Skip to main content
Log in

Simultaneous fabrication of an alignment layer and a wall structure for a liquid crystal display by solvent-assisted micromolding

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Patterning and aligning are the most distinctive research areas in surface science. In this paper, we demonstrate a fabrication method for the simultaneous formation of a wall-structured surface relief and a molecular aligning region between the walls. A photoreactive polymer, poly(vinyl cinnamate) (PVCi), was used as the matrix; it was coated either onto a rigid glass substrate or a flexible plastic substrate. We used a solvent-assisted micro-molding poly(dimethylsiloxane) stamp to form 10-μm-wide and 10-μm-high walls every 100 μm on the matrix. The direction of the molecular alignment in the region between the walls was perpendicular to the direction of the walls; this finding was confirmed by the subsequent liquid crystal (LC) alignment investigation. The alignment of this wide region between the wall structures is uncommon and differs from the molecular alignment induced by the microgroove topology due to the patterning. Additionally, the application of linearly polarized ultraviolet irradiation onto the photoreactive PVCi improved the molecular alignment either on the region between the walls or on the lateral side of the walls; this finding was confirmed by polarized light microscopy imaging. The simultaneous formation of the wall support in the molecular aligning region can be used in flexible LC displays, in which the maintenance of cell gaps and the aligning of the LC material play a critical role in display performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jang, Mater. Today, 9, 46 (2006).

    Article  CAS  Google Scholar 

  2. S. J. Sung, E. A. Jung, D. H. Kim, D. H. Son, J. K. Kang, and K. Y. Cho, Opt. Express, 18, 11737 (2010).

    Article  CAS  Google Scholar 

  3. Y. T. Kim, J. H. Hong, T. Y. Yoon, and S. D. Lee, Appl. Phys. Lett., 88, 263501 (2006).

    Article  Google Scholar 

  4. V. Vorflusev and S. Kumar, Science, 283, 1903 (1999).

    Article  CAS  Google Scholar 

  5. H. Hah, S. J. Sung, M. Han, S. S. Lee, and J. K. Park, Displays, 29, 478 (2008).

    Article  Google Scholar 

  6. Y. Kim, J. Francl, B. Taheri, and J. L. West, Appl. Phys. Lett., 72, 2253 (1998).

    Article  CAS  Google Scholar 

  7. S. J. Jang, J. H. Kim, J. H. Bae, Y. Choi, H. R. Kim, S. I. Kim, J. H. Souk, and J. H. Kim, Mol. Cryst. Liq. Cryst., 470, 191 (2007).

    Article  CAS  Google Scholar 

  8. A. Hellemans, IEEE Spectr., 37, 18 (2000).

    Article  Google Scholar 

  9. T. Scharf, A. Shlayen, C. Gernez, N. Basturk, and J. Grupp, Mol. Cryst. Liq. Cryst., 412, 135 (2004).

    Article  Google Scholar 

  10. H. Hah, S. J. Sung, M. Han, S. Lee, and J. K. Park, Mater. Sci. Eng. C, 27, 798 (2007).

    Article  CAS  Google Scholar 

  11. H. Vithana, D. Johnson, and P. Bos, Jpn. J. Appl. Phys., 35, L320 (1996).

    Article  CAS  Google Scholar 

  12. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., 31, 2155 (1992).

    Article  CAS  Google Scholar 

  13. M. Schadt, H. Seiberle, and A. Schuster, Nature, 381, 212 (1996).

    Article  CAS  Google Scholar 

  14. K. Ichimura, Y. Akita, H. Akiyama, K. Kudo, and Y. Hayashi, Macromolecules, 30, 903 (1997).

    Article  CAS  Google Scholar 

  15. S. J. Sung, D. H. Kim, M. R. Kim, and K. Y. Cho, Macromol. Res., 18, 614 (2010).

    Article  CAS  Google Scholar 

  16. J. Lee, S. Lee, Y. C. Jeong, K. Y. Cho, and J. K. Park, Opt. Express, 17, 23565 (2009).

    Article  CAS  Google Scholar 

  17. S. J. Sung, J. H. Yun, S. Lee, J. K. Park, D. H. Kim, and K. Y. Cho, React. Funct. Polym., 70, 622 (2010).

    Article  CAS  Google Scholar 

  18. T. C. Lin, S. C. Yu, P. S. Chen, K. Y. Chi, H. C. Pan, and C. Y. Chao, Curr. Appl. Phys., 9, 610, (2009).

    Article  Google Scholar 

  19. H. Hah, S. J. Sung, and J. K. Park, Appl. Phys. Lett., 90, 063508 (2007).

    Article  Google Scholar 

  20. J. S. Choi, K. Y. Cho, and J. H. Yim, Eur. Polym. J., 46, 389 (2010).

    Article  CAS  Google Scholar 

  21. N. Y. Lee, J. R. Lim, M. J. Lee, J. B. Kim, S. J. Jo, H. K. Baik, and Y. S. Kim, Langmuir, 22, 9018 (2006).

    Article  CAS  Google Scholar 

  22. J. A. Rogers, Z. N. Bao, and L. Dhar, Appl. Phys. Lett., 73, 294 (1998).

    Article  CAS  Google Scholar 

  23. J. Hahm and S. J. Sibener, Langmuir, 16, 4766 (2000).

    Article  CAS  Google Scholar 

  24. M. Kimura, M. J. Misner, T. Xu, S. H. Kim, and T. P. Russell, Langmuir, 19, 9910 (2003).

    Article  CAS  Google Scholar 

  25. S. H. Kim, M. J. Misner, T. Xu, M. Kimura, and T. P. Russell, Adv. Mater., 16, 226 (2004).

    Article  CAS  Google Scholar 

  26. J. Naciri, J. Y. Fang, M. Moore, D. Shenoy, C. S. Dulcey, and R. Shashidar, Chem. Mater., 12, 3288 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuk Young Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, J.H., Sung, SJ. & Cho, K.Y. Simultaneous fabrication of an alignment layer and a wall structure for a liquid crystal display by solvent-assisted micromolding. Macromol. Res. 20, 453–458 (2012). https://doi.org/10.1007/s13233-012-0065-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0065-7

Keywords

Navigation