Skip to main content

Working with Ontologies

  • Protocol
  • First Online:
Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1525))

Abstract

Ontologies are powerful and popular tools to encode data in a structured format and manage knowledge. A large variety of existing ontologies offer users access to biomedical knowledge. This chapter contains a short theoretical background of ontologies and introduces two notable examples: The Gene Ontology and the ontology for Biological Pathways Exchange. For both ontologies a short overview and working bioinformatic applications, i.e., Gene Ontology enrichment analyses and pathway data visualization, are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing? Int J Hum Comput Stud 43:907–928

    Article  Google Scholar 

  2. Berners-Lee T, Hendler J, Lassila O et al (2001) The semantic web. Sci Am 284:28–37

    Article  Google Scholar 

  3. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Demir E, Cary MP, Paley S et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28:935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burkhardt H, Smith B (1991) Handbook of metaphysics and ontology. Philosophia Verlag, Muenchen

    Google Scholar 

  6. Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5(2):199–220

    Article  Google Scholar 

  7. Noy NF, McGuinness DL et al (2001) Ontology development 101: a guide to creating your first ontology. Stanford knowledge systems laboratory technical report KSL-01-05 and Stanford medical informatics technical report SMI-2001-0880

    Google Scholar 

  8. Hitzler P, Krotzsch M, Rudolph S (2011) Foundations of semantic web technologies. CRC Press, Boca Raton, FL

    Google Scholar 

  9. du Plessis L, Škunca N, Dessimoz C (2011) The what, where, how and why of gene ontology—a primer for bioinformaticians. Brief Bioinform 12:723–735

    Article  PubMed  PubMed Central  Google Scholar 

  10. Beißbarth T, Speed TP (2004) GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20:1464–1465

    Article  PubMed  Google Scholar 

  11. Beißbarth T (2006) Interpreting experimental results using gene ontologies. In: Kimmel A, Oliver B (eds) Methods Enzymol. Academic, Waltham, pp 340–352

    Google Scholar 

  12. Guo X, Liu R, Shriver CD et al (2006) Assessing semantic similarity measures for the characterization of human regulatory pathways. Bioinformatics 22:967–973

    Article  CAS  PubMed  Google Scholar 

  13. Fröhlich H, Speer N, Poustka A, Beißbarth T (2007) GOSim—an R-package for computation of information theoretic GO similarities between terms and gene products. BMC Bioinformatics 8:166

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cheng L, Li J, Ju P et al (2014) SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association. PLoS One 9:e99415

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hoehndorf R, Hancock JM, Hardy NW et al (2014) Analyzing gene expression data in mice with the Neuro Behavior Ontology. Mamm Genome Off J Int Mamm Genome Soc 25:32–40

    Article  CAS  Google Scholar 

  16. Xu Q, Shi Y, Lu Q et al (2008) GORouter: an RDF model for providing semantic query and inference services for Gene Ontology and its associations. BMC Bioinformatics 9(Suppl 1):S6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chi Y-L, Chen T-Y, Tsai W-T (2015) A chronic disease dietary consultation system using OWL-based ontologies and semantic rules. J Biomed Inform 53:208–219

    Article  PubMed  Google Scholar 

  18. Nadkarni PM, Marenco LA (2010) Implementing description-logic rules for SNOMED-CT attributes through a table-driven approach. J Am Med Inform Assoc 17:182–184

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rector AL, Brandt S (2008) Why do it the hard way? The case for an expressive description logic for SNOMED. J Am Med Inform Assoc 15:744–751

    Article  PubMed  PubMed Central  Google Scholar 

  20. Degtyarenko K, de Matos P, Ennis M et al (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36:D344–D350

    Article  CAS  PubMed  Google Scholar 

  21. Smith B, Ashburner M, Rosse C et al (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25:1251–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noy NF, Shah NH, Whetzel PL et al (2009) BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res 37:W170–W173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rubin DL, Shah NH, Noy NF (2008) Biomedical ontologies: a functional perspective. Brief Bioinform 9:75–90

    Article  PubMed  Google Scholar 

  24. Côté R, Reisinger F, Martens L et al (2010) The Ontology Lookup Service: bigger and better. Nucleic Acids Res 38:W155–W160

    Article  PubMed  PubMed Central  Google Scholar 

  25. McGuinness DL, Van Harmelen F et al (2004) OWL web ontology language overview. W3C Recomm 10

    Google Scholar 

  26. Beckett D, McBride B (2004) RDF/XML syntax specification (revised). W3C Recomm 10

    Google Scholar 

  27. Bray T, Paoli J, Sperberg-McQueen CM et al (1997) Extensible markup language (XML). World Wide Web J 2:27–66

    Google Scholar 

  28. Klyne G, Carroll JJ, McBride B (2004) Resource description framework (RDF): concepts and abstract syntax. W3C Recomm 10

    Google Scholar 

  29. Gennari JH, Musen MA, Fergerson RW et al (2003) The evolution of Protégé: an environment for knowledge-based systems development. Int J Hum Comput Stud 58:89–123

    Article  Google Scholar 

  30. Horridge M, Tudorache T, Nuylas C et al (2014) WebProtégé: a collaborative Web-based platform for editing biomedical ontologies. Bioinformatics 30:2384–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Demir E, Babur Ö, Rodchenkov I et al (2013) Using biological pathway data with Paxtools. PLoS Comput Biol 9:e1003194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. The Geno Ontology Consortium (2014) Gene Ontology Consortium: going forward. Nucleic Acids Res 43(Database issue):D1049–D1056

    Google Scholar 

  33. Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kramer F, Bayerlová M, Klemm F et al (2013) rBiopaxParser—an R package to parse, modify and visualize BioPAX data. Bioinformatics 29:520–522

    Article  CAS  PubMed  Google Scholar 

  35. The Geno Ontology Consortium (2008) The Gene Ontology project in 2008. Nucleic Acids Res 36:D440–D444

    Article  Google Scholar 

  36. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R Core Team (2013) R: a language and environment for statistical computing, Vienna, Austria

    Google Scholar 

  38. Schröder MS, Gusenleitner D, Quackenbush J et al (2013) RamiGO: an R/Bioconductor package providing an AmiGO Visualize interface. Bioinformatics 29:666–668

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pesquita C, Faria D, Bastos H et al (2008) Metrics for GO based protein semantic similarity: a systematic evaluation. BMC Bioinformatics 9:S4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jiang R, Gan M, He P (2011) Constructing a gene semantic similarity network for the inference of disease genes. BMC Syst Biol 5:S2

    Article  PubMed  PubMed Central  Google Scholar 

  41. Andronis C, Sharma A, Virvilis V et al (2011) Literature mining, ontologies and information visualization for drug repurposing. Brief Bioinform 12:357–368

    Article  CAS  PubMed  Google Scholar 

  42. Kramer M, Dutkowski J, Yu M et al (2014) Inferring gene ontologies from pairwise similarity data. Bioinformatics 30:i34–i42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dutkowski J, Ono K, Kramer M et al (2014) NeXO Web: the NeXO ontology database and visualization platform. Nucleic Acids Res 42:D1269–D1274

    Article  CAS  PubMed  Google Scholar 

  44. Dutkowski J, Kramer M, Surma MA et al (2013) A gene ontology inferred from molecular networks. Nat Biotechnol 31:38–45

    Article  CAS  PubMed  Google Scholar 

  45. Zheng Q, Wang X-J (2008) GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 36:W358–W363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

  47. Bauer S, Grossmann S, Vingron M, Robinson PN (2008) Ontologizer 2.0—a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24:1650–1651

    Article  CAS  PubMed  Google Scholar 

  48. Eden E, Navon R, Steinfeld I et al (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48

    Article  PubMed  PubMed Central  Google Scholar 

  49. Huang DW, Sherman BT, Tan Q et al (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35:W169–W175

    Article  PubMed  PubMed Central  Google Scholar 

  50. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  51. Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  CAS  PubMed  Google Scholar 

  52. Hermjakob H, Montecchi-Palazzi L, Bader G et al (2004) The HUPO PSI’s Molecular Interaction format—a community standard for the representation of protein interaction data. Nat Biotechnol 22:177–183

    Article  CAS  PubMed  Google Scholar 

  53. Strömbäck L, Lambrix P (2005) Representations of molecular pathways: an evaluation of SBML, PSI MI and BioPAX. Bioinformatics 21:4401–4407

    Article  PubMed  Google Scholar 

  54. Cary MP, Bader GD, Sander C (2005) Pathway information for systems biology. FEBS Lett 579:1815–1820

    Article  CAS  PubMed  Google Scholar 

  55. Kramer F (2014) Integration of pathway data as prior knowledge into methods for network reconstruction. Georg-August-Universitat Göttingen, Göttingen

    Google Scholar 

  56. Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34:D504–D506

    Article  CAS  PubMed  Google Scholar 

  57. Ogata H, Goto S, Sato K et al (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Joshi-Tope G, Gillespie M, Vastrik I et al (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33:D428–D432

    Article  CAS  PubMed  Google Scholar 

  59. Kelder T, van Iersel MP, Hanspers K et al (2011) WikiPathways: building research communities on biological pathways. Nucleic Acids Res 40:D1301–D1307

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pico AR, Kelder T, van Iersel MP et al (2008) WikiPathways: pathway editing for the people. PLoS Biol 6:e184

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vastrik I, D’Eustachio P, Schmidt E et al (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8:R39

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schaefer CF, Anthony K, Krupa S et al (2009) PID: the pathway interaction database. Nucleic Acids Res 37:D674–D679

    Article  CAS  PubMed  Google Scholar 

  63. Bauer-Mehren A, Furlong LI, Sanz F (2009) Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol Syst Biol 5:290

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cerami EG, Gross BE, Demir E et al (2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39:D685–D690

    Article  CAS  PubMed  Google Scholar 

  65. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kramer F, Bayerlová M, Beißbarth T (2014) R-based software for the integration of pathway data into bioinformatic algorithms. Biology 3:85–100

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shannon PT, Grimes M, Kutlu B et al (2013) RCytoscape: tools for exploratory network analysis. BMC Bioinformatics 14:217

    Article  PubMed  PubMed Central  Google Scholar 

  68. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695

    Google Scholar 

Download references

Acknowledgements

This work was funded by the German ministry of education and research (BMBF) grants FKZ01ZX1508 and FKZ031L0024A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kramer, F., Beißbarth, T. (2017). Working with Ontologies. In: Keith, J. (eds) Bioinformatics. Methods in Molecular Biology, vol 1525. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6622-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6622-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6620-2

  • Online ISBN: 978-1-4939-6622-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics