Skip to main content
Log in

TheKLHLI-antisense transcript (KLHLIAS) is evolutionarily conserved

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 8 (SCA8) is caused by a CTG expansion in an untranslated, endogenous antisense RNA that overlaps theKelch-like I (KLHLI) gene. The normal function of this transcript is currently unknown. We have now identified the promoter region for theKLHL1-antisense (KLHLIAS) RNA and report that aKlhl1as transcript is present in the mouse as well. Human and mouseKlhl1AS are transcribed from homologous promoter regions in the first intron ofKLHLI and extend through the transcription and translation start sites as well as the first splice donor sequence ofKLHL1. We found that the mouseKlhlIas RNA is not spliced and terminates in a polyadenylation site in theKlhlI promoter region, whereas both the present and previous work show that humanKLHLIAS is highly variably spliced into processed transcripts that contain up to six exons. MouseKlhlIas transcript was detected in RNA isolated from the cerebellum and from total adult brain and total fetal tissue, and at a low level in testis and ovary. Similarly, humanKLHL1AS is expressed in various brain tissues, including the cerebellum, the tissue most affected by SCA8, and was detected at low levels in testis and kidney. The evolutionary conservation of this antisense/sense transcriptional organization strongly indicates thatKLHLIAS transcripts play a significant biological role in both human and mouse, presumably as a regulator ofKLHLI expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azizkhan JC, Jensen DE, Pierce AJ, Wade M (1993) Transcription from TATA-less promoters: dihydrofolate reductase as a model. Crit Rev Eukaryot Gene Expr 3, 229–254

    PubMed  CAS  Google Scholar 

  • Bardwell VJ, Treisman R (1994) The POZ domain: a conserved protein-protein interaction motif. Genes Dev 8, 1664–1677

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Doolittle RF (1994) Drosophila kelch motif is derived from a common enzyme fold. J Mol Biol 236, 1277–1282

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SJ, Brannan CI (2001) The Prader-Willi syndrome imprinting center activates the paternally expressed murine ube3a antisense transcript but represses paternal ube3a. Genomics 73, 316–322

    Article  PubMed  CAS  Google Scholar 

  • Chelly J, Hugnot JP, Concordet JP, Kaplan JC, Kahn A (1991) Illegitimate (or ectopic) transcription proceeds through the usual promoters. Biochem Biophys Res Commun 178, 553–557

    Article  PubMed  CAS  Google Scholar 

  • de Jong R, Van der Heijden J, Meijlink F (1993) DNA-binding specificity of the S8 homeodomain. Nucleic Acids Res 21, 4711–1720

    Article  PubMed  Google Scholar 

  • Delwel R, Funabiki T, Kreider BL, Morishita K, Ihle JN (1993) Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA. Mol Cell Biol 13, 4291–4300

    PubMed  CAS  Google Scholar 

  • Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, et al. (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26, 362–367

    Article  PubMed  CAS  Google Scholar 

  • Hernandez MC, Andres-Barquin PJ, Martinez S, Bulfone A, Rubenstein JL, et al. (1997) ENC-1: a novel mammalian kelch-related gene specifically expressed in the nervous system encodes an actin-binding protein. J Neurosci 17, 3038–3051

    PubMed  CAS  Google Scholar 

  • Hildebrandt M, Nellen W (1992) Differential antisense transcription from the Dictyostelium EB4 gene locus: implications on antisense-mediated regulation of mRNA stability. Cell 69, 197–204

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Shizuka M, Watanabe M, Okamoto K, Shoji M (2000) Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology 54, 950–955

    Article  PubMed  CAS  Google Scholar 

  • Juvonen V, Hietala M, Paivarinta M, Rantamaki M, Hakamies L et al. (2000) Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. Ann Neurol 48, 354–361

    Article  PubMed  CAS  Google Scholar 

  • Kim TA, Lim J, Ota S, Raja S, Rogers R et al. (1998) NRP/B, a novel nuclear matrix protein, associates with p110(RB) and is involved in neuronal differentiation. J Cell Biol 141, 553–566

    Article  PubMed  CAS  Google Scholar 

  • Kimelman D, Kirschner MW (1989) An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes. Cell 59, 687–696

    Article  PubMed  CAS  Google Scholar 

  • Kindy MS, McCormack JE, Buckler AJ, Levine RA, Sonenshein GE (1987) Independent regulation of transcription of the two strands of thec-myc gene. Mol Cell Biol 7, 2857–2862

    PubMed  CAS  Google Scholar 

  • Klockgether T, Wullner U, Spauschus A, Evert B (2000) The molecular biology of the autosomal-dominant cerebellar ataxias. Mov Disord 15, 604–612

    Article  PubMed  CAS  Google Scholar 

  • Knee R, Murphy PR (1997) Regulation of gene expression by natural antisense RNA transcripts. Neurochem Int 31, 379–392

    Article  PubMed  CAS  Google Scholar 

  • Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD et al. (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21, 379–384

    Article  PubMed  CAS  Google Scholar 

  • Lazar MA, Jones KE, Chin WW (1990) Isolation of a cDNA encoding human Rev-ErbA alpha: transcription from the noncoding DNA strand of a thyroid hormone receptor gene results in a related protein that does not bind thyroid hormone. DNA Cell Biol 9, 77–83

    Article  PubMed  CAS  Google Scholar 

  • Lee JT (2000) Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103, 17–27

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21, 400–404

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Mitchell P, Tijian R (1987) Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49, 741–752

    Article  PubMed  CAS  Google Scholar 

  • Li AW, Murphy PR (2000) Expression of alternatively spliced FGF-2 antisense RNA transcripts in the central nervous system: regulation of FGF-2 mRNA translation. Mol Cell Endocrinol 162, 69–78

    Article  PubMed  CAS  Google Scholar 

  • McLean PJ, Shpektor D, Bandyopadhyay S, Russek SJ, Farb DH (2000) A minimal promoter for the GABA(A) receptor alpha6-subunit gene controls tissue specificity. J Neurochem 74, 1858–1869

    Article  PubMed  CAS  Google Scholar 

  • Merika M, Orkin SH (1993) DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 13, 3999–1010

    PubMed  CAS  Google Scholar 

  • Mertin S, McDowall SG, Harley VR (1999) The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Res 27, 1359–1364

    Article  PubMed  CAS  Google Scholar 

  • Moseley ML, Schut LJ, Bird TD, Koob MD, Day JW et al. (2000) SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet 9, 2125–2130

    Article  PubMed  CAS  Google Scholar 

  • Munroe SH, Lazar MA (1991) Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J Biol Chem 266, 22083–22086

    PubMed  CAS  Google Scholar 

  • Nemes JP, Benzow KA, Koob MD (2000) The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actinbinding protein (KLHL1). Hum Mol Genet 9, 1543–1551

    Article  PubMed  CAS  Google Scholar 

  • Okano H, Aruga J, Nakagawa T, Shiota C, Mikoshiba K (1991) Myelin basic protein gene and the function of antisense RNA in its repression in myelin-deficient mutant mouse. J Neurochem 56, 560–567

    Article  PubMed  CAS  Google Scholar 

  • Rigby PW (1993) Three in one and one in three: it all depends on TBP. Cell 72, 7–10

    Article  PubMed  CAS  Google Scholar 

  • Robinson DN, Cooley L (1997) Drosophila kelch is an oligomeric ring canal actin organizer. J Cell Biol 138, 799–810

    Article  PubMed  CAS  Google Scholar 

  • Rougeulle C, Cardoso C, Fontes M, Colleaux L, Lalande M (1998) An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet 19, 15–16

    Article  PubMed  CAS  Google Scholar 

  • Sado T, Wang Z, Sasaki H, Li E (2001) Regulation of imprinted Xchromosome inactivation in mice by Tsix. Development 128, 1275–1286

    PubMed  CAS  Google Scholar 

  • Savage MP, Fallon JF (1995) FGF-2 mRNA and its antisense message are expressed in a developmentally specific manner in the chick limb bud and mesonephros. Dev Dyn 202, 343–353

    PubMed  CAS  Google Scholar 

  • Silveira I, Alonso I, Guimaraes L, Mendonca P, Santos C et al. (2000) High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am J Hum Genet 66, 830–840

    Article  PubMed  CAS  Google Scholar 

  • Smale ST, Baltimore D (1989) The “initiator” as a transcription control element. Cell 57, 103–113

    Article  PubMed  CAS  Google Scholar 

  • Soltysik-Espanola M, Rogers RA, Jiang S, Kim TA, Gaedigk R et al. (1999) Characterization of Mayven, a novel actin-binding protein predominantly expressed in brain. Mol Biol Cell 10, 2361–2375

    PubMed  CAS  Google Scholar 

  • Sureau A, Soret J, Guyon C, Gaillard C, Dumon S et al. (1997) Characterization of multiple alternative RNAs resulting from antisense transcription of the PR264/SC35 splicing factor gene. Nucleic Acids Res 25, 4513–4522

    Article  PubMed  CAS  Google Scholar 

  • Vanhee-Brossollet C, Vaquero C (1998) Do natural antisense transcripts make sense in eukaryotes? Gene 211, 1–9

    Article  PubMed  CAS  Google Scholar 

  • Verrijzer CP, Alkema MJ, van Weperen WW, Van Leeuwen HC, Strating MJ et al. (1992) The DNA binding specificity of the bipartite POU domain and its subdomains. EMBO J 11, 4993–5003

    PubMed  CAS  Google Scholar 

  • Wagner EG, Simons RW (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 48, 713–742

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389, 745–749

    Article  PubMed  CAS  Google Scholar 

  • Zollman S, Godt D, Prive GG, Couderc JL, Laski FA (1994) The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc Natl Acad Sci USA 91, 10717–10721

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data and annotation reported in this paper have been submitted to GenBank and have been assigned the accession numbers AF252279 and AF252282.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benzow, K.A., Koob, M.D. TheKLHLI-antisense transcript (KLHLIAS) is evolutionarily conserved. Mammalian Genome 13, 134–141 (2002). https://doi.org/10.1007/BF02684017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684017

Keywords

Navigation