Skip to main content
Book cover

Spectroscopy of Semiconductors

Numerical Analysis Bridging Quantum Mechanics and Experiments

  • Book
  • © 2018

Overview

  • Covers semiconductor structures from bulk to nanoscales
  • Analyzes optical properties of semiconductors in a broad variety
  • Exemplifies the experimental data analysis using numerous case studies with numerical codes

Part of the book series: Springer Series in Optical Sciences (SSOS, volume 215)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

The science and technology related to semiconductors have received significant attention for applications in various fields including microelectronics, nanophotonics, and biotechnologies. Understanding of semiconductors has advanced to such a level that we are now able to design novel system complexes before we go for the proof-of-principle experimental demonstration.

This book explains the experimental setups for optical spectral analysis of semiconductors and describes the experimental methods and  the basic quantum mechanical principles underlying the fast-developing nanotechnology for semiconductors. Further, it uses numerous case studies with detailed theoretical discussions and calculations to demonstrate the data analysis. Covering structures ranging from bulk to the nanoscale, it examines applications in the semiconductor industry and biomedicine. Starting from the most basic physics of geometric optics, wave optics, quantum mechanics, solid-state physics, it provides a self-contained resource on the subject for university undergraduates. The book can be further used as a toolbox for researching and developing semiconductor nanotechnology based on spectroscopy.





Reviews

“This is a very good undergraduate-level text presenting the basics of optical spectroscopy of solids and the most widely used spectroscopy techniques. … Well suited for students in Physics, Chemistry, Materials Science and Engineering, the book is easy to read and gives the basic concepts and tools; as such, it can be a good reference for researchers as well.” (Adele Sassella, Il Nuovo Saggiatore, Vol. 35 (3 – 4), 2019)

Authors and Affiliations

  • Shanghai Institute of Technical Physics , Shanghai, China

    Wei Lu

  • Department of Applied Physics, Royal Institute of Technology, Solna, Sweden

    Ying Fu

About the authors

Dr. Ying Fu works at Royal Institute of Technology, where he teaches physics and biophysics, and conducts research focusing on studying and developing bio-conjugated quantum dots (QDs) as in vitro and in vivo biomarkers for studying molecular events of clinical relevance, both theoretically (advanced solid-state theories as well as first-principles theories involving heavy computing on nanostructures, nanophotonics, and nano-bio photonics), and experimentally with a particular strength in live cell and super-resolution bioimaging.

Dr. Wei LU is the professor in Shanghai Institute of Technical Physics, Chinese academy of sciences. His research field is in the opto-electronics, focusing on the quantum effects and their applications. He has developed the new spectroscopy methods to study the semiconductor quantum structure, including quantum well, quantum wire and quantum dots. His developed LED and integrated optical filter have been used in satellite.  

 

Bibliographic Information

Publish with us