Skip to main content
Log in

Mathematical model of thermal processes in an iron ore sintering bed

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

An unsteady one-dimensional model of an iron ore sintering bed with multiple solid phases was proposed. The proposed model confers a phase on each solid material. The present model was established with a series of conservation equations in the form of a partial differential equation for each solid phase and gas phase. Coke combustion, limestone decomposition, gaseous reaction, heat transfers in/between each phase, and geometric changes of the solid particles are reflected by each term of the governing equations. Simulation results are compared with the limited experimental data set of sintering pot tests. Parametric studies for various initial water contents and coke diameters have also been performed. The simulation results predict the experimental results well and show physically reasonable trends for various parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A:

volumetric surface area, m2/m3, pre-exponential factor, s−1

C:

molar concentration, kmol/m3

dp :

particle size, m

E:

activation energy, J/kmol

fshrink :

shrink factor

fip :

ratio of internal pore generation

H:

heat of reaction or combustion, J/kmol

h:

enthalpy, J; convection coefficient, W/m2K

I+, I :

radiation intensity upward or downward, W/m2s

k:

rate constant, s−1, conductivity, W/mK; mass transfer coefficient, m/s

M:

volumetric mass generation rate, kg/m3s

m:

mass fraction

np :

particle number density, 1/m3

p:

pressure, N/m2

q:

volumetric heat generation rate, J/m3s

R:

universal gas constant

r:

reaction rate, kmol/m3s

T:

temperature, K

t:

time, s

V:

vulume, m3

v:

superficial velocity, m/s

W:

molecular weight, kg/kmol

y:

vertical coordinate, m

y:

fraction of heat absorbed by solid

ε:

porosity

τ:

transmissivity

ζ:

particle area factor

κ:

absorption coefficient, m−1

ν:

stoichiometric coefficient

ρ:

density, kg/m3

ϕ:

general scalar quantity

a:

exponent of temperature

b:

exponent of pressure

b:

black body

eff:

diffusion through the ash layer

g:

gas phase

I:

index of solid phase

i:

component of the solid phase

ip:

internal pore

j:

chemical species of the solid phase

k:

reaction or combustion process

m:

mass transfer

o:

initial value

r:

kinetic

s:

solid phase

References

  1. P. R. Austin, H. Nogami, and J. Yagi,ISIJ Int. 37, 458 (1997).

    Article  CAS  Google Scholar 

  2. P. L. M. Wong, M. J. Kim, and H. S. Kim,Met. Mater._-Int. 6, 151 (2000)

    Article  CAS  Google Scholar 

  3. I. Muchi and J. Higuchi,Tetsu-to-Hagané 56, 371 (1970)

    CAS  Google Scholar 

  4. R. W. Young,Ironmak. Steelmak. 6, 321 (1977).

    Google Scholar 

  5. M. J. Cumming and J. A. Thurlby,Ironmak. Steelmak. 17, 245 (1990).

    CAS  Google Scholar 

  6. F. Patisson, J. P. Bellot, D. Ablitzer, E. Marli, C. Dulcy, and J. M. Steiler,Ironmak. Steelmak. 18, 89 (1991).

    CAS  Google Scholar 

  7. N. K. Nath, A. J. Da Silva, and N. Chakraborti,Steel Res. 68, 285 (1997).

    CAS  Google Scholar 

  8. E. Kasai, M. V. Ramos, J. Kano, F. Saito, and Y. Waseda,3rd World Congress on Particle Technology, Brighton, England (1998).

  9. M. V. Ramos, E. Kasai, J. Kano, and T. Nakamura,ISIJ Int. 40, 448 (2000).

    Article  CAS  Google Scholar 

  10. W. Yang, C. Ryu, S. Choi, E. Choi, D. Lee, and W. Huh,ISIJ Int. 44, 492 (2004).

    Article  CAS  Google Scholar 

  11. M. L. Hobbs, P. T. Radulovic, and L. D. Smoot,AIChE J. 38, 681 (1992).

    Article  CAS  Google Scholar 

  12. D. H. Shin and S. Choi,Combust. and Flame,121, 167 (2000).

    Article  CAS  Google Scholar 

  13. N. Wakao and S. Kaguei,Heat and Mass Transfer in Packed Beds, Gordon and Breach Science Publishers, New York (1982).

    Google Scholar 

  14. J. A. Kunipers, W. Prins, and W. P. M. van Swaaij,AIChE J. 38, 1079 (1992).

    Article  Google Scholar 

  15. R. B. Bird, W. E. Stewart, and E. N. LightfootTransport Phenomena 2nd ed., p. 525 Wiley Int., New York (2001).

    Google Scholar 

  16. D. Merrick,Fuel 62, 540 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangmin Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Ryu, C., Choi, S. et al. Mathematical model of thermal processes in an iron ore sintering bed. Met. Mater. Int. 10, 493–500 (2004). https://doi.org/10.1007/BF03027355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027355

Keywords

Navigation