Skip to main content

Advertisement

Log in

Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Azospirillum brasilense REC3 is a plant growth-promoting and siderophore-producing bacterium isolated from strawberry. Colletotrichum acutatum M11 is the causal agent of anthracnose, an important disease in strawberry crop. The aim of this study was to characterize at the biochemical and molecular level, the systemic resistance induced by A. brasilense on pathogen-challenged strawberry plants.

Methods

Phytopathological tests were performed; the content of phenolic compounds was determined spectrophotometrically; callose depositions in leaves by aniline blue staining; salicylic acid (SA) content in leaves by HPLC; and defense-related gene expression [pathogenesis-related proteins (FaPR1), chitinases (FaChi2-1; FaChi2-2) and glucanase (FaBG2-2)] by RT-PCR.

Results

A. brasilense REC3 reduced anthracnose symptoms on pathogen-challenged plants, and the effect became greater as the elapsed time between bacterial inoculation and fungal infection increased. Biochemical and transcriptional studies revealed a transient accumulation of SA and the induction of defense-related genes, suggesting further that this response is related to structural cell wall modifications as consequence of the observed increase in phenolic compounds and callose deposition.

Conclusions

The plant growth-promoting bacterium A. brasilense REC3 participates actively in the induction of systemic protection on strawberry plants against anthracnose disease caused by C. acutatum M11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bakanchikova TI, Lobanok EV, Pavlova-Ivanova LK, Redkina TV, Nagapetyan ZA, Majsuryan AN (1993) Inhibition of tumor formation process in dicotyledonous plants by Azospirillum brasilense strains. Microbiology (Moscow) 62:515–523

    Google Scholar 

  • Baldani VLD, Döbereiner J (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12:433–439. doi:10.1016/0038-0717(80)90021-8

    Article  Google Scholar 

  • Bardas GA, Lagopodi AL, Kadoglidou K, Tzavella-Klonari K (2009) Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biol Control 49:139–145

    Article  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488. doi:10.1007/s11103-008-9435-0

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2002a) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 68:2637–2643. doi:10.1128/aem.68.6

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2002b) Reduction of bacterial speck (Pseudomonas syringae pv. tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemo-thermal seed treatment. Eur J Plant Pathol 108:821–829

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv Agron 108:77–136. doi:10.1016/S0065-2113(10)08002-8

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, and environmental advances (1997–2003). Can J Microbiol 50:521–577. doi:10.1139/w04-035

    Article  PubMed  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Quadt-Hallmann A, Tuzun S (1996) Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112:919–929

    PubMed  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultra structure and cytochemistry of the host response. Planta 204:153–168

    Article  CAS  Google Scholar 

  • Bothe H, Korsgen H, Lehmacher T, Hundeshagen B (1992) Differential effects of Azospirillum, auxin and combined nitrogen on the growth of the roots of wheat. Symbiosis 13:167–179

    CAS  Google Scholar 

  • Chen C, Belanger RR, Benhamou N, Paulitz TC (1999) Role of salicylic acid in systemic resistance induced by Pseudomonas spp. against Pythium aphanidermatum in cucumber roots. Eur J Plant Pathol 105:477–486

    Article  CAS  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  PubMed  CAS  Google Scholar 

  • Currier H, Strugger S (1956) Aniline blue and fluorescence microscopy of callose in bulb scales of Allium cepa L. Protoplasma 45:552–559

    Article  Google Scholar 

  • De Meyer G, Audenaert K, Hofte M (1999) Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur J Plant Pathol 105:513–517

    Article  Google Scholar 

  • DebRoy S, Thilmony R, Kwack YB, Nomura K, Yang He S (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci USA 101:9927–9932. doi:10.1073/pnas.0401601101

    Article  PubMed  CAS  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250. doi:10.1126/science.266.5188.1247

    Article  PubMed  CAS  Google Scholar 

  • Delp BR, Milholland RD (1980) Evaluating strawberry plants for resistance to Colletotrichum fragariae. Plant Dis 64:1071–1073

    Article  Google Scholar 

  • El-Hamshary OIM, El-Gebally OG, Abou-El-Khier ZA, Arafa RA, Mousa SA (2010) Enhancement of the chitinolytic properties of Azospirillum strain against plant pathogens via transformation. J Am Sci 6:169–176

    Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Freeman S, Minz D, Kolesnik I, Barbull O, Zveibill A, Maymon M, Nitzani Y, Kirshner B, Rav-David D, Bilu A, Dag A, Shafir S, Elad Y (2004) Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur J Plant Pathol 110:361–370

    Article  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Arora DK, Srivastava AK (1995) Growth promotion of tomato plants by rhizobacteria and imposition of energy stress on Rhizoctonia solani. Soil Biol Biochem 27:1051–1058

    Article  CAS  Google Scholar 

  • Hassouna M, El-Saedy AM, Saleh HMA (1998) Biocontrol of soil-borne plant pathogens attacking cucumber (Cucumis sativus) by rhizobacteria in a semiarid environment. Arid Soil Res Rehabil 12:345–357. doi:10.1080/15324989809381523

    Article  CAS  Google Scholar 

  • Hoagland DR (1975) Mineral nutrition. In: De Kaufman PB, Labavitch J, Anderson-Prouty A, Ghosheh NS (eds) Laboratory experiments in plant physiology. Macmillan, New York, pp 129–134

    Google Scholar 

  • Iandolino AB, Goes da Silva F, Lim H, Choi H, Williams LE, Cook DR (2004) High quality RNA, cDNA, and derived EST libraries from Grapevine (Vitis vinifera L.). Plant Mol Biol Rep 22:269–278

    Article  CAS  Google Scholar 

  • Jayara J, Muthukrishnan S, Liang GH (2004) Transfer of a plant chitinase gene into a nitrogen-fixing Azospirillum and study of its expression. Can J Microbiol 50:509–513. doi:10.1139/w04-039

    Article  Google Scholar 

  • Jones AM, Lindow SE, Wildermuth MC (2007) Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants. J Bacteriol 189:6773–6786. doi:10.1128/JB.00827-07

    Article  PubMed  CAS  Google Scholar 

  • Karnataka J (2005) Effect of Pseudomonas fIuorescens on anthracnose of chilli caused by Colletotrichum capsici. Agric Sci 18:162–165

    Google Scholar 

  • Mahadtanapuk S, Sanguansermsri M, Cutler RW, Sardsud V, Anuntalabhochai S (2007) Control of anthracnose caused by Colletotrichum musae on Curcuma alismatifolia Gagnep using antagonistic Bacillus spp. Am J Agric Biol Sci 2:54–61

    Article  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    Article  PubMed  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas yuorescens strain CHAO: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006

    Article  PubMed  Google Scholar 

  • Meyer JM, Azelvandre P, Georges C (1992) Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomuna fluorescens CHAO. Biofactors 4:23–27

    PubMed  CAS  Google Scholar 

  • M'Piga P, Belanger RR, Paulitz TC, Benhamou N (1997) Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63–28. Physiol Mol Plant Pathol 50:301–320

    Article  Google Scholar 

  • Okon Y (1985) Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3:223–228. doi:10.1016/0167-7799(85)90012-5

    Article  Google Scholar 

  • Pedraza RO, Motok J, Tortora ML, Salazar SM, Díaz Ricci JC (2007) Natural occurrence of Azospirillum brasilense in strawberry plants. Plant Soil 295:169–178. doi:10.1007/s11104-007-9273-x

    Article  CAS  Google Scholar 

  • Pedraza RO, Motok J, Salazar SM, Ragout AL, Mentel MI, Tortora ML, Guerrero Molina MF, Winik BC, Díaz Ricci JC (2010) Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World J Microbiol Biotechnol 26:265–272. doi:10.1007/s11274-009-0169-1

    Article  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protect 20:1–11

    Article  CAS  Google Scholar 

  • Ramos Solano B, Barriuso Maicas J, Pereyra de la Iglesia MT, Domenech J, Gutiérrez Mañero FJ (2008) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology 98:451–457

    Article  PubMed  CAS  Google Scholar 

  • Ramos HJO, Roncato Maccari LDB, Souza EM, Soares Ramos JRL, Hungria M, Pedrosa FO (2002) Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J Biotechnol 97:243–252

    Article  PubMed  CAS  Google Scholar 

  • Romero AM, Correa O, Moccia S, Rivas JG (2003) Effect of Azospirillum mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato. J Appl Microbiol 95:832–838. doi:10.1046/j.1365-2672.2003.02053.x

    Article  PubMed  CAS  Google Scholar 

  • Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319. doi:10.1016/j.jbiotec.2008.01.020

    Article  PubMed  CAS  Google Scholar 

  • Salazar SM, Castagnaro AP, Arias ME, Chalfoun N, Tonello U, Díaz Ricci JC (2007) Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. Eur J Plant Pathol 117:109–122. doi:10.1007/s10658-006-9075-7

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  • Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565

    Article  Google Scholar 

  • Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D (1995) Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228

    Article  PubMed  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Smith BJ, Black LL (1990) Morphological, cultural and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Dis 74:69–76

    Article  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen- fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506. doi:10.1111/j.1574-6976.2000.tb00552.x

    Article  PubMed  CAS  Google Scholar 

  • Sudhakar P, Gangwar SK, Satpathy B, Sahu PK, Ghosh JK, Saratchandra B (2000) Evaluation of some nitrogen fixing bacteria for control of foliar diseases of mulberry (Morus alba). Indian J Sericult 39:9–11

    Google Scholar 

  • Talubnak C, Soytong K (2010) Biological control of vanilla anthracnose using Emericella nidulans. J Agric Technol 6:47–55

    Google Scholar 

  • Tarchevsky IA, Yakovleva VG, Egorova AM (2010) Salicylate induced modification of plant proteomes. Appl Biochem Microbiol 46:241–252. doi:10.1134/S0003683810030026

    Article  CAS  Google Scholar 

  • Tortora ML, Díaz Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286. doi:10.1007/s00203-010-0672-7

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Verma N, MacDonald L, Punja ZK (2006) Inoculum prevalence, host infection and biological control of Colletotrichum acutatum: causal agent of blueberry anthracnose in British Columbia. Plant Pathol 55:442–450. doi:10.1111/j.1365-3059.2006.01401.x

    Article  Google Scholar 

  • Visca P, Ciervo A, San Filippo V, Orsi N (1993) Iron-regulated salicylate synthesis by Pseudomonas spp. J Gen Microbiol 139:1995–2001

    PubMed  CAS  Google Scholar 

  • Wharton PS, Diéguez-Uribeondo J (2004) The biology of Colletotrichum acutatum. Anales del Jardin Botánico de Madrid 61:3–22

    Google Scholar 

  • Winik BC, Guerrero Molina MF, Pedraza RO (2009) Colonization of strawberry (Fragaria ananassa) plant tissues by Azospirillum brasilense. Acta Microsc 18:675–676

    Google Scholar 

  • Yan Z, Reddy MS, Ryu CM, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333

    Article  PubMed  CAS  Google Scholar 

  • Yasuda M, Isawa T, Minamisawa K, Shinozaki S, Nakashita H (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510 on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599. doi:10.1271/bbb.90402

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Moyne AN, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT 2007 N° 472). We thank Dr. Michael Saska for English corrections. M.L.T. is a fellow and JCDR researcher of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl O. Pedraza.

Additional information

Responsible Editor: Euan K. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tortora, M.L., Díaz-Ricci, J.C. & Pedraza, R.O. Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense . Plant Soil 356, 279–290 (2012). https://doi.org/10.1007/s11104-011-0916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0916-6

Keywords

Navigation