Skip to main content
Log in

Dislocation-Related Electron Transport in Au Schottky Junctions on AlGaN/GaN

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

We investigated the electrical properties of Au/AlGaN/GaN Schottky junctions as a function of temperature by analyzing the current–voltage (IV) measurements. The barrier height increased with increasing temperature, but the ideality factor decreased. Increases in temperature are associated with barrier inhomogeneity. The modified Richardson plots for Al0.25Ga0.75N yielded a higher Richardson constant, 77.3 A cm−2K−2, than theoretically predicted (30.0 A cm−2 K−2). This indicates that the thermionic emission (TE) model with barrier inhomogeneity is not suitable for explaining the transport characteristics of the junction. We fitted the experimental IV data to predictions based on various transport mechanisms, such as TE, generation-recombination, and tunneling currents. The dominant transport mechanism at all temperatures was found to be caused by the tunneling current. The dislocation model of the tunneling current yielded a dislocation density of 2.96 × 106 cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Ibbetson, P. Fini, K. Ness, S. DenBaars, J. Speck, U. Mishra, Appl. Phys. Lett. 77, 250 (2000). https://doi.org/10.1063/1.126940

    Article  Google Scholar 

  2. O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, W. Schaffl, L. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999). https://doi.org/10.1063/1.369664

    Article  Google Scholar 

  3. Y. Lv, Z. Lin, T. Corrigan, J. Zhao, Z. Cao, L. Meng, C. Luan, Z. Wang, H. Chen, J. Appl. Phys. 109, 074512 (2011). https://doi.org/10.1063/1.3569594

    Article  Google Scholar 

  4. D. Marcon, J. Viaene, P. Favia, H. Bender, X. Kang, S. Lenci, S. Decoutere, Microelectron. Reliab. 52, 2188 (2012). https://doi.org/10.1016/j.microrel.2012.06.052

    Article  Google Scholar 

  5. D. Yan, H. Lu, D. Cao, D. Chen, R. Zhang, Y. Zheng, Appl. Phys. Lett. 97, 153503 (2010). https://doi.org/10.1063/1.3499364

    Article  Google Scholar 

  6. Z. Liu, G. Ng, S. Arulkumaran, Y. Maung, H. Zhou, Appl. Phys. Lett. 98, 163501 (2011). https://doi.org/10.1063/1.3573794

    Article  Google Scholar 

  7. J. Zhu, X. Ma, B. Hou, W. Chen, Y. Hao, Appl. Phys. Lett. 104, 153510 (2014). https://doi.org/10.1063/1.4871802

    Article  Google Scholar 

  8. D. Qiao, L. Yu, S. Lau, J. Redwing, J. Lin, H. Jiang, J. Appl. Phys. 87, 801 (2000). https://doi.org/10.1063/1.371944

    Article  Google Scholar 

  9. M. Rezau, H. Khan, H. Nakayama, T. Detchprohm, K. Hiramatsu, N. Sawaki, Solid State Electron. 41, 287 (1997). https://doi.org/10.1016/S0038-1101(96)00231-6

    Article  Google Scholar 

  10. L. Zhou, A. Ping, K. Boutros, J. Redwing, I. Adesida, Electron. Lett. 35, 745 (1999). https://doi.org/10.1049/el:19990489

    Article  Google Scholar 

  11. E. Arslan, Ş. Altındal, S. Özçelik, E. Ozbay, J. Appl. Phys. 105, 023705 (2009). https://doi.org/10.1063/1.3068202

    Article  Google Scholar 

  12. H. Kim, D. Lee, H. Myung, Korean J. Mater. Res. 26, 412 (2016). https://doi.org/10.3740/MRSK.2016.26.8.412

    Article  Google Scholar 

  13. R. Tung, Mater. Sci. Eng., R 35, 1 (2001). https://doi.org/10.1016/S0927-796X(01)00037-7

    Article  Google Scholar 

  14. D. Seghier, H. Gislason, Phys. Scr. T101, 230 (2002). https://doi.org/10.1238/Physica.Topical.101a00230

    Article  Google Scholar 

  15. M. Khan, H. Nakayama, T. Detchprohm, K. Hiramatsu, N. Sawaki, Solid State Electron. 41, 287 (1997). https://doi.org/10.1016/S0038-1101(96)00231-6

    Article  Google Scholar 

  16. D. Donoval, A. Chvála, R. Šramatý, J. Kováč, E. Morvan, Ch. Dua, M. DiForte-Poisson, P. Kordoš, J. Appl. Phys. 109, 063711 (2011). https://doi.org/10.1063/1.3560919

    Article  Google Scholar 

  17. E. Monroy, F. Calle, J. Pau, F. Sánchez, E. Muñoz, F. Omnès, B. Beaumont, P. Gibart, J. Appl. Phys. 88, 2081 (2000). https://doi.org/10.1063/1.1305838

    Article  Google Scholar 

  18. J. Ren, D. Yan, Y. Zhai, W. Mou, X. Gu, Microelectron. Reliab. 61, 82 (2016). https://doi.org/10.1016/j.microrel.2015.11.005

    Article  Google Scholar 

  19. A. Belyaev, N. Boltovets, V. Ivanov, V. Klad’ko, R. Konakova, Y. Kudrik, A. Kuchuk, V. Milenin, Y. Sveshnikov, V. Sheremet, Semiconductors 42, 689 (2008). https://doi.org/10.1134/S1063782608060092

    Article  Google Scholar 

  20. H. Hasegawa, O. Susumu, J. Vac. Sci. Technol., B 20, 1647 (2002). https://doi.org/10.1116/1.1491539

    Article  Google Scholar 

Download references

Acknowledgemenst

This research was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03030400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hogyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Song, K.M. Dislocation-Related Electron Transport in Au Schottky Junctions on AlGaN/GaN. Trans. Electr. Electron. Mater. 19, 101–105 (2018). https://doi.org/10.1007/s42341-018-0015-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0015-y

Keywords

Navigation