viruses. Virology 281, 1–5.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Baulcombe, D. (2004) RNA silencing in plants. Nature 431, 356–363.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Vionnet, O. (2005) Non-cell autonomous RNA silencing. FEBS Lett. 579, 5858–5871.

    Article  CAS  Google Scholar 

  17. 17. Deom, C.M, Oliver, M.J., and Beachy, R.N. (1987) The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 389–394.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Dawson, W.O., Bubrick, P., and Grantham, G.L. (1988) Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement and symptomatology. Phytopathology 78, 783–789.

    Article  CAS  Google Scholar 

  19. 19. Citovsky, V., Knorr, D., Schuster, G., and Zambryski, P. (1990) The p-30 movement protein of tobacco mosaic-virus is a single-stranded nucleic-acid binding-protein. Cell 60, 637–647.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Citovsky, V., Wong, M.L., Shaw. A.L., Prasad, B.V.V. and Zambryski, P. (1992) Visualization and characterization of tobacco mosaic-virus movement protein-binding to single-stranded nucleic-acids. Plant Cell 4, 397–411.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Kiselyova, O.I., Yaminsky, I.V., Karger, E.M., Frolova, O.Y., Dorokhov, Y.L. and Atabekov, J.G. (2001) Visualization by atomic force microscopy of tobacco mosaic virus movement protein-RNA complexes formed in vitro. J. Gen. Virol. 82, 1503–1508.

    PubMed  CAS  Google Scholar 

  22. 22. Lucas, W.J. (1995) Plasmodesmata-intercellular channels for macromolecular transport in plants. Curr. Opin. Cell Biol. 7, 673–680.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Hirashima, K. and Watanabe,Y. (2001) Tobamovirus replicase coding region is involved in cell-to-cell movement. J. Virol. 75, 8831–8836.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Hirashima, K. and Watanabe,Y. (2003) RNA helicase domain of tobamovirus replicase executes cell-to-cell movement possibly through collaboration with its nonconserved region. J. Virol. 77, 12357–12362.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Mushegian, A.R. and Koonin, E.V. (1993) Cell-to-cell-movement of plant viruses. Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport system. Arch. Virol. 133, 239–257.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Li, Q.B. and Palukaitis, P. (1996) Comparison of the nucleic acid- and NTP-binding properties of the movement protein of cucumber mosaic cucumovirus and tobacco mosaic tobamovirus. Virology 216, 71–79.

    Article  PubMed  CAS  Google Scholar 

  27. 27. Taliansky, M.E. and Robinson, D.J. (2003) Molecular biology of umbraviruses: phantom warriors. J. Gen. Virol. 84, 1951–1960.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Fujiwara, T., Giesman-Cookmeyer, D., Ding, B., Lommel, S.A., and Lucas, W.J. (1993) Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red-clover necrotic mosaic-virus movement protein. Plant Cell 5, 1783–1794.

    Article  PubMed  CAS  Google Scholar 

  29. 29. Nurkiyanova, K.M., Ryabov, E.V., Kalinina, N.O., Fan, Y.C., Andreev, I., Fitzgerald, A.G., Palukaitis, P., and Taliansky, M. (2001) Umbravirus-encoded movement protein induces tubule formation on the surface of protoplasts and binds RNA incompletely and non-cooperatively. J. Gen. Virol. 82, 2579–2588.

    PubMed  CAS  Google Scholar 

  30. 30. Osman, T.A., Hayes, R.J., and Buck, K.W. (1992) Cooperative binding of the red clover necrotic mosaic virus movement protein to single-stranded nucleic acids. J. Gen. Virol. 73, 223–227.

    Article  PubMed  CAS  Google Scholar 

  31. 31. Heinlein, M. and Epel, B.L. (2004) Macromolecular transport and signaling through plas-modesmata. Int. Rev. Cytol. 235, 93–164.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Atkins D., Hull, R., Wells, B., Roberts, K., Moore, P., and Beachy, R.N. (1991) The tobacco mosaic virus 30 K movement protein in transgenic tobacco plants is localized to plasmodes-mata. J. Gen. Virol. 72, 209–211.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Oparka, K.J., Prior, D.A.M., Santa Cruz, S., Padgett, H.S., and Beachy, R.N. (1997) Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). Plant J. 12, 781–789.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Tomenius, K., Clapham, D., and Meshi, T., (1987) Localization by immunogold cytochemistry of the virus-coded 30 K protein in plasmodesmata of leaves infected with tobacco mosaic-virus. Virology 160, 363–370.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Wolf S., Deom, C.M., Beachy, R., and Lucas, W.J. (1989) Movement protein of tobacco mosaic-virus modifies plasmodesmatal size exclusion limit. Science 246, 377–379.

    Article  PubMed  CAS  Google Scholar 

  36. 36. Waigmann, E. and Zambryski, P. (1995) Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell 7, 2069–2079.

    Article  PubMed  CAS  Google Scholar 

  37. 37. Ding, B., Haudenshield, J.S., Hull, R.J., Wolf, S., Beachy, R.N., and Lucas, W.J. (1992) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic-virus movement protein in transgenic tobacco plants. Plant Cell 4, 915–928.

    Article  PubMed  CAS  Google Scholar 

  38. 38. Ryabov, E.V., Oparka, K.J., Santa Cruz, S., Robinson, D.J., and Taliansky, M.E. (1998) Intracellular location of two groundnut rosette umbravirus proteins delivered by PVX and TMV vectors. Virology 242, 303–313.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Watanabe, Y., Ogawa T., and Okada, Y. (1992) In vivo phosphorylation of the 30-kDa protein of tobacco mosaic virus. FEBS Lett. 313, 181–184.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Haley, A., Hunter, T., Kiberstis, P., and Zimmern, D. (1995) Multiple serine phosphorylation sites on the 30 kDa TMV cell-to-cell movement protein synthesized in tobacco protoplast. Plant J. 8, 715–724.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Waigmann, E., Chen, M.H., Bachmaier, R., Ghoshroy, S., and Citovsky, V. (2000) Regulation of plasmodesmal transport by phosphorylation of tobacco mosaic virus cell-to-cell movement protein. EMBO J. 19, 4875–4884.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Berna, A., Gafny, R., Wolf, S., Lucas, W.J., Holt, C.A., and Beachy, R.N. (1991) The TMV movement protein-role of the C-terminal 73 amino acids in subcellular localization and function. Virology 182, 682–689.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Karpova, O.V., Ivanov, K.I., Rodionova, N.P, Dorokhov, Y.L., and Atabekov, J.G. (1997) Nontranslatability and dissimilar behavior in plants and protoplasts of viral RNA and movement protein complexes formed in vitro. Virology 230, 11–21.

    Article  PubMed  CAS  Google Scholar 

  44. 44. Karpova, O.V., Rodionova, N.P, Ivanov, K.I., Kozlovsky, S.V., Dorokhov, Y.L., and Atabekov, J.G. (1999) Phosphorylation of tobacco mosaic virus movement protein abolishes its translation repressing ability. Virology 261, 20–24.

    Article  PubMed  CAS  Google Scholar 

  45. 45. Brill, L.M., Nunn, R.S., Kahn, T.W., Yeager, M., and Beachy, R.N. (2000) Recombinant tobacco mosaic virus movement protein is an RNA-binding, alpha-helical membrane protein. Proc. Natl. Acad. Sci. 97, 7112–7117.

    Article  PubMed  CAS  Google Scholar 

  46. 46. Heinlein M., Padgett, H.S., Gens, J.S., Pickard, B.G., Casper S.J., Epel, B.L., and Beachy, R.N. (1998) Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmatic reticulum and microtubules during infection. Plant Cell 10, 1107–1120.

    Article  PubMed  CAS  Google Scholar 

  47. 47. Gillespie, T., Boevink, P., Haupt, S., Roberts, A.G., Toth, R., Valentine, T., Chapman, S., and Oparka, K.J. (2002) Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus. Plant Cell 14, 1207–1222.

    Article  PubMed  CAS  Google Scholar 

  48. 48. Noueiry, A.O. and Ahlquist, P. (2003) Brome mosaic virus RNA replication: revealing the role of the host in RNA virus replication. Annu. Rev. Phytopathol. 41, 77–98.

    Article  PubMed  CAS  Google Scholar 

  49. 49. Boevink, P., Oparka, K.J., Santa Cruz, S., Martin, B., Betteridge, A., and Hawes, C. (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J. 15, 441–447.

    Article  PubMed  CAS  Google Scholar 

  50. 50. McLean, B.G., Zupan, J., and Zambryski, P.C. (1995) Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 7, 2101–2114.

    Article  PubMed  CAS  Google Scholar 

  51. 51. Oparka, K.J. (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci. 9, 33–41.

    Article  PubMed  CAS  Google Scholar 

  52. 52. Kaplan, I.B., Zhang, L., and Palukaitis, P. (1998) Characterization of cucumber mosaic virus. V. Cell-to-cell movement requires capsid protein but not virions. Virology 246, 221–231.

    Article  PubMed  CAS  Google Scholar 

  53. 53. Palukaitis, P. and Garcia-Arenal, F. (2003) Cucumoviruses. Adv. Virus Res. 62, 241–323.

    Article  PubMed  CAS  Google Scholar 

  54. 54. Ding, B., Li, Q., Nguyen, L. Palukaitis, P., and Lucas, W.J. (1995) Cucumber mosaic virus 3a protein potentiates cell-to-cell trafficking of CMV RNA in tobacco plants. Virology 207, 345–353.

    Article  PubMed  CAS  Google Scholar 

  55. 55. Kim, S.H., Kalinina, N.O., Andreev, I., Ryabov, E.V., Fitzgerald, A.G., Taliansky, M.E., and Palukaitis, P. (2004) The C-terminal 33 amino acids of the cucumber mosaic virus 3a protein affect virus movement, RNA binding and inhibition of infection and translation. J. Gen. Virol. 85, 221–230.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Andreev, I.A, Kim, S.H., Kalinina, N.O., Rakitina, D.V., Fitzgerald, A.G., Palukaitis, P., and Taliansky, M.E. (2004) Molecular interactions between a plant virus movement protein and RNA: force spectroscopy investigation. J. Mol. Biol. 339, 1041–1047.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Nagano, H., Mise, K., Furusawa, I., and Okuno, T. (2001) Conversion in the requirement of coat protein in cell-to-cell movement mediated by the cucumber mosaic virus movement protein. J. Virol. 75, 8045–8053.

    Article  PubMed  CAS  Google Scholar 

  58. 58. Salanki, K., Gellert, A., Huppert, E., Naray-Szabo, and G., Balazs, E. (2004) Compatibility of the movement protein and the coat protein of cucumoviruses is required for cell-to-cell movement. J. Gen. Virol. 85, 1039–1048.

    Article  PubMed  CAS  Google Scholar 

  59. 59. Sanchez-Navarro, J.A. and Bol, J.F., (2001) Role of the alfalfa mosaic virus movement protein and coat protein in virus transport. Mol. Plant Microbe Interact. 14, 1051–1062.

    Article  PubMed  CAS  Google Scholar 

  60. 60. Rao, A.L.N. (1997) Molecular studies on bromovirus capsid protein: III. Analysis of cell-to-cell movement competence of coat protein defective variants of cowpea chlorotic mottle virus. Virology 232, 385–395.

    Article  PubMed  CAS  Google Scholar 

  61. 61. Osman, F., Schmitz, I., and Rao, A.L.N. (1999) Effect of C-terminal deletion in the movement protein of cowpea chlorotic mottle virus on cell-to-cell and long-distance movement. J. Gen. Virol. 80, 1357–1365.

    PubMed  CAS  Google Scholar 

  62. 62. Morozov, S.Yu. and Solovyev, A.G., (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement. J. Gen. Virol. 84, 1351–1366.

    Article  PubMed  CAS  Google Scholar 

  63. 63. Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P., and Blinov, V.M. (1989). Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17, 4713–4730.

    Article  PubMed  CAS  Google Scholar 

  64. 64. Gorbalenya, A.E. and Koonin, E.V. (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol. 3, 419–429.

    Article  CAS  Google Scholar 

  65. 65. Koonin, E.V. and Dolja, V.V. (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28, 375–430.

    Article  PubMed  CAS  Google Scholar 

  66. 66. Rouleau, M., Smith, R.J., Bancroft, J.B., and Mackie, G.A. (1994) Purification, properties, and subcellular localization of foxtail mosaic potexvirus 26-kDa protein. Virology 204, 254–265.

    Article  PubMed  CAS  Google Scholar 

  67. 67. Donald, R.G., Lawrence, D.M., and Jackson, A.O. (1997). The barley stripe mosaic virus 58-kilodalton beta(b) protein is a multifunctional RNA binding protein. J. Virol. 71, 1538–1546.

    PubMed  CAS  Google Scholar 

  68. 68. Kalinina, N.O., Fedorkin, O.N., Samuilova, O.V., Maiss, E., Korpela, T., Morozov, S.Yu., and Atabekov, J.G. (1996) Expression and biochemical analyses of the recombinant potato virus X 25 K movement protein. FEBS Lett. 397, 75–78.

    Article  PubMed  CAS  Google Scholar 

  69. 69. Morozov, S.Yu., Solovyev, A.G., Kalinina, N.O., Fedorkin, O.N., Samuilova, O.V., Schiemann, J., and Atabekov, J.G. (1999) Evidence for two nonoverlapping functional domains in the potato virus X 25 K movement protein. Virology 260, 55–63.

    Article  PubMed  CAS  Google Scholar 

  70. 70. Kalinina, N.O., Rakitina, D.V., Solovyev, A.G., Schiemann, J., and Morozov, S.Yu. (2002) RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296, 321–329.

    Article  PubMed  CAS  Google Scholar 

  71. 71. Lough, T.J., Shash, K., Xoconostle-Cazares, B., Hofstra, K.R., Beck, D.L., Balmori, E., Forster, R.L., and Lucas, W.J. (1998) Molecular dissection of the mechanism by which potex-virus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol. Plant Microbe Interact. 11, 801–814.

    Article  CAS  Google Scholar 

  72. 72. Wung, C.H., Hsu, Y.H., Liou, D.Y., Huang, W.C., Lin, N.S., and Chang, B.Y. (1999) Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. J. Gen. Virol. 80, 1119–1126.

    PubMed  CAS  Google Scholar 

  73. 73. Bayne, E.H., Rakitina, D.V., Morozov, S.Yu., and Baulcombe, D.C. (2005) Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. Plant J. 44, 471–482.

    Article  PubMed  CAS  Google Scholar 

  74. 74. Zamyatnin, A.A., Jr, Solovyev, A.G., Savenkov, E.I., Germundsson, A., Sandgren, M., Valkonen, J.P.T., and Morozov, S.Yu. (2004) Transient coexpression of individual genes encoded by the triple gene block of Potato mop-top virus reveals requirements for TGBp1 trafficking. Mol. Plant Microbe Interact. 17, 921–930.

    Article  PubMed  CAS  Google Scholar 

  75. 75. Haupt, S., Cowan, G.H., Ziegler, A., Roberts, A.G., Oparka, K.J., and Torrance, L. (2005) Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17, 164–181.

    Article  PubMed  CAS  Google Scholar 

  76. 76. Verchot-Lubicz, J. (2005) A new cell-to-cell transport model for potexviruses. Mol. Plant Microbe Interact. 18, 283–290.

    Article  PubMed  CAS  Google Scholar 

  77. 77. Schepetilnikov, M.V., Manske, U., Solovyev A.G., Zamyatnin, A.A. Jr., Schiemann, J., and Morozov, S.Yu. (2005) The hydrophobic segment of Potato virus X TGBp3 is a major determinant of the protein intracellular trafficking. J. Gen. Virol. 86, 2379–2391.

    Article  PubMed  CAS  Google Scholar 

  78. 78. Morozov, S.Yu., Lukasheva, L.I., Chernov, B.K., Skryabin, K.G., and Atabekov, J.G. (1987) Nucleotide sequence of the open reading frames adjacent to the coat protein cistron in potato virus X genome. FEBS Lett. 213, 438–442.

    Article  CAS  Google Scholar 

  79. 79. Skryabin, K.G., Morozov, S.Yu., Kraev, A.S., Rozanov, M.N., Chernov, B.K., Lukasheva, L.I., and Atabekov, J.G. (1988) Conserved and variable elements in RNA genomes of potexviruses. FEBS Lett. 240, 33–40

    Article  PubMed  CAS  Google Scholar 

  80. 80. Solovyev, A.G., Savenkov, E.I., Agranovsky, A.A., and Morozov, S.Yu. (1996). Comparisons of the genomic cis-elements and coding regions in RNA beta components of the hordeiviruses barley stripe mosaic virus, lychnis ringspot virus, and poa semilatent virus. Virology 219, 9–18.

    Article  PubMed  CAS  Google Scholar 

  81. 81. Morozov, S.Yu., Miroshnichenko, N.A., Solovyev, A.G., Zelenina, D.A., Fedorkin, O.N., Lukasheva, L.I., Grachev, S A., and Chernov, B.K. (1991) In vitro membrane binding of the translation products of the carlavirus 7-kDa protein genes. Virology 183, 782–785.

    Article  PubMed  CAS  Google Scholar 

  82. 82. Koenig, R., Pleij, C.W., Beier, C., and Commandeur, U. (1998) Genome properties of beet virus Q, a new furo-like virus from sugarbeet, determined from unpurified virus. J. Gen. Virol. 79, 2027–2036.

    PubMed  CAS  Google Scholar 

  83. 83. Callaway, A., Giesman-Cookmeyer, D., Gillock, E.T., Sit, T.L., and Lommel, S.A. (2001). The multifunctional capsid proteins of plant RNA viruses. Annu. Rev. Phytopathol. 39, 419–460.

    Article  PubMed  CAS  Google Scholar 

  84. 84. Petty, I.T., French, R., Jones, R.W., and Jackson, A.O. (1990) Identification of barley stripe mosaic virus genes involved in viral RNA replication and systemic movement. EMBO J. 9, 3453–3457.

    PubMed  CAS  Google Scholar 

  85. 85. Lawrence, D.M. and Jackson, A.O. (2001b) Requirements for cell-to-cell movement of barley stripe mosaic virus in monocot and dicot hosts. Mol. Plant Pathol. 2, 65–75.

    Article  CAS  Google Scholar 

  86. 86. Herzog, E., Hemmer, O., Hauser, S., Meyer, G., Bouzoubaa, S., and Fritsch, C. (1998) Identification of genes involved in replication and movement of peanut clump virus. Virology 248, 312–322.

    Article  PubMed  CAS  Google Scholar 

  87. 87. McGeachy, K.D. and Barker, H. (2000) Potato mop-top virus RNA can move long distance in the absence of coat protein: evidence from resistant, transgenic plants. Mol. Plant Microbe Interact. 13, 125–128.

    Article  PubMed  CAS  Google Scholar 

  88. 88. Savenkov, E.I., Germundsson, A., Zamyatnin, A.A.,Jr., Sandgren, M., and Valkonen, J.P.T. (2003) Potato mop-top virus: the coat protein-encoding RNA and the gene for cystein-rich protein are dispensable for systemic virus movement in Nicotiana benthamiana. J. Gen. Virol. 84, 1001–1005.

    Article  PubMed  CAS  Google Scholar 

  89. 89. Chapman, S., Hills, G., Watts, J., and Baulcombe, D. (1992) Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology 191, 223–230.

    Article  PubMed  CAS  Google Scholar 

  90. 90. Forster, R.L., Beck, D.L., Guilford, P.J., Voot, D.M., Van Dolleweerd, C.J., and Andersen, M.T. (1992) The coat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology 191, 480–484.

    Article  PubMed  CAS  Google Scholar 

  91. 91. Sit, T.L. and AbouHaidar, M.G. (1993) Infectious RNA transcripts derived from cloned cDNA of papaya mosaic virus: effect of mutations to the capsid and polymerase proteins. J. Gen. Virol. 74, 1133–1140.

    Article  PubMed  CAS  Google Scholar 

  92. 92. Bleykasten, C., Gilmer, D., Guilley, H., Richards, K.E., and Jonard, G. (1996) Beet necrotic yellow vein virus 42 kDa triple gene block protein binds nucleic acid in vitro. J. Gen. Virol. 77, 889–897.

    Article  PubMed  CAS  Google Scholar 

  93. 93. Cowan, G.H., Lioliopoulou, F., Ziegler, A., and Torrance, L. (2002). Subcellular localisation, protein interactions, and RNA binding of potato mop-top virus triple gene block proteins. Virology 298, 106–115.

    Article  PubMed  CAS  Google Scholar 

  94. 94. Kalinina, N.O., Rakitina, D.A., Yelina, N.E., Zamyatnin, A.A., Jr., Stroganova, T.A., Klinov, D.V., Prokhorov, V.V., Ustinova, S.V., Chernov, B.K., Schiemann, J., Solovyev, A.G., and Morozov, S.Yu. (2001) RNA-binding properties of the 63 kDa protein encoded by the triple gene block of poa semilatent hordeivirus. J. Gen. Virol. 82, 2569–2578.

    PubMed  CAS  Google Scholar 

  95. 95. Brakke, M.K., Ball, E.M., and Langenberg, W.G. (1988) A non-capsid protein associated with unencapsidated virus RNA in barley infected with barley stripe mosaic virus. J. Gen. Virol. 69, 481–491.

    Article  CAS  Google Scholar 

  96. 96. Lauber, E., Bleykasten-Grosshans, C., Erhardt, M., Bouzoubaa, S., Jonard, G., Richards, K.E., and Guilley, H. (1998) Cell-to-cell movement of beet necrotic yellow vein virus. I. Heterologous complementation experiments provide evidence for specific interactions among the triple gene block proteins. Mol. Plant Microbe Interact. 11, 618–625.

    Article  PubMed  CAS  Google Scholar 

  97. 97. Erhardt, M., Herzog, E., Lauber, E., Fritsch, C., Guilley, H., Jonard, G., Richards, K., and Bouzoubaa, S. (1999) Transgenic plants expressing the TGB1 protein of peanut clump virus complement movement of TGB1-defective peanut clump virus but not of TGB1-defective beet necrotic yellow vein virus. Plant Cell Rep. 18, 614–619.

    Article  CAS  Google Scholar 

  98. 98. Erhardt, M., Stussi-Garaud, C., Guilley, H., Richards, K.E., Jonard, G., and Bouzoubaa, S. (1999) The first triple gene block protein of peanut clump virus localizes to the plasmodes-mata during virus infection. Virology 264, 220–229.

    Article  PubMed  CAS  Google Scholar 

  99. 99. Erhardt, M., Morant, M., Ritzenthaler, C., Stussi-Garaud, C., Guilley, H., Richards, K.E., Jonard, G., Bouzoubaa, S., and Gilmer, D. (2000) P42 movement protein of beet necrotic yellow vein virus is targeted by the movement proteins p13 and p15 to punctate bodies associated with plasmodesmata. Mol. Plant Microbe Interact. 13, 520–528.

    Article  PubMed  CAS  Google Scholar 

  100. 100. Solovyev, A.G., Savenkov, E.I., Grdzelishvili, V.Z., Kalinina, N.O., Morozov, S.Yu., Schiemann, J., and Atabekov, J.G. (1999) Movement of hordeivirus hybrids with exchanges in the triple gene block. Virology 253, 278–287.

    Article  PubMed  CAS  Google Scholar 

  101. 101. Lawrence, D.M. and Jackson, A.O. (2001). Interactions of the TGB1 protein during cell-to-cell movement of barley stripe mosaic virus. J. Virol. 75, 8712–8723.

    Article  PubMed  CAS  Google Scholar 

  102. 102. Solovyev, A.G., Stroganova, T.A., Zamyatnin, A.A., Jr., Fedorkin, O. N., Schiemann, J., and Morozov, S.Yu. (2000) Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 269, 113–127.

    Article  PubMed  CAS  Google Scholar 

  103. 103. Zamyatnin, A.A., Jr., Solovyev, A.G., Sablina, A.A., Agranovsky, A.A., Katul, L., Vetten, H.J., Schiemann, J., Hinkkanen, A.E., Lehto, K., and Morozov, S.Yu. (2002) Dual-colour imaging of membrane protein targeting directed by poa semilatent virus movement protein TGBp3 in plant and mammalian cells. J. Gen. Virol. 83, 651–662.

    PubMed  Google Scholar 

  104. 104. Gorshkova, E.N., Erokhina, T.N., Stroganova, T.A., Yelina, N.E., Zamyatnin, A.A., Jr., Kalinina, N.O., Schiemann, J., Solovyev, A.G., and Morozov, S.Yu. (2003) Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plas-modesmata. J. Gen. Virol. 84, 985–994.

    Article  PubMed  CAS  Google Scholar 

  105. 105. Krishnamurthy, K., Heppler, M., Mitra, R., Blancaflor, E., Payton, M., Nelson, R.S., and Verchot-Lubicz, J. (2003) The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology 309, 135–151.

    Article  PubMed  CAS  Google Scholar 

  106. 106. Mitra, R., Krishnamurthy, K., Blancaflor, E., Payton, M., Nelson, R.S., and Verchot-Lubicz, J. (2003) The Potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement. Virology 312, 35–48.

    Article  PubMed  CAS  Google Scholar 

  107. 107. Tamai, A. and Meshi, T. (2001) Cell-to-cell movement of potato virus X: the role of p12 and p8 encoded by the second and third open reading frames of the triple gene block. Mol. Plant Microbe Interact. 14, 1158–1167.

    Article  PubMed  CAS  Google Scholar 

  108. 108. Krishnamurthy, K., Mitra, R., Payton, M. E., and Verchot-Lubicz, J. (2002) Cell-to-cell movement of the PVX 12 K, 8 K, or coat proteins may depend on the host, leaf developmental stage, and the PVX 25 K protein. Virology 300, 269–281.

    Article  PubMed  CAS  Google Scholar 

  109. Torrance, L., Cowan, G.H., Gillespie, T., Ziegler, A., and Lacomme, C. (2006) Barley stripe mosaic virus encoded triple gene block 2 and ?b localize to chloroplasts in virus infected monocot and dicot plants revealing hitherto unknown roles in virus replication. J. Gen. Virol. In press.

    Google Scholar 

  110. 110. Lough, T.J., Netzler, N.E., Emerson, S.J., Sutherland, P., Carr, F., Beck, D.L., Lucas, W.J., and Forster, R.L. (2000) Cell-to-cell movement of potexviruses: Evidence for a ribonucleo-protein complex involving the coat protein and first triple gene block protein. Mol. Plant Microbe Interact. 13, 962–974.

    Article  PubMed  CAS  Google Scholar 

  111. 111. Angell, S.M., Davies, C., and Baulcombe, D.C. (1996) Cell-to-cell movement of Potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216, 197–201

    Article  CAS  Google Scholar 

  112. 112. Malcuit, I., Marano, M.R., Kavanagh, T.A., De Jong, W., Forsyth, A., and Baulcombe, D.C. (1999) The 25-kDa movement protein of PVX elicits Nb-mediated hypersensitive cell death in potato. Mol. Plant Microbe Interact. 12, 536–543.

    Article  CAS  Google Scholar 

  113. 113. Yang, Y., Ding, B., Baulcombe, D.C., and Verchot, J. (2000) Cell-to-cell movement of the 25 K protein of potato virus X is regulated by three other viral proteins. Mol. Plant-Microbe Interact. 13, 599–605.

    Article  PubMed  CAS  Google Scholar 

  114. 114. Howard, A.R., Heppler, M.L., Ju, H.-J., Krishnamurthy, K., Payton, M.E., and Verchot-Lubicz, J. (2004) Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in Nicotiana benthamiana leaves. Virology 328, 185–197.

    Article  PubMed  CAS  Google Scholar 

  115. 115. Karpova, O.V., Zayakina, O.V., Arkhipenko, M.A., Sheval, E.V., Kiselyova, O.I., Poljakov, V.Yu., Yaminsky, I.V., Rodionova, N.P., and Atabekov, J.G. (2006) Potato virus RNA-medi-ated assembly of single-tailed ternary complexes “coat protein-RNA-movement protein” J.Gen.Virol. 87, 2731–2740.

    Article  PubMed  CAS  Google Scholar 

  116. 116. Atabekov, J.G., Rodionova, N.P., Karpova, O.V., Kozlovsky, S.V., and Poljakov, V.Y. (2000) The movement protein-triggered in situ conversion of Potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271, 259–263.

    Article  PubMed  CAS  Google Scholar 

  117. 117. Kiselyova, O.I., Yaminsky, I.V., Karpova, O.V., Rodionova, N.P., Kozlovsky, S.V., Arkhipenko, M.V., and Atabekov, J.G. (2003) AFM study of Potato virus X disassembly induced by movement protein. J. Mol. Biol. 332, 321–325.

    Article  PubMed  CAS  Google Scholar 

  118. 118. Rodionova, N.P., Karpova, O.V., Kozlovsky, S.V., Zayakina, O.V., Arkhipenko, M.V., and Atabekov, J.G. (2003) Linear remodeling of helical virus by movement protein binding. J. Mol. Biol. 333, 565–572.

    Article  PubMed  CAS  Google Scholar 

  119. 119. Santa Cruz, S., Roberts, A.G., Prior, D.A.M., Chapman, S., and Oparka, K.J. (1998) Cell-to-cell and phloem-mediated transport of potato virus X: the role of virions. Plant Cell 10, 495–510.

    Article  Google Scholar 

  120. 120. Fedorkin, O.N., Merits, A., Lucchesi, J., Solovyev, A.G., Saarma, M., Morozov, S.Yu., and Makinen, K. (2000) Complementation of the movement-deficient mutations in Potato virus X: Potyvirus coat protein mediates cell-to-cell trafficking of C-terminal truncation but not deletion mutant of potexvirus coat protein. Virology 270, 31–42.

    Article  PubMed  CAS  Google Scholar 

  121. 121. Fedorkin, O.N., Solovyev, A.G., Yelina, N. E., Zamyatnin, A.A., Jr, Zinovkin, R.A., Makinen, K., Schiemann, J., and Morozov, S.Yu. (2001) Cell-to-cell movement of Potato virus X involves distinct functions of the coat protein. J. Gen. Virol. 82, 449–458.

    PubMed  CAS  Google Scholar 

  122. 122. Rakitina, D.V., Kantidze, O.L., Leshchiner, A.D., Solovyev, A.G., Novikov, V.K., Morozov, S.Yu., and Kalinina, N.O. (2005) Coat proteins of two filamentous viruses display NTPase activity in vitro FEBS Lett. 579, 4955–4960.

    Article  PubMed  CAS  Google Scholar 

  123. 123. Dolja, V.V., Halderman-Cahill, R., Montgomery, A.E., Vandenbosch, K.A., and Carrington, J.C., (1995) Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206, 1007–1016.

    Article  PubMed  CAS  Google Scholar 

  124. 124. Rojas, M.R., Zerbini, F.M., Allison, R.F., Gilbertson, R.L., and Lucas, W.J. (1997) Capsid protein and helper compoment-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237, 283–295.

    Article  PubMed  CAS  Google Scholar 

  125. 125. Revers, F., Le Gall, O., Candresse, T., and Maule, A.J., (1999) New advances in understanding the molecular biology of plant/potyvirus interactions. Mol. Plant Microbe Interact. 12, 367–376.

    Article  CAS  Google Scholar 

  126. 126. Carrington, J.C., Jensen, P.E., and Schaad, M.C. (1998) Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J. 14, 393–400.

    Article  PubMed  CAS  Google Scholar 

  127. 127. Rodriguez-Cerezo, E., Findlay, K.,Shaw, J.G., Lomonossoff, G.P., Qiu, S.G., Linstead, P., Shanks, M., and Risco, C. (1997) The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 236, 296–306.

    Article  PubMed  CAS  Google Scholar 

  128. 128. Roberts, I.M., Wang, D., Findlay, K., and Maule, A.J. (1998) Ultrastuctural and temporal observations of the potyvirus cylindrical inclusions (CIs) show that the CI protein acts transiently in aiding virus movement. Virology 245, 173–181.

    Article  PubMed  CAS  Google Scholar 

  129. 129. Nicolas, O., Dunnington, S.W., Gotow, L.F., Pirone, T.P., and Hellmann, G.M. (1997) Variations in the VPg protein allow a potyvirus to overcome va gene resistance in tobacco. Virology 237, 452–459.

    Article  PubMed  CAS  Google Scholar 

  130. 130. Gao, Z., Johansen, E., Eyers, S., Thomas, C.L., Ellis, T.H.N., and Maule A.J. (2004). The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation inititiation factor eIF4E in cell-to-cell trafficking. Plant J. 40, 376–385.

    Article  PubMed  CAS  Google Scholar 

  131. 131. Dunoyer, P., Thomas, C., Harrison, S., Revers, F., and Maule, A. (2004) A cysteine-rich plant protein potentiates potyvirus movement through an interaction with the virus genome-linked protein VPg. J. Virol. 78, 2301–2309.

    Article  PubMed  CAS  Google Scholar 

  132. 132. Torrance, L., Andreev, I.A., Gabrenaite-Verhovskaya, R., Cowan, G., Mäkinen, K., Taliansky, M.E. (2006). An unusual structure at one end of potato potyvirus particles. J. Mol. Biol. 357, 1–8.

    Article  PubMed  CAS  Google Scholar 

  133. 133. Dolja, V.V. (2003) Beet yellow virus: the importance of being different. Mol. Plant Pathol. 4, 91–98.

    Article  PubMed  CAS  Google Scholar 

  134. 134. Napuli, A.J., Falk, B.W., and Dolja, V. V. (2000) Interaction between HSP70 homolog and filamentous virions of the Beet yellows virus. Virology 274, 232–239.

    Article  PubMed  CAS  Google Scholar 

  135. 135. Peremyslov, V.V., Andreev, I.A., Prokhnevsky, A.I., Duncan, G. H., Taliansky, M.E., and Dolja, V.V. (2004). Complex molecular architecture of beet yellows virus particles. Proc. Natl. Acad. Sci. USA 101, 5030–5035.

    Article  PubMed  CAS  Google Scholar 

  136. 136. Alzhanova, D.V., Napuli, A.J., Creamer, R., and Dolja, V.V. (2001) Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog. EMBO J. 20, 6997–7007.

    Article  PubMed  CAS  Google Scholar 

  137. 137. Peremyslov, V.V., Hagiwara, Y., and Dolja, V.V. (1999) HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc. Natl. Acad. Sci. 96, 14771–14776.

    Article  PubMed  CAS  Google Scholar 

  138. 138. Prokhnevsky, A.I., Peremyslov, V.V., Napuli, A.J., and Dolja, V. V. (2002) Interaction between long-distance transport factor and Hsp70-related movement protein of Beet yellows virus. J. Virol. 76, 11003–11011.

    Article  PubMed  CAS  Google Scholar 

  139. 139. Dolja, V.V., Kreuze, J.F., and Valkonen J.P. (2006) Comparative and functional genomics of closteroviruses. Virus Res. 117, 38–51

    Article  PubMed  CAS  Google Scholar 

  140. 140. Marvin, D.A. (1998). Filamentous phage structure, infection and assembly. Curr. Opin. Struct. Biol. 8, 150–158.

    Article  PubMed  CAS  Google Scholar 

  141. 141. Pouwels, J., Carette, J.E., Van Lent, J., and Wellink, J. (2002) Cowpea mosaic virus: effect on cell host processes. Mol. Plant Pathol. 3, 411–418.

    Article  PubMed  CAS  Google Scholar 

  142. 142. Van Lent, J., Storms, M., van der Meer, F., Wellink, J., and Goldbach, R. (1991) Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. J. Gen. Virol. 72, 2615–2623.

    Article  PubMed  Google Scholar 

  143. 143. Kasteel, D.T., Perbal, M.C., Boyer, J.C., Wellink, J., Goldbach, R.W., Maule, A.J., and Van Lent, J.W. (1996) The movement proteins of cowpea mosaic virus and cauliflower mosaic virus induce tubular structures in plant and insect cells. J. Gen. Virol. 77, 2857–2864.

    Article  PubMed  CAS  Google Scholar 

  144. 144. Pouwels, J., Van der Krogt, G.N., Van Lent, J., Bisseling, T., and Wellink, J. (2002) The cytoskeleton and the secretory pathway are not involved in targeting the cowpea mosaic virus movement protein to the cell periphery. Virology 297, 48–56.

    Article  PubMed  CAS  Google Scholar 

  145. 145. Laporte, C., Vetter, G., Loudes, A.M., Robinson, D.G., Hillmer, S., Stussi-Garaud, C., and Ritzenthaler, C. (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15, 2058–2075.

    Article  PubMed  CAS  Google Scholar 

  146. 146. Bertens, P., Wellink, J., Goldbach, R., and van Kammen, A. (2000) Mutational analysis of the cowpea mosaic virus movement protein. Virology 267, 199–208.

    Article  PubMed  CAS  Google Scholar 

  147. 147. Atabekov, J.G., Malyshenko, S.I., Morozov, S.Yu., Taliansky, M.E., Solovyev, A.G., Agranovsky, A.A., and Shapka, N.A. (1999) Identification and study of tobacco mosaic virus movement function by complementation tests. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 354, 629–635.

    Article  PubMed  CAS  Google Scholar 

  148. 148. Nelson, R.S. and van Bel, A.J.E. (1998) The mystery of virus trafficking into, through and out of the vascular tissue. Progr. Bot. 59, 476–533; Nelson RS, Citovsky V.Plant viruses. Invaders of cells and pirates of cellular pathways. Plant Physiol. 2005 Aug;138(4):1809–14. Review.

    Google Scholar 

  149. 149. Oparka, K.J. and Turgeon, R. (1999) Sieve elements and companion cells-traffic control centers of the phloem. Plant Cell 11, 739–750; Oparka KJ, Cruz SS. The great escepe: Phloem Transport and Unloading of Macromolecules Annu Rev Plant Physiol Plant Mol Biol. 2000 51:323–347.

    Article  PubMed  CAS  Google Scholar 

  150. 150. Swanson, M., Barker, H., and MacFarlane, S.A. (2002). Rapid vascular movement of tobra-viruses does not require coat protein: evidence from mutated and wild-type viruses. Ann. Appl. Biol. 141, 259–266.

    Article  CAS  Google Scholar 

  151. 151. Cadman, C.H. (1962) Evidence for association of tobacco rattle virus nucleic acid with a cell component. Nature 193, 49–52.

    Article  PubMed  CAS  Google Scholar 

  152. 152. Scholthof, H.B., Scholthof, K.B., Kikkert, M., and Jackson, A.O. (1995) Tomato bushy stunt virus spread is regulated by two nested genes that function in cell-to-cell movement and host-dependent systemic invasion. Virology 213, 425–438.

    Article  PubMed  CAS  Google Scholar 

  153. 153. Tacke, E., Prufer, D., Schmitz, J. and Rohde, W. (1991) The potato leafroll luteovirus 17 K protein is a single-stranded nucleic acid-binding protein. J. Gen. Virol. 72, 2035–2038.

    Article  PubMed  CAS  Google Scholar 

  154. 154. Tacke, E., Schmitz, J. Prufer, D. and Rohde, W. (1993) Mutational analysis of the nucleic acid-binding 17 kDa phosphoprotein of potato leafroll luteovirus identifies an amphipathic alpha-helix as the domain for protein/protein interactions. Virology 197, 274–282.

    Article  PubMed  CAS  Google Scholar 

  155. 155. Sokolova, M., Prufer, D., Tacke, E., and Rohde, W. (1997) The potato leafroll virus 17 K movement protein is phosphorylated by a membrane-associated protein kinase from potato with biochemical features of protein kinase C. FEBS Lett. 400, 201–205.

    Article  PubMed  CAS  Google Scholar 

  156. 156. Schmitz, J., Stussi-Garaud, C., Tacke, E., Prufer, D., Rohde, W., and Rohfritsch, O. (1997) In situ localization of the putative movement protein (pr17) from potato leafroll luteovirus (PLRV) in infected and transgenic potato plants. Virology 235, 311–322.

    Article  PubMed  CAS  Google Scholar 

  157. 157. Taliansky, M., Mayo, M.A., and Barker, H. (2003) Potato leafroll virus: a classic pathogen shows some new tricks. Mol. Plant Pathology 4, 81–89.

    Article  CAS  Google Scholar 

  158. 158. Ryabov, E.V., Robinson, D. J., and Taliansky, M. E. (1999) A plant virus-encoded protein facilitates long-distance movement of heterologous viral RNA. Proc. Natl. Acad. Sci. USA 96, 1212–1217.

    Article  PubMed  CAS  Google Scholar 

  159. 159. Ryabov, E.V., Robinson, D.J., and Taliansky, M.E. (2001) Umbravirus-encoded proteins both stabilize heterologous viral RNA and mediate its systemic movement in some plant species. Virology 288, 391–400.

    Article  PubMed  CAS  Google Scholar 

  160. 160. Taliansky, M., Roberts, I.M., Kalinina, N., Ryabov, E.V., Raj, S.R., Robinson, D.J., and Oparka, K.J. (2003) An umbraviral protein, involved in long-distance RNA movement, binds viral RNA and forms unique, protective ribonucleoprotein complexes. J. Virol. 77, 3031–3040.

    Article  PubMed  CAS  Google Scholar 

  161. 161. Ryabov, E.V., Kim, S.-H., and Taliansky, M. E. (2004) Identification of a nuclear localization signal and nuclear export signal of the umbraviral long-distance RNA movement protein. J. Gen. Virol. 85, 1329–1333.

    Article  PubMed  CAS  Google Scholar 

  162. 162. Dorokhov Y.L., Makinen, K., Frolova, O.Y., Merits, A., Saarinen, J., Kalkkinen, N., Atabekov, J.G., and Saarma, M. (1999). A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett. 461, 223–228.

    Article  PubMed  CAS  Google Scholar 

  163. 163. Chen M.H., Sheng, J.S., Hind G., Handa, A.K., and Citovsky, V. (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J. 19, 913–920.

    Article  PubMed  CAS  Google Scholar 

  164. 164. Yoshioka, K., Matsushita, Y., Kasahara, M., Konagaya, K., and Nyunoya, H. (2004) Interaction of tomato mosaic virus movement protein with tobacco RIO kinase. Mol. Cells 17, 223–229.

    PubMed  CAS  Google Scholar 

  165. 165. Desvoyes, B., Faure-Rabasse, S., Chen, M.H., Park, J.W., and Scholthof, H.B. (2002) A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein. Plant Physiol. 129, 1521–1532.

    Article  PubMed  CAS  Google Scholar 

  166. 166. Soellick, T., Uhrig, J.F., Bucher, G. L., Kellmann, J.W., and Schreier, P.H. (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc. Natl. Acad. Sci. USA 97, 2373–2378.

    Article  PubMed  CAS  Google Scholar 

  167. 167. Matsushita, Y., Miyakawa, O., Deguchi, M., Nishiguchi, M., and Nyunoya, H. (2002) Cloning of a tobacco cDNA coding for a putative transcriptional coactivator MBF1 that interacts with the tomato mosaic virus movement protein. J. Exp. Bot. 53, 1531–1532.

    Article  PubMed  CAS  Google Scholar 

  168. 168. Voinnet, O., Lederer, C., and Baulcombe, D.C. (2000) A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157–167.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Scottish Crop Research Institute is grant-aided by the Scottish Executive Environment and Rural Affairs Department. NOK is supported in part by the Grant of Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Taliansky, M., Torrance, L., Kalinina, N.O. (2008). Role of Plant Virus Movement Proteins. In: Foster, G.D., Johansen, I.E., Hong, Y., Nagy, P.D. (eds) Plant Virology Protocols. Methods in Molecular Biology™, vol 451. Humana Press. https://doi.org/10.1007/978-1-59745-102-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-102-4_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-827-0

  • Online ISBN: 978-1-59745-102-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics