Skip to main content

Advertisement

Log in

Effect of acupuncture on hippocampal mitochondrial proteome expression in SAMP8 mouse model with Alzheimer disease

针刺对阿尔茨海默病模型SAMP8小鼠海马线粒体蛋白质组表达的影响

  • Basic Study
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Objective

To observe the effect of acupuncture on the expression of mitochondrial proteome in hippocampus of senescence-accelerated mouse prone 8 (SAMP8) mice models with Alzheimer disease (AD), and to explore the possible protective mechanism of acupuncture on mitochondria.

Methods

Sixty 6-month-old male SAMP8 mice were randomly divided into an acupuncture at acupoint group, an acupuncture at non-acupoint group and a model group, 20 mice in each group. The 20 male senescence-accelerated mouse/resistance 1 (SAMR1) mice of the same age were used as a normal control group. Shenshu (BL 23), Baihui (GV 20), Xuehai (SP 10) and Geshu (BL 17) were selected for acupuncture intervention in acupuncture at acupoint group. After an 8-week intervention, mitochondrial tissues were extracted from the hippocampus. Differentially expressed proteins were identified by subcellular organelle proteomics. Western blot was used to verify the expressions of some related proteins in hippocampal mitochondria.

Results

Compared with the model group, there were 13 differentially expressed protein spots in the acupuncture at acupoint group, of which, 9 were up-regulated, including neurofilament light polypeptide (NFL), actin (cytoplasmic 1, database ID: ACTB), tubulin beta-2A chain (TBB2A), tropomodulin-2 (TMOD2), pyruvate dehydrogenase E1 component subunit beta (PDHE1-β), NADH-ubiquinone oxidoreductase 75 kDa subunit (database ID: NDUS1), heat shock cognate 71 kDa protein (HSC71), pyruvate dehydrogenase E1 component subunit alpha (PDHE1-α) and ATP synthase beta subunit (ATP-β); 4 were down-regulated, including glial fibrillary acidic protein (GFAP), pyruvate dehydrogenase phosphatase 1 (PDP1), mitochondrial-processing peptidase subunit alpha (MMP-α) and adenosine kinase (ADK). According to the information provided in the protein database, most of the differentially expressed proteins involve the regulation of mitochondrial function and structure. The expression levels of NFL and TBB2A in the normal control group and the acupuncture at acupoint group were significantly higher than those in the acupuncture at non-acupoint group (P<0.05). ATP-β and NDUS1 expression levels were significantly higher in the acupuncture at acupoint group than those in the acupuncture at non-acupoint group (P<0.05); there was no significant difference between the acupuncture at non-acupoint group and the model group (P>0.05).

Conclusion

Acupuncture may achieve the potential therapeutic effect on AD by regulating the structure and functional proteins of hippocampal mitochondria.

摘要

目的

观察针刺对阿尔茨海默病(AD)模型快速老化小鼠亚系8(SAMP8)小鼠海马线粒体蛋白质组表达的影响, 探寻针刺对线粒体发挥保护作用的可能机制。

方法

将60只6月龄雄性SAMP8小鼠随机分为穴位针刺组、 非穴位针刺组及模型组, 每组20只; 另20只同月龄雄性抗快速老化小鼠亚系1(SAMR1)小鼠作为正常组。 针刺组选取肾俞、 百会、 血海、 膈俞进行针刺干预。 干预8星期后, 提取海马线粒体组织, 采用亚细胞器蛋白质组学技术鉴定差异蛋白质点, Western blot验证部分相关差异蛋白质在海马线粒体中的表达。

结果

与模型组相比, 穴位针刺 组最终得到鉴定的有13个差异蛋白质点, 其中9个上调, 包括神经丝轻链多肽(NFL), 肌动蛋白胞质型1(数据库ID: ACTB), 微管蛋白乙2A链(TBB2A), 原肌球调节蛋白2(TMOD2), 丙酮酸脱氢酶E1β亚单位(PDHE1-β), NADH-泛醌氧化 还原酶75 kDa亚基(数据库ID: NDUS1), 热休克同源物71 kDa蛋白(HSC71), 丙酮酸脱氢酶E1α亚单位(PDHE1-α)和ATP合成酶β亚基(ATP-β); 4个下调, 包括胶质细胞原纤维酸性蛋白(GFAP), 丙酮酸脱氢酶磷酸酶1(PDP1), 线粒体加工肽酶α亚基(MMP-α)和腺苷激酶(ADK)。 根据蛋白质数据库中提供的相关信息, 绝大部分差异蛋白质点主要涉及线粒体功能以及结构的调节。 正常组及穴位针刺组的NFL、 TBB2A表达水平明显高于非穴位针刺组(P<0.05); 穴位针刺组的ATP-β、 NDUS1表达水平明显高于非穴位针刺组(P<0.05); 非穴位针刺组与模型组无明显差别(P>0.05)。

结论

针刺可能是通过调节海马神经元线粒体的结构和功能蛋白来实现对AD的潜在治疗作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology, 2014, 76: 27–50.

    Article  CAS  PubMed  Google Scholar 

  2. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta, 2010, 1802(1): 2–10.

    Article  CAS  PubMed  Google Scholar 

  3. Swerdlow RH, Khan SM. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses, 2004, 63(1): 8–20.

    Article  CAS  PubMed  Google Scholar 

  4. Morley JE, Farr SA, Kumar VB, Armbrecht HJ. The SAMP8 mouse: a model to develop therapeutic interventions for Alzheimer’s disease. Curr Pharm Des, 2012, 18(8): 1123–1130.

    Article  CAS  PubMed  Google Scholar 

  5. Pallas M, Camins A, Smith MA, Perry G, Lee HG, Casadesus G. From aging to Alzheimer’s disease: unveiling “the switch” with the senescence-accelerated mouse model (SAMP8). J Alzheimers Dis, 2008, 15(4): 615–624.

    Article  CAS  PubMed  Google Scholar 

  6. Morley JE, Armbrecht HJ, Farr SA, Kumar VB. The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease. Biochim Biophys Acta, 2012, 1822(5): 650–665.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou J, Peng WN, Xu M, Li W, Liu ZS. The effectiveness and safety of acupuncture for patients with Alzheimer disease: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore), 2015, 94(22): e933.

    Article  CAS  Google Scholar 

  8. Hua Q, He R. Alzheimer’s disease-mechanisms, drug targets and alternative treatments. Curr Top Med Chem, 2016, 16(5): 470–471.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu H, Dong KL, Wu Y, Zhang T, Li RM, Hu SH, Wang HL. Cognitive function improvement of Bu Shen Huo Xue method on Alzheimer disease patients. Zhongguo Laonianxue Zazhi, 2010, 30(11): 1493–1495.

    Google Scholar 

  10. Zhu H, Dong KL, Wu Y, Zhang T, Li RM, Dai SS, Wang HL. Influence of acupuncture on isoprostane in patients with Alzheimer’s disease. Zhongguo Zhen Jiu, 2010, 30(1): 18–21.

    CAS  PubMed  Google Scholar 

  11. Dai SS, Dong KL, Zhu H. Effect of kidney-reinforcing and blood-activating acupuncture on learning and memory abilities and brain AChE activity in a SAMP8 mouse model of senile dementia. Shanghai Zhenjiu Zazhi, 2010, 29(1): 57–59.

    Google Scholar 

  12. Dai SS, Dong KL, Zhu H. Effects of Bu Shen Huo Xue acupuncture on the ability learning and memory and the expression of NEP in the hippocampal CA1 region of rapid aging SAMP8 mouse models. Hunan Zhongyiyao Daxue Xuebao, 2015, 35(1): 60–63, 72.

    CAS  Google Scholar 

  13. Zhu H, Dong KL, Li GC, Xiao L. Effect of protein expressionin hippocampus tissue of SAMP8 by kidney-reinforcing and blood-activating acupuncture method. Zhongguo Laonianxue Zazhi, 2011, 31(23): 4613–4616.

    CAS  Google Scholar 

  14. Zhu H, Dong KL, Wu Y, Li GC, Xiao L, Zhang T, Wang HL. Effect of acupuncture for reinforcing kidney and activating blood on the neuroglobin expression in hippocampus tissue of Alzheimer’s disease model mice. Zhongyi Zazhi, 2011, 52(11): 955–957.

    Google Scholar 

  15. Li ZR. Experimental Acupuncture Science. Beijing: China Press of Traditional Chinese Medicine, 2007: 253–257.

    Google Scholar 

  16. Bian JL, Zhang CH. Conception and core of academician Shi Xuemin’s acupuncture manipulation quantitative arts. Zhongguo Zhen Jiu, 2003, 23(5): 287–289.

    Google Scholar 

  17. Riemer J, Kins S. Axonal transport and mitochondrial dysfunction in Alzheimer’s disease. Neurodegener Dis, 2013, 12(3): 111–124.

    Article  CAS  PubMed  Google Scholar 

  18. Hokama M, Oka S, Leon J, Ninomiya T, Honda H, Sasaki K, Iwaki T, Ohara T, Sasaki T, LaFerla FM, Kiyohara Y, Nakabeppu Y. Altered expression of diabetes-related genes in Alzheimer’s disease brains: the Hisayama study. Cereb Cortex, 2014, 24(9): 2476–2488.

    Article  PubMed  Google Scholar 

  19. Leuner K, Müller WE, Reichert AS. From mitochondrial dysfunction to amyloid beta formation: novel insights into the pathogenesis of Alzheimer’s disease. Mol Neurobiol, 2012, 46(1): 186–193.

    Article  CAS  PubMed  Google Scholar 

  20. Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA. Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain, 2009, 132(Pt 4): 833–842.

    Article  PubMed  Google Scholar 

  21. Akhter F, Chen D, Yan SF, Yan SS. Mitochondrial perturbation in Alzheimer’s disease and diabetes. Prog Mol Biol Transl Sci, 2017, 146: 341–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol, 2014, 15(10): 634–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vacirca D, Delunardo F, Matarrese P, Colasanti T, Margutti P, Siracusano A, Pontecorvo S, Capozzi A, Sorice M, Francia A, Malorni W, Ortona E. Autoantibodies to the adenosine triphosphate synthase play a pathogenetic role in Alzheimer’s disease. Neurobiol Aging, 2012, 33(4): 753–766.

    Article  CAS  PubMed  Google Scholar 

  24. Wang WJ, Ma Z, Liu YW, He YQ, Wang YZ, Yang CX, Du Y, Zhou MQ, Gao F. A monoclonal antibody (Mc178-Ab) targeted to the ecto-ATP synthase beta-subunit-induced cell apoptosis via a mechanism involving the MAPKase and Akt pathways. Clin Exp Med, 2012, 12(1): 3–12.

    Article  CAS  PubMed  Google Scholar 

  25. Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR. A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol, 2004, 164(6): 803–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koutsis G, Pandraud A, Karadima G, Panas M, Reilly MM, Floroskufi P, Wood NW, Houlden H. Mutational analysis of PMP22, EGR2, LITAF and NEFL in Greek Charcot-Marie-Tooth type 1 patients. Clin Genet, 2013, 83(4): 388–391.

    Article  CAS  PubMed  Google Scholar 

  27. Filali M, Dequen F, Lalonde R, Julien JP. Sensorimotor and cognitive function of a NEFL (P22S) mutant model of Charcot-Marie-Tooth disease type 2E. Behav Brain Res, 2011, 219(2): 175–180.

    Article  CAS  PubMed  Google Scholar 

  28. Sheng ZH, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci, 2012, 13(2): 77–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dixit R, Ross JL, Goldman YE, Holzbaur EL. Differential regulation of dynein and kinesin motor proteins by tau. Science, 2008, 319(5866): 1086–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yuan ZQ, Zhang Y, Li XL, Peng YZ, Huang YS, Yang ZC. HSP70 protects intestinal epithelial cells from hypoxia/reoxygenation injury via a mechanism that involves the mitochondrial pathways. Eur J Pharmacol, 2010, 643(2-3): 282–288.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (国家自然科学基金项目, No. 81202730); the Fundamental Research Funds for the Central Universities (中央高校基本科研业务经费, No. 2012QNZT162); the Natural Science Foundation of Hunan Province (湖南省自然科学基金, No. 2011JJ3097); Science and Technology Project of Traditional Chinese Medicine of Hunan Province (湖南省中医药科技项目, No. 201413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhu  (朱宏).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Mt., Li, Gc., Zhu, H. et al. Effect of acupuncture on hippocampal mitochondrial proteome expression in SAMP8 mouse model with Alzheimer disease. J. Acupunct. Tuina. Sci. 16, 67–79 (2018). https://doi.org/10.1007/s11726-018-1026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-018-1026-2

Keywords

关键词

中图分类号

文献标志码

Navigation