Skip to main content
Log in

Observations on measure and lowness for Δ P2

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Assuming thatk≥2 and Δ /P k does not have p-measure 0, it is shown that BP · Δ /P k /P k . This implies that the following conditions hold if Δ P2 does not have p-measure 0:

  1. (i)

    AM ∩ co-AM is low for Δ P2 . (Thus BPP and the graph isomorphism problem are low for Δ P2 .)

  2. (ii)

    If Δ P2 ≠ PH, then NP does not have polynomial-size circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Allender and M. Strauss. Measure on small complexity classes with applications for BPP. InProceedings of the 35th Symposium on Foundations of Computer Science, pages 807–818. IEEE Computer Society Press, New York, 1994.

    Chapter  Google Scholar 

  2. J. L. Balcázar, J. Díaz, and J. Gabarró.Structural Complexity I. Springer-Verlag, Berlin, 1994.

    Google Scholar 

  3. M. Bellare and S. Goldwasser. The complexity of decision versus search.SIAM Journal on Computing, 23:97–119, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. P. Bovet and P. Crescenzi.Introduction to the Theory of Complexity. Prentice Hall, Englewood Cliffs, NJ, 1994.

    Google Scholar 

  5. D. W. Juedes. The Complexity and Distribution of Computationally Useful Problems. Ph.D. thesis, Iowa State University, 1994.

  6. D. W. Juedes and J. H. Lutz. The complexity and distribution of hard problems.SIAM Journal on Computing, 24:279–295, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. W. Juedes and J. H. Lutz. Completeness and weak completeness under polynomial-size circuits.Information and Computation, 125:13–31, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. InProceedings of the 12th ACM Symposium on Theory of Computing, pages 302–309. ACM, New York, 1980.

    Google Scholar 

  9. A. Klapper. Generalized lowness and highness and probabilistic classes.Mathematical Systems Theory, 22:37–45, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Ko. Separating and collapsing results on the relativized probabilistic polynomial-time hierarchy.Journal of the Association for Computing Machinery, 37:415–438, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Ko and U. Schöning. On circuit-size complexity and the low hierarchy in NP.SIAM Journal on Computing, 14:41–51, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Köbler. On the structure of low sets. InProceedings of the Tenth Structure in Complexity Theory Conference, pages 246–261. IEEE Computer Society Press, New York, 1995.

    Chapter  Google Scholar 

  13. J. Köbler, U. Schöning, and J. Torán.The Graph Isomorphism Problem. Birkhäuser, Berlin, 1993.

    Book  MATH  Google Scholar 

  14. J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. InProceedings of the 22nd International Colloquium on Automata, Languages, and Programming, pages 196–207. Springer-Verlag, Berlin, 1995.

    Chapter  Google Scholar 

  15. C. Lautemann. BPP and the polynomial hierarchy.Information Processing Letters, 14:215–217, 1983.

    Article  MathSciNet  Google Scholar 

  16. J. H. Lutz. An upward measure separation theorem.Theoretical Computer Science, 81:127–135, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. H. Lutz. Almost everywhere high nonuniform complexity.Journal of Computer and System Sciences, 44:220–258, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. H. Lutz. A pesudorandom oracle characterization of BPP.SIAM Journal on Computing, 22:1075–1086, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. H. Lutz. The quantitative structure of exponential time. InProceedings of the Eighth Structure in Complexity Theory Conference, pages 158–175. IEEE Computer Society Press, New York, 1993.

    Chapter  Google Scholar 

  20. J. H. Lutz. Weakly hard problems.SIAM Journal on Computing, 24:1170–1189, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. H. Lutz. Resource-bounded measure. In preparation.

  22. J. H. Lutz and E. Mayordomo. Measure, stochasticity, and the density of hard languages.SIAM Journal on Computing, 23:762–779, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness notions if NP is not small.Theoretical Computer Science, 146:141–163, 1996.

    Article  MathSciNet  Google Scholar 

  24. J. H. Lutz and W. J. Schmidt. Circuit size relative to pseudorandom oracles.Theoretical Computer Science, 107:95–120, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Mayordomo. Almost every set in exponential time is P-bi-immune.Theoretical Computer Science, 136(2):487–506, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Mayordomo. Contributions to the Study of Resource-Bounded Measure. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona, 1994.

    Google Scholar 

  27. N. Nisan and A. Wigderson. Hardness vs. randomness.Journal of Computer and System Sciences, 49:149–167, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. H. Papadimitriou.Computational Complexity. Addison-Wesley, Reading, MA, 1994.

    MATH  Google Scholar 

  29. U. Schöning. A low and high hierarchy within NP.Journal of Computer and System Sciences, 27:14–28, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  30. U. Schöning. Graph isomorphism is in the low hierarchy.Journal of Computer and System Sciences, 37:312–323, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  31. U. Schöning. Probabilistic complexity classes and lowness.Journal of Computer and System Sciences, 39:84–100, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Sipser. A complexity-theoretic approach to randomness. InProceedings of the 15th ACM Symposium on Theory of Computing, pages 330–335. ACM, New York, 1983.

    Google Scholar 

  33. L. J. Stockmeyer. The polynomial-time hierarchy.Theoretical Computer Science, 3:1–22, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. B. Wilson. Relativized circuit complexity.Journal of Computer and System Sciences, 31:169–181. 1985.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Wrathall. Complete sets and the polynomial-time hierarchy.Theoretical Computer Science, 3:23–33, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Zachos and H. Heller. A decisive characterization of BPP.Information and Control, 69:125–135, 1986.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by National Science Foundation Grant CCR-9157382, with matching funds from Rockwell International, Microware Systems Corporation, and Amoco Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz, J.H. Observations on measure and lowness for Δ P2 . Theory of Computing Systems 30, 429–442 (1997). https://doi.org/10.1007/BF02679469

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679469

Keywords

Navigation