Skip to main content
Log in

Fiber-reinforced computational model of the aortic root incorporating thoracic aorta and coronary structures

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are still the leading causes of death in the developed world. The decline in the mortality associated with circulatory system diseases is accredited to development of new diagnostic and prognostic tools. It is well known that there is an inter relationship between the aortic valve impairment and pathologies of the aorta and coronary vessels. However, due to the limitations of the current tools, the possible link is not fully elucidated. Following our previous model of the aortic root including the coronaries, in this study, we have further developed the global aspect of the model by incorporating the anatomical structure of the thoracic aorta. This model is different from all the previous studies in the sense that inclusion of the coronary structures and thoracic aorta into the natural aortic valve introduces the notion of globality into the model enabling us to explore the possible link between the regional pathologies. The developed model was first validated using the available data in the literature under physiological conditions. Then, to provide a support for the possible association between the localized cardiovascular pathologies and global variations in hemodynamic conditions, we simulated the model for two pathological conditions including moderate and severe aortic valve stenoses. The findings revealed that malformations of the aortic valve are associated with development of low wall shear stress regions and helical blood flow in thoracic aorta that are considered major contributors to aortic pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ALE:

Arbitrary Lagrangian–Eulerian

AVA:

Aortic valve area

BCa:

Brachiocephalic artery

CB:

Conus branch

CS:

Cross section

DCx:

Distal circumflex

DLAD:

Diagonal branch of the LAD

ET:

Ejection time

FD:

Fictitious domain

FR:

Fiber reinforced

FSI:

Fluid–solid interaction

H:

Hyperplastic (nonlinear) material properties

I:

Isotropic material properties

L:

Linear material properties

LAD:

Left anterior descending

LCa:

Left carotid artery

LCA:

Left coronary arteries

LMS:

Left main stem

LSa:

Left subclavian

LVOT:

Left ventricle outflow tract

MCx:

Main circumflex

MLAD:

Main left anterior descending

NA:

Not available

O:

Orthotropic material properties

OM:

Obtuse marginal

PD:

Posterior descending

R:

Rigid

RCA:

Right coronary arteries

RMS:

Right main stem

RV:

Right ventricular

RVCT:

Rapid valve closing time

RVCV:

Rapid valve closing velocity

RVOT:

Rapid valve opening time

RVOV:

Rapid valve opening velocity

STJ:

Sinotubular junction

References

  • Achilles J, Pappano WGW (2012) Cardiovascular physiology: Mosby physiology monograph series, 10th edn. Elsevier Health Sciences, Philadelphia

    Google Scholar 

  • Ahmadi N et al (2011) Impaired aortic distensibility measured by computed tomography is associated with the severity of coronary artery disease. Int J Cardiovasc Imaging 27:459–469. doi:10.1007/s10554-010-9680-6

    Article  Google Scholar 

  • Astorino M, Gerbeau J-F, Pantz O, Traoré K-F (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Method Appl Mech Eng 198:3603–3612. doi:10.1016/j.cma.2008.09.012

    Article  MathSciNet  MATH  Google Scholar 

  • Aybek T et al (2005) Valve opening and closing dynamics after different aortic valve-sparing operations. J Heart Valve Dis 14:114–120

    Google Scholar 

  • Azadani AN et al (2012) Biomechanical comparison of human pulmonary and aortic roots. Eur J Cardiothorac Surg 41:1111–1116. doi:10.1093/ejcts/ezr163

    Article  Google Scholar 

  • Badia S, Nobile F, Vergara C (2008) Fluid-structure partitioned procedures based on Robin transmission conditions. J Comput Phys 227:7027–7051

    Article  MathSciNet  MATH  Google Scholar 

  • Basciano CA, Kleinstreuer C (2009) Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall. J Biomech Eng 131:021009. doi:10.1115/1.3005341

    Article  Google Scholar 

  • Berg HVD (2011) Mathematical models of biological systems. Oxford University Press, Oxford, New York

    MATH  Google Scholar 

  • Berger S (1996) Introduction to bioengineering. Oxford University Press, Oxford, New York

    Google Scholar 

  • Berger S, Talbot L, Yao L (1983) Flow in curved pipes. Annu Rev Fluid Mech 15:461–512

  • Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp-part I: experimental results. J Biomech Eng 122:23–30

    Article  Google Scholar 

  • Bissell MM et al (2013) Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging 6:499–507. doi:10.1161/circimaging.113.000528

    Article  Google Scholar 

  • Black MM, Howard IC, Huang X, Patterson EA (1991) A three-dimensional analysis of a bioprosthetic heart valve. J Biomech 24:793–801. doi:10.1016/0021-9290(91)90304-6

    Article  Google Scholar 

  • Bols J, Degroote J, Trachet B, Verhegghe B, Segers P, Vierendeels J (2013) A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J Comput Appl Math 246:10–17. doi:10.1016/j.cam.2012.10.034

    Article  MathSciNet  MATH  Google Scholar 

  • Bonomi D et al (2015) Influence of the aortic valve leaflets on the fluid-dynamics in aorta in presence of a normally functioning bicuspid valve. Biomech Model Mechanobiol 14(6):1349–61. doi:10.1007/s10237-015-0679-8

    Article  Google Scholar 

  • Borghi A, Wood NB, Mohiaddin RH, Xu XY (2008) Fluid-solid interaction simulation of flow and stress pattern in thoracoabdominal aneurysms: a patient-specific study. J Fluid Struct 24:270–280. doi:10.1016/j.jfluidstructs.2007.08.005

    Article  Google Scholar 

  • Caro CG (1978) The mechanics of the circulation. Oxford University Press, Oxford, New York

    MATH  Google Scholar 

  • Cataloglu A, Gould PL, Clark RE (1975) Validation of a simplified mathematical model for the stress analysis of human aortic heart valves. J Biomech 8:347–348. doi:10.1016/0021-9290(75)90088-3

    Article  Google Scholar 

  • Causin P, Gerbeau J-F, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Method Appl Mech Eng 194:4506–4527

    Article  MathSciNet  MATH  Google Scholar 

  • Cavalcante JL, Lima JAC, Redheuil A, Al-Mallah MH (2011) Aortic stiffness current understanding and future directions. J Am Coll Cardiol 57:1511–1522. doi:10.1016/j.jacc.2010.12.017

    Article  Google Scholar 

  • Chew GG, Howard IC, Patterson EA (1999) Simulation of damage in a porcine prosthetic heart valve. J Med Eng Technol 23:178–189

    Article  Google Scholar 

  • Choo SJ et al (1999) Aortic root geometry: pattern of differences between leaflets and sinuses of Valsalva. J Heart Valve Dis 8:407–415

    Google Scholar 

  • Clark C (1976) The fluid mechanics of aortic stenosis - II. Unsteady flow experiments. J Biomech 9:567–573

    Article  Google Scholar 

  • Cochran RP, Kunzelman KS, Chuong CJ, Sacks MS, Eberhart RC (1991) Nondestructive analysis of mitral valve collagen fiber orientation. ASAIO Trans 37:M447–448

    Google Scholar 

  • Coogan JS, Humphrey JD, Figueroa CA (2013) Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomech Model Mechanobiol 12:79–93. doi:10.1007/s10237-012-0383-x

    Article  Google Scholar 

  • De Hart J, Baaijens FP, Peters GW, Schreurs PJ (2003) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712

    Article  Google Scholar 

  • Del Pin F, Çaldichoury I (2012) LS-DYNA® 980: recent developments, application areas and validation process of the incompressible fluid solver (ICFD) in LS-DYNA Part

  • Dettmer W, Perić D (2006) A computational framework for fluid-structure interaction: finite element formulation and applications. Comput Method Appl Mech Eng 195:5754–5779. doi:10.1016/j.cma.2005.10.019

    Article  MATH  Google Scholar 

  • Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Method Appl Mech Eng 33:689–723. doi:10.1016/0045-7825(82)90128-1

    Article  MATH  Google Scholar 

  • Driessen NJ, Bouten CV, Baaijens FP (2005) Improved prediction of the collagen fiber architecture in the aortic heart valve. J Biomech Eng 127:329–336

    Article  Google Scholar 

  • Felippa CA, Park K, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Method Appl Mech Eng 190:3247–3270

    Article  MATH  Google Scholar 

  • Förster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Method Appl Mech Eng 196:1278–1293

    Article  MathSciNet  MATH  Google Scholar 

  • Frauenfelder T et al (2007) In-vivo flow simulation in coronary arteries based on computed tomography datasets: feasibility and initial results. Eur Radiol 17:1291–1300. doi:10.1007/s00330-006-0465-1

    Article  Google Scholar 

  • Fung Y (1998) Biomechanics: circulation, 2nd edn. Springer, New York

    Google Scholar 

  • Fung YC (1993) Biomechanics : mechanical properties of living tissues. Springer, New York

    Book  Google Scholar 

  • Gallo D, Steinman DA, Bijari PB, Morbiducci U (2012) Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J Biomech 45:2398–2404. doi:10.1016/j.jbiomech.2012.07.007

    Article  Google Scholar 

  • Garcia D, Camici PG, Durand LG, Rajappan K, Gaillard E, Rimoldi OE, Pibarot P (2009) Impairment of coronary flow reserve in aortic stenosis. J Appl Physiol 106:113–121. doi:10.1152/japplphysiol.00049.2008

    Article  Google Scholar 

  • Gee MW, Reeps C, Eckstein HH, Wall WA (2009) Prestressing in finite deformation abdominal aortic aneurysm simulation. J Biomech 42:1732–1739. doi:10.1016/j.jbiomech.2009.04.016

    Article  Google Scholar 

  • Go AS et al (2014) Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation 129:e28–e292. doi:10.1161/01.cir.0000441139.02102.80

    Article  Google Scholar 

  • Govindjee S, Mihalic PA (1998) Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int J Numer Method Eng 43:821–838

    Article  MATH  Google Scholar 

  • Ha H, Kim GB, Kweon J, Lee SJ, Kim Y-H, Kim N, Yang DH (2016) The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta. Sci Rep 6:32316. doi:10.1038/srep32316

    Article  Google Scholar 

  • Hallquist JO (2006) LS-DYNA Theory Manual. Livermore Software Technology Corporation

  • Hamid MS, Sabbah HN, Stein PD (1985) Finite element evaluation of stresses on closed leaflets of bioprosthetic heart valves with flexible stents. Finite Elem Anal Des 1:213–225. doi:10.1016/0168-874X(85)90015-0

    Article  MATH  Google Scholar 

  • Handke M, Heinrichs G, Beyersdorf F, Olschewski M, Bode C, Geibel A (2003) In vivo analysis of aortic valve dynamics by transesophageal 3-dimensional echocardiography with high temporal resolution. J Thorac Cardiovasc Surg 125:1412–1419

    Article  Google Scholar 

  • He X, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 118:74–82

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solid 61:1–48. doi:10.1023/a:1010835316564

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2004) Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. J Biomech Eng 126:264–275

    Article  Google Scholar 

  • Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A Math Phys Eng Sci 367:3445–3475. doi:10.1098/rsta.2009.0091

    Article  MathSciNet  MATH  Google Scholar 

  • Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH, Alley MT, Higgins CB (2010) Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255:53–61. doi:10.1148/radiol.09091437

    Article  Google Scholar 

  • Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation. Finite Elem Anal Des 47:593–599. doi:10.1016/j.finel.2010.12.015

    Article  MathSciNet  Google Scholar 

  • http://www.nature.com/articles/srep32316#supplementary-information

  • Humphrey JD, Holzapfel GA (2012) Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech 45:805–814. doi:10.1016/j.jbiomech.2011.11.021

    Article  Google Scholar 

  • Humphrey JD, Strumpf RK, Yin FC (1990) Determination of a constitutive relation for passive myocardium: I. A new functional form. J Biomech Eng 112:333–339

    Article  Google Scholar 

  • Idelsohn SR, Del Pin F, Rossi R, Oñate E (2009) Fluid-structure interaction problems with strong added-mass effect. Int J Numer Method Eng 80:1261–1294. doi:10.1002/nme.2659

    Article  MathSciNet  MATH  Google Scholar 

  • Juang D, Braverman AC, Eagle K (2008) Cardiology patient pages. Aortic dissection. Circulation 118:e507–510. doi:10.1161/circulationaha.108.799908

    Article  Google Scholar 

  • Kamensky D et al (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Method Appl Mech Eng 284:1005–1053. doi:10.1016/j.cma.2014.10.040

    Article  MathSciNet  Google Scholar 

  • Katayama S, Umetani N, Sugiura S, Hisada T (2008) The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure J Thorac Cardiovasc Surg 136:1528–1535, 1535.e1521. doi:10.1016/j.jtcvs.2008.05.054

  • Khanafer K, Berguer R (2009) Fluid-structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. J Biomech 42:2642–2648. doi:10.1016/j.jbiomech.2009.08.010

    Article  Google Scholar 

  • Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302

    Article  Google Scholar 

  • Kunzelman KS, Einstein DR, Cochran RP (2007) Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos Trans R Soc Lond B Biol Sci 362:1393–1406. doi:10.1098/rstb.2007.2123

    Article  Google Scholar 

  • Kunzelman KS, Grande KJ, David TE, Cochran RP, Verrier ED (1994) Aortic root and valve relationships. Impact on surgical repair. J Thorac Cardiovasc Surg 107:162–170

    Google Scholar 

  • Kunzelman KS, Reimink MS, Cochran RP (1998) Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J Heart Valve Dis 7:108–116

    Google Scholar 

  • Labrosse MR, Beller CJ, Robicsek F, Thubrikar MJ (2006) Geometric modeling of functional trileaflet aortic valves: development and clinical applications. J Biomech 39:2665–2672. doi:10.1016/j.jbiomech.2005.08.012

    Article  Google Scholar 

  • Labrosse MR, Lobo K, Beller CJ (2010) Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded. J Biomech 43:1916–1922. doi:10.1016/j.jbiomech.2010.03.020

    Article  Google Scholar 

  • Lancellotti RM (2012) Numerical computations of deflated vascular geometries for fluid-structure interaction in haemodynamics. Universita degli Studi di Napoli

  • Lewin MB, Otto CM (2005) The bicuspid aortic valve: adverse outcomes from infancy to old age. Circulation 111:832–834. doi:10.1161/01.cir.0000157137.59691.0b

    Article  Google Scholar 

  • Leyh RG, Schmidtke C, Sievers HH, Yacoub MH (1999) Opening and closing characteristics of the aortic valve after different types of valve-preserving surgery. Circulation 100:2153–2160

    Article  Google Scholar 

  • Liu X, Sun A, Fan Y, Deng X (2015) Physiological significance of helical flow in the arterial system and its potential clinical applications. Ann Biomed Eng 43:3–15

    Article  Google Scholar 

  • Louis Thériault CS, Browarski S (2010) The Canadian heart health strategy: risk factors and future cost implications paper presented at the the conference board of Canada, Ottawa

  • ICFD Theory Manual. Incompressible fluid solver in LS-DYNA (2013)Livermore Software Technology Corporation (LSTC)

  • LS-DYNA \(\textregistered \) Keyword User’s Manual, Volume II Material Models (revision: 5442) (2014) Livermore Software Technology Corporation (LSTC)

  • Martin C, Pham T, Sun W (2011) Significant differences in the material properties between aged human and porcine aortic tissues. Eur J Cardiothorac Surg 40:28–34. doi:10.1016/j.ejcts.2010.08.056

    Article  Google Scholar 

  • Martufi G, Di Martino ES, Amon CH, Muluk SC, Finol EA (2009) Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J Biomech Eng 131:061015. doi:10.1115/1.3127256

    Article  Google Scholar 

  • May-Newman K, Yin FC (1998) A constitutive law for mitral valve tissue. J Biomech Eng 120:38–47

    Article  Google Scholar 

  • Mohammadi H (2015) Developing a global fluid-structure interaction model of the aortic root. McGill University, Montreal

    Google Scholar 

  • Mohammadi H, Cartier R, Mongrain R Development of a 1D model for assessing the aortic root pressure drop with viscosity and compliance. In: ASME 2013 Summer Bioengineering Conference, 2013. American Society of Mechanical Engineers, pp V01AT04A026–V001AT004A026

  • Mohammadi H, Cartier R, Mongrain R (2015) Derivation of a simplified relation for assessing aortic root pressure drop incorporating wall compliance. Med Biol Eng Comput 53:241–251. doi:10.1007/s11517-014-1228-9

    Article  Google Scholar 

  • Mohammadi H, Cartier R, Mongrain R (2016a) 3D physiological model of the aortic valve incorporating small coronary arteries. Int J Numer Method Biomed Eng 33(5):e02829. doi:10.1002/cnm.2829

    MathSciNet  Google Scholar 

  • Mohammadi H, Cartier R, Mongrain R (2016) Review of numerical methods for simulation of the aortic root: present and future directions. Int J Comput Method Eng Sci Mech 17:182–195. doi:10.1080/15502287.2016.1189463

    Article  MathSciNet  Google Scholar 

  • Mohammadi H, Cartier R, Mongrain R (2017) The impact of the aortic valve impairment on the distant coronary arteries hemodynamics: a fluid-structure interaction study. Med Biol Eng Comput. doi:10.1007/s11517-017-1636-8

    Google Scholar 

  • Morbiducci U, Ponzini R, Grigioni M, Redaelli A (2007) Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study. J Biomech 40:519–534. doi:10.1016/j.jbiomech.2006.02.017

    Article  Google Scholar 

  • Morbiducci U et al (2008) In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann Biomed Eng 37:516. doi:10.1007/s10439-008-9609-6

    Article  Google Scholar 

  • Morganti S, Auricchio F, Benson DJ, Gambarin FI, Hartmann S, Hughes TJR, Reali A (2015) Patient-specific isogeometric structural analysis of aortic valve closure. Comput Method Appl Mech Eng 284:508–520. doi:10.1016/j.cma.2014.10.010

    Article  MathSciNet  Google Scholar 

  • Mozaffarian D et al (2016) Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:447

    Article  Google Scholar 

  • Nemes A, Forster T, Lengyel C, Csanady M (2007) Reduced aortic distensibility and coronary flow velocity reserve in diabetes mellitus patients with a negative coronary angiogram. Can J Cardiol 23:445–450

    Article  Google Scholar 

  • Nestola MG et al (2017) Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses. Comput Method Biomech Biomed Eng 20:171–181. doi:10.1080/10255842.2016.1207171

    Article  Google Scholar 

  • Nishimura RA et al (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. doi:10.1016/j.jacc.2014.02.536

  • Nobari S, Mongrain R, Gaillard E, Leask R, Cartier R (2012) Therapeutic vascular compliance change may cause significant variation in coronary perfusion: a numerical study. Comput Math Method Med 2012:791686. doi:10.1155/2012/791686

    Article  MATH  Google Scholar 

  • Nobari S, Mongrain R, Leask R, Cartier R (2013) The effect of aortic wall and aortic leaflet stiffening on coronary hemodynamic: a fluid-structure interaction study. Med Biol Eng Comput 51:923–936. doi:10.1007/s11517-013-1066-1

    Article  Google Scholar 

  • Nosovitsky VA, Ilegbusi OJ, Jiang J, Stone PH, Feldman CL (1997) Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow. Comput Biomed Res 30:61–82

    Article  Google Scholar 

  • Oberoi S, Schoepf UJ, Meyer M, Henzler T, Rowe GW, Costello P, Nance JW (2013) Progression of arterial stiffness and coronary atherosclerosis: longitudinal evaluation by cardiac CT. Am J Roentgenol 200:798–804. doi:10.2214/AJR.12.8653

    Article  Google Scholar 

  • Patterson EA, Howard IC, Thornton MA (1996) A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle. J Med Eng Technol 20:95–108

    Article  Google Scholar 

  • Perktold K, Resch M, Peter RO (1991) Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J Biomech 24:409–420

    Article  Google Scholar 

  • Politis AK, Stavropoulos GP, Christolis MN, Panagopoulos FG, Vlachos NS, Markatos NC (2007) Numerical modeling of simulated blood flow in idealized composite arterial coronary grafts: steady state simulations. J Biomech 40:1125–1136. doi:10.1016/j.jbiomech.2006.05.008

    Article  Google Scholar 

  • Prot V, Skallerud B, Holzapfel GA (2007) Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modelling and finite element implementation. Int J Numer Method Eng 71:987–1008. doi:10.1002/nme.1983

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu Y, Tarbell JM (2000) Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J Biomech Eng 122:77–85

    Article  Google Scholar 

  • Quapp KM, Weiss JA (1998) Material characterization of human medial collateral ligament. J Biomech Eng 120:757–763

    Article  Google Scholar 

  • Ranga A, Bouchot O, Mongrain R, Ugolini P, Cartier R (2006) Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact Cardiovasc Thorac Surg 5:373–378. doi:10.1510/icvts.2005.121483

    Article  Google Scholar 

  • Rossow MP, Gould PL, Clark RE (1978) A simple method for estimating stresses in natural and prosthetic heart valves. Biomater Med Devices Artif Organs 6:277–290

    Article  Google Scholar 

  • Sabbah HN, Hamid MS, Stein PD (1986) Mechanical stresses on closed cusps of porcine bioprosthetic valves: correlation with sites of calcification. Ann Thorac Surg 42:93–96

    Article  Google Scholar 

  • Sacks MS (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125:280–287

    Article  Google Scholar 

  • Sahasakul Y, Edwards WD, Naessens JM, Tajik AJ (1988) Age-related changes in aortic and mitral valve thickness: implications for two-dimensional echocardiography based on an autopsy study of 200 normal human hearts. Am J Cardiol 62:424–430

    Article  Google Scholar 

  • Shanmugavelayudam SK, Rubenstein DA, Yin W (2010) Effect of geometrical assumptions on numerical modeling of coronary blood flow under normal and disease conditions. J Biomech Eng 132:061004. doi:10.1115/1.4001033

    Article  Google Scholar 

  • Smith S, Austin S, Wesson GD, Moore CA (2006) Calculation of wall shear stress in left coronary artery bifurcation for pulsatile flow using two-dimensional computational fluid dynamics. Conf Proc IEEE Eng Med Biol Soc 1:871–874. doi:10.1109/iembs.2006.260101

    Google Scholar 

  • Sun W, Abad A, Sacks MS (2005) Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech Eng 127:905–914

    Article  Google Scholar 

  • Tadros TM, Klein MD, Shapira OM (2009) Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation 119:880–890. doi:10.1161/circulationaha.108.795401

    Article  Google Scholar 

  • Taylor CA, Hughes TJ, Zarins CK (1998) Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 26:975–987

    Article  Google Scholar 

  • Thubrikar M (1990) The aortic valve. CRC Press, Boca Raton

    Google Scholar 

  • Thubrikar MJ, Heckman JL, Nolan SP (1993) High speed cine-radiographic study of aortic valve leaflet motion. J Heart Valve Dis 2:653–661

    Google Scholar 

  • Tremblay D, Zigras T, Cartier R, Leduc L, Butany J, Mongrain R, Leask RL (2009) A comparison of mechanical properties of materials used in aortic arch reconstruction. Ann Thorac Surg 88:1484–1491. doi:10.1016/j.athoracsur.2009.07.023

    Article  Google Scholar 

  • Tse KM, Chiu P, Lee HP, Ho P (2011) Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech 44:827–836. doi:10.1016/j.jbiomech.2010.12.014

    Article  Google Scholar 

  • van Loon R (2010) Towards computational modelling of aortic stenosis. Int J Numer Method Biomed Eng 26:405–420. doi:10.1002/cnm.1270

    Article  MathSciNet  MATH  Google Scholar 

  • van Loon R, Anderson PD, de Hart J, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves. Int J Numer Method Fluids 46:533–544. doi:10.1002/fld.775

    Article  MATH  Google Scholar 

  • Weinberg EJ, Kaazempur-Mofrad MR (2005) On the constitutive models for heart valve leaflet mechanics. Cardiovasc Eng 5:37–43. doi:10.1007/s10558-005-3072-x

    Article  Google Scholar 

  • Weinberg EJ, Kaazempur-Mofrad MR (2006) A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics. J Biomech 39:1557–1561. doi:10.1016/j.jbiomech.2005.04.020

    Article  Google Scholar 

  • Weinberg EJ, Shahmirzadi D, Mofrad MR (2010) On the multiscale modeling of heart valve biomechanics in health and disease. Biomech Model Mechanobiol 9:373–387. doi:10.1007/s10237-009-0181-2

    Article  Google Scholar 

  • Yearwood TL, Misbach GA, Chandran KB (1989) Experimental fluid dynamics of aortic stenosis in a model of the human aorta. Clin Phys Physiol Meas 10:11–24

    Article  Google Scholar 

  • Zamir M (2005) The physics of coronary blood flow. Springer. http://worldcat.org http://public.eblib.com/EBLPublic/PublicView.do?ptiID=302787

  • Zygote Media Group I (2011) The Zygote Solid 3D Heart Model

Download references

Acknowledgements

This research was supported by McGill Engineering Doctoral Award (MEDA), NSERC and Montreal Heart institute (MHI). This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaire Mongrain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, H., Cartier, R. & Mongrain, R. Fiber-reinforced computational model of the aortic root incorporating thoracic aorta and coronary structures. Biomech Model Mechanobiol 17, 263–283 (2018). https://doi.org/10.1007/s10237-017-0959-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0959-6

Keywords

Navigation