Skip to main content
Log in

Concentration of total curvature of minimal surfaces in \(\mathbb {H}^2\times \mathbb R\)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove a phenomenon of concentration of total curvature for stable minimal surfaces in the product space \(\mathbb H^2 \times \mathbb R,\) where \(\mathbb H^2\) is the hyperbolic plane. Under some geometric conditions on its asymptotic boundary, an oriented stable minimal surface immersed in \(\mathbb H^2 \times \mathbb R\) has infinite total curvature. We exhibit an example of a minimal graph such that in a domain whose asymptotic boundary is a vertical segment the total curvature is finite, but the total curvature of the graph is infinite, by the theorem cited before. We also present some simple and peculiar examples of infinite total curvature minimal surfaces in \(\mathbb H^2 \times \mathbb R\) and their asymptotic boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bérard, P., Sa Earp, R.: Minimal hypersurfaces in \({\mathbb{H}}{^n} \times {\mathbb{R}}\), total curvature and index. Boll. dell’Unione Mat. Ital. 9(3), 341–362 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng, S.-Y., Tysk, J.: Schrödinger operators and index bounds for minimal submanifolds. Rocky Mt. J. Math. 24(3), 977–996 (1994)

    Article  MATH  Google Scholar 

  3. Colding, T.H., Minicozzi, W.P.: A course in minimal surfaces. Graduate Studies in Mathematics, vol. 121. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  4. Collin, P., Rosenberg, H.: Construction of harmonic diffeomorfisms and minimal graphs. Ann. Math. 172(3), 1879–1906 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coskunuzer, B.: Minimal surfaces with arbitrary topology in \({\mathbb{H}} ^2 \times {\mathbb{R}} \). arXiv:1404.0214v2 (2014)

  6. Fernández, I., Mira, P.: Harmonic maps and constant mean curvature surfaces in \(\mathbb{H}^2 \times \mathbb{R}\). Am. J. Math. 129(4), 1145–1181 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fisher-Colbrie, D.: On complete minimal surfaces with finite Morse index in three manifolds. Invent. Math. 82(1), 121–132 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frensel, K.R.: Stable complete surfaces with constant mean curvature. Bull. Braz. Math. Soc. 27(2), 129–144 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gálvez, J.A., Rosenberg, H.: Minimal surfaces and harmonic diffeomorphisms from the complex plane onto certain Hadamard surfaces. Am. J. Math. 132(5), 1249–1273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grigor’yan, A., Yau, S.-T.: Isoperimetric properties of higher eigenvalues of elliptic operators. Am. J. Math. 125(4), 893–940 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hauswirth, L., Menezes, A.: On doubly periodic minimal surfaces in \(\mathbb{H}^2 \times \mathbb{R}\) with finite total curvature in the quotient space, Ann. Mat. Pura Ed Appl. First online 23 (2015). doi:10.1007/s10231-015-0524-9

  12. Hauswirth, L., Nelli, B., Sa Earp, R., Toubiana, E.: A Schoen theorem for minimal surfaces in \({\mathbb{H}}^2\times {\mathbb{R}}\). Adv. Math. 274, 199–240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hauswirth, L., Rosenberg, H.: Minimal surfaces of finite total curvature in \(\mathbb{H}^2\times \mathbb{R}\). Mat. Contemp. 31, 65–80 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Hauswirth, L., Sa Earp, R., Toubiana, E.: Associate and conjugate minimal immersions in \(M\times {\mathbb{R}}\). Tohoku Math. J. 60(2), 267–286 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huber, A.: On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32, 13–72 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kloeckner, B., Mazzeo, R.: On the asymptotic behavior of minimal surfaces in \({\mathbb{H}}^2 \times {\mathbb{R}} \). Indiana Univ. Math. J. arXiv:1506.02838v1 (2015)

  17. Kreyszig, E.: Introduction to Differential Geometry and Riemannian Geometry, Translated from the German, Mathematical Expositions 16. University of Toronto Press, Toronto (1968)

    Google Scholar 

  18. Martin, F., Rodriguez, M.M.: Minimal planar domains in \({\mathbb{H}}\times {\mathbb{R}} \). Trans. AMS 365, 6167–6183 (2013)

    Article  MATH  Google Scholar 

  19. Morabito, F., Rodriguez, M.: Saddle towers and minimal \(k\)-noids in \(\mathbb{H}^2\times \mathbb{R},\). J. Inst. Math. Jussieu 11(2), 1–17 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nelli, B., Rosenberg, H.: Minimal surfaces in \(\mathbb{H}^2\times \mathbb{R},\). Bull. Braz. Math. Soc. 33, 263–292 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nelli, B., Rosenberg, H.: Errata minimal surfaces in \(\mathbb{H}^2\times \mathbb{R},\). Bull. Braz. Math. Soc. New Ser. 38(4), 1–4 (2007)

    Google Scholar 

  22. Nelli, R., Sa Earp, R., Toubiana, E.: Maximum principle and symmetry for minimal hypersurfaces in \({\mathbb{H}}^n\times {\mathbb{R}}\). Ann. della Sc. Norm. Super. Pisa Classe Sci. XIV, 1–14 (2015)

    MATH  Google Scholar 

  23. Osserman, R.: A survey on minimal surfaces. Dover Publications, New York (1986)

    MATH  Google Scholar 

  24. Plehnert, J.: Constant mean curvature \(k\) noids in homogeneous manifolds. Ill. J Math 58(1), 233–249 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Rosenberg, H., Souam, R., Toubiana, E.: General curvature estimates for stable \(H\)-surfaces in 3-manifolds and applications. J. Diff. Geom. 84, 623–648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sa Earp, R.: Parabolic and hyperbolic screw motion in \(\mathbb{H}^2\times \mathbb{R},\). J. Aust. Math. Soc. 85, 113–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sa Earp, R., Toubiana, E.: Screw motion surfaces in \(\mathbb{H}\times \mathbb{R}\) and \(\mathbb{S}\times \mathbb{R}\). Ill. J. Math. 49, 1323–1362 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Sa Earp, R., Toubiana, E.: An asymptotic theorem for minimal surfaces and existence results for minimal graphs in \(\mathbb{H}^2 \times \mathbb{R}\). Math. Ann. 342(2), 309–331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sa Earp, R., Toubiana, E.: Introduction à la géométrie hyperbolique et aux surfaces de Riemann, Cassini (2009)

  30. Sa Earp, R., Toubiana, E.: Minimal graphs in \(\mathbb{H}^n \times \mathbb{R}\) and \(\mathbb{R}^{n+1}\). Ann. Inst. Fourier 60(7), 2373–2402 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sa Earp, R.: A minimal stable vertical planar minimal end in \({\mathbb{H}}\times {\mathbb{R}}\) has finite total curvature. J. Lond. Math. Soc. 92(3), 712–723 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sa Earp, R., Toubiana, E.: Topologie, courbure et structure conforme sur les surfaces. RG (eBook-open access). (2015). doi:10.13140/RG.2.1.3623.1769

Download references

Acknowledgements

The second author wishes to thank the Departamento de Matemática da PUC-Rio for their kind hospitality. The authors are grateful to the referee for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Toubiana.

Additional information

R. Sa Earp was partially supported by CNPq of Brasil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sa Earp, R., Toubiana, E. Concentration of total curvature of minimal surfaces in \(\mathbb {H}^2\times \mathbb R\) . Math. Ann. 369, 1599–1621 (2017). https://doi.org/10.1007/s00208-016-1508-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1508-9

Mathematics Subject Classification

Navigation