Skip to main content

Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering

  • Book
  • © 2011

Overview

  • Nominated by the University of Bologna for a Springer Theses Prize.
  • This research integrates aspects of chemistry, physics, engineering, materials science and biomedical science.
  • This work documents successful international and national collaborations which have been set up as a result of this research.
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (4 chapters)

Keywords

About this book

The development and application of bioactive nano-structured constructs for tissue regeneration is the focus of the research summarised in this thesis. Moreover, a particular focus is the rational use of supercritical carbon dioxide foaming and electrospinning technologies which can lead to innovative polymeric bioresorbable scaffolds made of hydrolysable (both commercial and ‘ad-hoc’ synthesized) polyesters. Mainly, the author discusses the manipulation of polymer chemical structure and composition to tune scaffold physical properties, and optimization of scaffold 3D architecture by a smart use of both fabrication techniques. The multidisciplinary nature of this research is imperative in pursuing the challenge of tissue regeneration successfully. One of the strengths of this thesis is the integration of knowledge from chemistry, physics, engineering, materials science and biomedical science which has contributed to setting up new national and international collaborations, while strengthening existing ones.

Authors and Affiliations

  • , Dept. of Chemistry, University of Bologna, Bologna, Italy

    Chiara Gualandi

Bibliographic Information

Publish with us