Skip to main content
Book cover

Theory of One-Dimensional Vlasov-Maxwell Equilibria

With Applications to Collisionless Current Sheets and Flux Tubes

  • Book
  • © 2018

Overview

  • Nominated as an outstanding Ph.D thesis by the University of St Andrews, St Andrews, UK
  • Presents a pedagogical approach to the subject matter that is as self-contained as possible
  • Covers specialist topics presented within the context of both historical and modern-day plasma physics research
  • Highlights new fundamental work on Vlasov–Maxwell equilibria, of potential interest to mathematicians and physicists alike

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This book describes and contextualises collisionless plasma theory, and in particular collisionless plasma equilibria. The Vlasov–Maxwell theory of collisionless plasmas is an increasingly important tool for modern plasma physics research: our ability to sustain plasma in a steady-state, and to mitigate instabilities, determines the success of thermonuclear fusion power plants on Earth; and our understanding of plasma aids in the prediction and mitigation of Space Weather effects on terrestrial environments and satellites. Further afield, magnetic reconnection is a ubiquitous energy release mechanism throughout the Universe, and modern satellites are now able to make in-situ measurements with kinetic scale resolution.

To keep pace with these challenges and technological developments, a modern scientific discussion of plasma physics must enhance, and exploit, its ‘literacy’ in kinetic theory. For example, accurate analytical calculations and computer simulations of kinetic instabilities are predicated on a knowledge of Vlasov–Maxwell equilibria as an initial condition. This book highlights new fundamental work on Vlasov–Maxwell equilibria, of potential interest to mathematicians and physicists alike. Possible applications involve two of the most significant magnetic structures known to confine plasma and store energy: current sheets and flux tubes.   

Authors and Affiliations

  • Department of Meteorology, University of Reading, Reading, United Kingdom

    Oliver Allanson

About the author

Dr Oliver Allanson is a post-doctoral research associate working within the Department of Meteorology, University of Reading. Oliver is a space plasma physicist, and is a specialist in plasma kinetic theory. He graduated with a PhD in Applied Mathematics from the University of St Andrews in 2017; a MASt in Theoretical Physics from the Univeristy of Cambridge in 2013; and an MPhys in Theoretical Physics & Mathematics from the University of St Andrews in 2012.  

 

Bibliographic Information

Publish with us