Skip to main content

Advertisement

Log in

Spatio-temporal trends of mean air temperature during 1961–2009 and impacts on crop (maize) yields in the most important agricultural region of Romania

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Climate change analysis is essential, considering the numerous economic and ecological implications of this critical global environmental issue. This paper analyzes the spatial and temporal trends of mean air temperature in Romania’s most important agricultural area, the south and south-eastern region, between 1961 and 2009. In this respect, multiannual (the entire period) and multidecadal (1961–1990, 1971–2000, 1981–2009) trends were analyzed using the Mann–Kendall test and Sen’s slope method at 23 weather stations, annually, seasonally and for the growing season of the region’s main agricultural crops (maize and wheat). Multiannually, the results showed statistically significant temperature increases, on all temporal scales (maximum rate of 0.06 °C/year recorded in summer, equivalent to a net temperature rise of 2.82 °C), except for the autumn season (cooling without statistical significance). Multidecadally, the 1961–1990 period is marked by a general cooling, especially in autumn (maximum values of −0.07 °C/year or over 2 °C net cooling). In the 1971–2000 and 1981–2009 periods, a general warming was observed (maximum in summer for both multidecades, when positive rates peaked at 0.09 °C/year, or 2.5–3 °C net warming), but the warming of the last three decades is the most prominent in terms of spatial average magnitude and trend significance. Upon analysis of the impact of climate warming on agricultural yields (maize) through linear regression, in the 1991–2000 decade, considered as case study, it was found that in 32 % of the total analyzed area there are evident relationships between the two variables (p value <0.05). In this case, a dependency of 33–50 % (40 %, on average) of maize to climate was found, and a sensitivity (loss) ranging between 0.9 and 1.5 t/ha/year (1.2 t/ha/year, on average) for a 1 °C temperature rise. At the same time, significant losses (of up to 1.7 t/ha/year) of maize for a 1 °C temperature rise were identified in 51 % of the area, but with little p value significance (between 0.05 and 0.1). It is however necessary to analyse the agro-climatic results cautiously, considering that only one decade of climate-agriculture relationship was studied. The results can be useful first and foremost for mitigating the climate change impact on agricultural systems, by prioritizing future adaptation strategies enforced by policy makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Note stationary trends were identified considering a slope value of 0.000 (instances with the third decimal place equal to at least 1 indicate positive/negative trends)

Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ageena I, Macdonald N, Morse AP (2014) Variability of maximum and mean average temperature across Libya (1945–2009). Theor Appl Climatol 117:549–563

    Article  Google Scholar 

  • Ainsworth EA, Leakey ABD, Ort DR, Long SP (2008) FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol 179:5–9

    Article  CAS  Google Scholar 

  • Appiotti F, Krželj M, Russo A, Ferretti M, Bastianini M, Marincioni F (2014) A multidisciplinary study on the effects of climate change in the northern Adriatic Sea and the Marche region (central Italy). Reg Environ Change 14:2007–2024

    Article  Google Scholar 

  • Bălteanu D, Dragotă CS, Popovici A, Dumitraşcu M, Kucsicsa G, Grigorescu I (2013) Land use and crop dynamics related to climate change signals during the post-communist period in the south Oltenia, Romania. Proc Rom Acad Ser B 15(3):265–278

    Google Scholar 

  • Bandoc G (2008) Coastal phenologic cycles for Sfantu Gheorghe station (the Danube Delta). J Environ Prot Ecol 9(4):953–960

    Google Scholar 

  • Bandoc G (2012) Statistical analysis of seasonal and interannual variability of precipitation in the coastal region Sfantu Gheorghe. J Environ Prot Ecol 13:1656–1663

    Google Scholar 

  • Bandoc G, Golumbeanu M (2010) Climate variability influence to the potential evapotranspiration regime of Sfantu Gheorghe Delta Shore. J Environ Prot Ecol 10(1):172–181

    Google Scholar 

  • Bandoc G, Prăvălie R (2015) Climatic water balance dynamics over the last five decades in Romania’s most arid region, Dobrogea. J Geogr Sci 25(11):1307–1327

    Article  Google Scholar 

  • Bandoc G, Dragomir E, Mateescu R (2013) Spatial analysis of potential evapotranspiration in Danube Delta. In: 3rd international conference on social sciences and society (ICSSS), December 27–28, 2013, Jeju Island, Korea

  • Bandoc G, Mateescu R, Dragomir E, Golumbeanu M, Comanescu L, Nedelea A (2014) Systemic approach of the impact induced by climate changes on hydrothermic factors at the Romanian Black Sea Coast. J Environ Prot Ecol 15(2):455–465

    Google Scholar 

  • Birsan MV, Dumitrescu A, Micu DM, Cheval S (2014) Changes in annual temperature extremes in the Carpathians since AD 1961. Nat Hazards 74:1899–1910

    Article  Google Scholar 

  • Bogdan O (2005a) Romanian plain. Climate (in Romanian). Geography of Romania, vol V. Romanian Academy Publishing, Bucharest

  • Bogdan O (2005b) Dobrogea plateau. Climate (in Romanian). Geography of Romania, vol V. Romanian Academy Publishing, Bucharest

  • Bojariu R, Giorgi F (2005) The North Atlantic Oscillation signal in a regional climate simulation for the European region. Tellus 57(4):641–653

    Article  Google Scholar 

  • Busuioc A, Dumitrescu A, Soare E, Orzan A (2007) Summer anomalies in 2007 in the context of extremely hot and dry summers in Romania. Romanian J Meteorol 9(1–2):1–17

    Google Scholar 

  • Busuioc A, Caian M, Cheval S, Bojariu R, Boroneant C, Baciu M et al (2010) Climate variability and change in Romania (in Romanian). Pro Universitaria Publishing, Bucharest

    Google Scholar 

  • Busuioc A, Dobrinescu A, Birsan MV, Dumitrescu A, Orzan A (2014) Spatial and temporal variability of climate extremes in Romania and associated large-scale mechanisms. Int J Climatol. doi:10.1002/joc.4054

    Google Scholar 

  • Cheval S, Birsan MV, Dumitrescu A (2014) Climate variability in the Carpathian Mountains Region over 1961–2010. Glob Planet Change 118:85–96

    Article  Google Scholar 

  • CLC (2006) Corine land cover (raster data). European Environment Agency. www.eea.europa.eu

  • Croitoru AE, Piticar A (2013) Changes in daily extreme temperatures in the extra-Carpathians regions of Romania. Int J Climatol 33:1987–2001

    Article  Google Scholar 

  • Croitoru AE, Holobaca IH, Lazar C, Moldovan F, Imbroane A (2012a) Air temperature trend and the impact on winter wheat phenology in Romania. Clim Change 111(2):393–410

    Article  Google Scholar 

  • Croitoru AE, Drignei D, Holobaca IH, Dragota CS (2012b) Change-point analysis for serially correlated summit temperatures in the Romanian Carpathians. Theor Appl Climatol 108:9–18

    Article  Google Scholar 

  • Croitoru AE, Piticar A, Dragotă CS, Burada DC (2013a) Recent changes in reference evapotranspiration in Romania. Glob Planet Change 111:127–137

    Article  Google Scholar 

  • Croitoru AE, Chiotoroiu BC, Todorova VI, Torica V (2013b) Changes in precipitation extremes on the Black Sea Western Coast. Glob Planet Change 102:10–19

    Article  Google Scholar 

  • Croitoru AE, Drignei D, Dragotă CS, Imecs Z, Burada DC (2014) Sharper detection of winter temperature changes in the Romanian higher-elevations. Glob Planet Change 122:122–129

    Article  Google Scholar 

  • Dan S, Stive MJF, Walstra DJR, Panin N (2009) Wave climate, coastal sediment budget and shoreline changes for the Danube Delta. Mar Geol 262:39–49

    Article  Google Scholar 

  • de Luis M, Čufar K, Saz MA, Longares LA, Ceglar A, Kajfež-Bogataj L (2014) Trends in seasonal precipitation and temperature in Slovenia during 1951–2007. Reg Environ Change 14:1801–1810

    Article  Google Scholar 

  • Degirmendžić J, Kozuchowski K, Zmudzka E (2004) Changes of air temperature and precipitation in Poland in the period 1951–2000 and their relationship to atmospheric circulation. Int J Climatol 24(3):291–310

    Article  Google Scholar 

  • del Rio S, Herrero L, Pinto-Gomes C, Penas A (2011) Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Glob Planet Change 78:65–75

    Article  Google Scholar 

  • Duarte CM, Agustí S, Wassmann P, Arrieta JM, Alcaraz M, Coello A et al (2012) Tipping elements in the Arctic marine ecosystem. Ambio 41:44–55

    Article  Google Scholar 

  • Dumitrescu A, Bojariu R, Birsan MV, Marin L, Manea A (2014) Recent climatic changes in Romania from observational data (1961–2013). Theor Appl Climatol. doi:10.1007/s00704-014-1290-0

    Google Scholar 

  • Gâştescu P, Posea G (2005) Danube delta and the Razim–Sionoe lake complex (in Romanian). Geography of Romania, vol V. Romanian Academy Publishing, Bucharest

  • Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New York

    Google Scholar 

  • Ginzburg AI, Kostianoy AG, Sheremet NA (2008) Sea surface temperature variability. Handb Environ Chem 5:255–275

    Google Scholar 

  • Giosan L, Syvitski J, Constantinescu S, Day J (2014) Protect the world’s deltas. Nature 516:31–33

    Article  CAS  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Beerling D, Masson-Delmotte V, Pagani M et al (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231

    Article  CAS  Google Scholar 

  • Ionita M, Rimbu N, Chelcea S, Patrut S (2013) Multidecadal variability of summer temperature over Romania and its relation with Atlantic Multidecadal Oscillation. Theor Appl Climatol 113:305–315

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF et al (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Khalili K, Tahoudi MN, Mirabbasi R, Ahmadi F (2015) Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1095-4

    Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Können GP, Bohm R, Demaree G, Gocheva A et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • Klein Tank AMG, Können GP, Selten FM (2005) Signals of anthropogenic influence on European warming as seen in the trend patterns of daily temperature variance. Int J Climatol 25:1–16

    Article  Google Scholar 

  • Kovbasko O, Ionescu C, Saaf EJ (2014) Climate change adaptation strategy and action plan for Danube Delta region—Romania-Ukraine-Moldova. The project “Climate proofing Danube Delta through integrated land and water management”. http://awsassets.panda.org/downloads/2_danube_delta_adaptation_strategy.pdf

  • Lakes T, Müller D, Krüger C (2009) Cropland change in southern Romania: a comparison of logistic regressions and artificial neural networks. Landsc Ecol 24:1195–1206

    Article  Google Scholar 

  • Lenton TM (2012) Arctic climate tipping points. Ambio 41:10–22

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S et al (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105:1786–1793

    Article  CAS  Google Scholar 

  • Liu H, Li Y, Josef T, Zhang R, Huang G (2014) Quantitative estimation of climate change effects on potential evapotranspiration in Beijing during 1951–2010. J Geogr Sci 24(1):93–112

    Article  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:004000

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  Google Scholar 

  • Marin L, Birsan MV, Bojariu R, Dumitrescu A, Micu DM, Manea A (2014) An overview of annual climatic changes in Romania: trends in air temperature, precipitation, sunshine hours, cloud cover, relative humidity and wind speed during the 1961–2013 period. Carpathian J Earth Environ Sci 9(4):253–258

    Google Scholar 

  • MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: wetlands and water synthesis. World Resources Institute, Washington

    Google Scholar 

  • Meng X, Zhang S, Zhang Y, Wang C (2013) Temporal and spatial changes of temperature and precipitation in Hexi Corridor during 1955–2011. J Geogr Sci 23(4):653–667

    Article  Google Scholar 

  • Mohsin T, Gough WA (2010) Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA). Theor Appl Climatol 101:311–327

    Article  Google Scholar 

  • Nilsson C, Jansson R, Keskitalo ECH, Vlassova T, Sutinen ML, Moen J et al (2010) Challenges to adaptation in northernmost Europe as a result of global climate change. Ambio 39:81–84

    Article  Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P et al (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34:96–112

    Article  Google Scholar 

  • Păltineanu C, Mihăilescu IF, Seceleanu I, Dragotă C, Vasenciuc F (2007) Using aridity indices to describe some climate and soil features in Eastern Europe: a Romanian case study. Theor Appl Climatol 90:263–274

    Article  Google Scholar 

  • Pandžic K, Likso T (2010) Homogeneity of average annual air temperature time series for Croatia. Int J Climatol 30:1215–1225

    Article  Google Scholar 

  • Peptenatu D, Sîrodoev I, Prăvălie R (2013) Quantification of the aridity process in south-western Romania. J Environ Health Sci Eng 11:3

    Article  Google Scholar 

  • Piticar A, Ristoiu D (2012) Analysis of air temperature evolution in northeastern Romania and evidence of warming trend. Carpathian J Earth Environ Sci 7(4):97–106

    Google Scholar 

  • Prăvălie R, Bandoc G (2015) Aridity variability in the last five decades in the Dobrogea region, Romania. Arid Land Res Manag 29(3):265–287

    Article  Google Scholar 

  • Prăvălie R, Sîrodoev I, Peptenatu D (2014a) Detecting climate change effects on forest ecosystems in South-Western Romania using Landsat TM NDVI data. J Geogr Sci 24(5):815–832

    Article  Google Scholar 

  • Prăvălie R, Sîrodoev I, Patriche CV, Bandoc G, Peptenatu D (2014b) The analysis of the relationship between climatic water deficit and corn agricultural productivity in the Dobrogea plateau. Carpathian J Earth Environ Sci 9(4):201–214

    Google Scholar 

  • Prăvălie R, Sîrodoev I, Peptenatu D (2014c) Changes in the forest ecosystems in areas impacted by aridization in South-Western Romania. J Environ Health Sci Eng 12:2

    Article  Google Scholar 

  • Prăvălie R, Patriche CV, Sîrodoev I, Bandoc G, Dumitraşcu M, Peptenatu D (2016) Water deficit and corn productivity during the post-socialist period. Case study: southern Oltenia drylands, Romania. Arid Land Res Manag. doi:10.1080/15324982.2015.1091399

    Google Scholar 

  • PRDD (Periodic Report Danube Delta) (2014) Statement of outstanding universal value of Danube Delta. World Heritage Centre, UNESCO

  • Rimbu N, Stefan S, Necula C (2014) The variability of winter high temperature extremes in Romania and its relationship with large-scale atmospheric circulation. Theor Appl Climatol. doi:10.1007/s00704-014-1219-7

    Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Ǻ, Chapin FS III, Lambin EF et al (2009) A safe operating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  • Royston P (1982) An extension of Shapiro and Wilk’s W test for normality to large samples. Appl Stat 31:115–124

    Article  Google Scholar 

  • Salmi T, Määttä A, Anttila P, Ruoho-Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen’s slope estimates—the Excel template application Makesens. Finnish Meteorological Institute, Helsinki

    Google Scholar 

  • Sandu I, Pescaru VI, Poiana I, Geicu A, Candea I, Tastea D (2008) The climate of Romania (in Romanian). Romanian Academy Publishing, Bucharest

    Google Scholar 

  • Steffen W, Persson Ǻ, Deutsch L, Zalasiewicz J, Williams M, Richardson K et al (2011) The Anthropocene: from global change to planetary stewardship. Ambio 40:739–761

    Article  Google Scholar 

  • Stringer LC, Harris A (2014) Land degradation in Dolj county, southern Romania: environmental changes, impacts and responses. Land Degrad Dev 25:17–28

    Article  Google Scholar 

  • Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681–686

    Article  CAS  Google Scholar 

  • Tabari H, Hosseinzadeh Talaee Ph (2011) Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorol Atmos Phys 111:121–131

    Article  Google Scholar 

  • Tabari H, Hosseinzadeh Talaee P (2013) Moisture index for Iran: spatial and temporal analyses. Glob Planet Change 100:11–19

    Article  Google Scholar 

  • Tabari H, Taye MT, Willems P (2015) Statistical assessment of precipitation trends in the upper Blue Nile River basin. Stoch Environ Res Risk Assess 29:1751–1761

    Article  Google Scholar 

  • Tao H, Fraedrich K, Menz C, Zhai J (2014) Trends in extreme temperature indices in the Poyang Lake Basin, China. Stoch Environ Res Risk Assess 28:1543–1553

    Article  Google Scholar 

  • Tomozeiu R, Busuioc A, Stefan S (2002) Changes in seasonal mean maximum air temperature in Romania and their connection with large-scale circulation. Int J Climatol 22:1181–1196

    Article  Google Scholar 

  • Toreti A, Desiato F (2008) Temperature trend over Italy from 1961 to 2004. Theor Appl Climatol 91:51–58

    Article  Google Scholar 

  • Verón SR, de Abelleyra D, Lobell DB (2015) Impacts of precipitation and temperature on crop yields in the Pampas. Clim Change 130:235–245

    Article  Google Scholar 

  • Wadhams P (2012) Arctic ice cover, ice thickness and tipping points. Ambio 41:23–33

    Article  Google Scholar 

  • Wang S, Zhang X (2012) Long-term trends analysis for temperature in the Jinsha River Basin in China. Theor Appl Climatol 109:591–603

    Article  Google Scholar 

  • Wang S, Zhang X, Liu Z, Wang D (2013) Trend analysis of precipitation in the Jinsha River Basin in China. J Hydrometeorol 14:290–303

    Article  Google Scholar 

  • Zhang Z, Song X, Tao F, Zhang S, Shi W (2014) Climate trends and crop production in China at county scale, 1980 to 2008. Theor Appl Climatol. doi:10.1007/s00704-014-1343-4

    Google Scholar 

  • Zhang X, Wang S, Zhang J, Wang G, Tang X (2015) Temporal and spatial variability in precipitation trends in the Southeast Tibetan Plateau during 1961–2012. Clim Past Discuss 11:447–487

    Article  Google Scholar 

  • Zhu J, Gao P, Geissen V, Maroulis J, Ritsema CJ, Mu X et al (2015) Impacts of rainfall and land use on sediment regime in a semi-arid region: case study of the Wuqi catchment in the upper Beiluo River Basin, China. Arid Land Res Manag 29:1–16

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed as a part of research supported by the project COSMOMAR no. 58/2013, financed by STAR Program of ROSA, and the project ECOMAGIS no. 69/2012, financed by UEFISCDI PN-IIPT-PCCA-2011-3.2 1427. The authors would like to thank the anonymous reviewers for their highly constructive comments and suggestions that helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remus Prăvălie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prăvălie, R., Bandoc, G., Patriche, C. et al. Spatio-temporal trends of mean air temperature during 1961–2009 and impacts on crop (maize) yields in the most important agricultural region of Romania. Stoch Environ Res Risk Assess 31, 1923–1939 (2017). https://doi.org/10.1007/s00477-016-1278-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1278-7

Keywords

Navigation