Skip to main content
Log in

Tree-ring growth and stable isotopes (13C and 15N) detect effects of wildfires on tree physiological processes in Pinus sylvestris L.

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Forest fires may alter the physiological and growth processes of trees by causing stress in trees and modifying the availability of soil nutrient. We investigated if, after a high-severity fire, changes in tree-ring growth can be observed, as well as changes in the nitrogen and carbon isotope composition of tree rings of surviving trees. Two wildfires that occurred in Pinus sylvestris L. stands in Northern Italy, one at the beginning and one at the end of the vegetative season, were chosen as the focus of this study. After the fires, the surviving trees showed growth suppression with very narrow tree rings or locally absent rings. The carbon isotope ratio was more negative in tree rings formed in the 5 years following fire, indicating better water supply in a situation of less competition. The nitrogen isotope ratio followed opposite trends in the two wildfire stands. In trees cored in the stand where the fire happened at the beginning of the vegetative season, there was no change in the nitrogen isotope ratio, whereas in samples collected in the other fire site, higher nitrogen isotope ratios were observed in the tree rings formed after the fire, reflecting changes in the soil nitrogen supply. Modifications in the growth and isotope composition of the fire-stressed trees disappeared from 6 to 10 years after the fire. By studying trees before and after fire, we were able to show that fire affects not only the growth of surviving trees, but also their physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson WT, Bernasconi SM, McKenzie JA (1998) Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies): an example from central Switzerland (1913–1995). J Geophys Res 103:625–636. doi:10.1029/1998JD200040

    Google Scholar 

  • Arno SF, Sneck KM (1977) A method for determining fire history in coniferous forests of the Mountain West. USDA For Serv Gen Tech Rep INT-42, Ogden, Utah, 28 p

  • Auer I, Böhm R, Jurkovic A, Lipa W et al (2007) HISTALP—historical instrument climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. doi:10.1002/joc.1377

    Article  Google Scholar 

  • Battipaglia G, Cherubini P, Saurer M, Siegwolf RTW, Strumia S, Cotrufo F (2007) Volcanic explosive eruptios of the Vesuvio decrease tree-ring growth but not photosynthetic rates in the surrounding forests. Global Change Biol 13:1122–1137. doi:10.1111/j.1365-2486.2007.01350.x

    Article  Google Scholar 

  • Bergeron Y (1991) The influence of island and mainland lakeshore landscapes on boreal forest fire regimes. Ecology 72:1980–1992

    Article  Google Scholar 

  • Bigio E, Gärtner H, Conedera M (2010) Fire-related features of wood anatomy in a sweet chestnut (Castanea sativa) coppice in southern Switzerland. Trees. doi:10.1007/s00468-010-0434-9

  • Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman & Hall, London, p 253

    Google Scholar 

  • Brown JK, Smith JK (2000) Wildland fire in ecosystems: effects of fire on flora. In: Gen Tech Rep RMRS-GTR-42, vol. 2. USDA Forest Services, Rocky Mountain Research Station, Ogden, 257 p

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. doi:10.1007/s00442-004-1788-8

    Article  PubMed  Google Scholar 

  • Cherubini P, Gartner BL, Tognetti R, Braker OU (2003) Identification, measurement and interpretation of tree rings in woody species from mediterranean climates. Biol Rev 78:119–148. doi:10.1017/S1464793102006000

    Article  PubMed  Google Scholar 

  • Cook GD (2001) Effects of frequent fires and grazing on stable nitrogen isotope ratios of vegetation in northern Australia. Austral Ecol 26:630–636. doi:10.1046/j.1442-9993.2001.01150.x

    Article  Google Scholar 

  • Covington WW, Sackett SS (1992) Soil mineral nitrogen changes following prescribed burning in ponderosa pine. For Ecol Manag 54:175–191

    Article  Google Scholar 

  • Dawson TE, Siegwolf RTW (2007) Stable isotopes as indicators of ecological change. Elsevier, Amsterdam, p 417

    Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559. doi:10.1146/annurev.ecolsys.33.020602.095451

    Article  Google Scholar 

  • DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effect on ecosystems. Wiley, New York, p 333

    Google Scholar 

  • Dieterich JH (1980) Chimney Spring Forest fire history. USDA Forest Service Research paper RM-220. 8 p

  • Duran J, Rodriguez A, Fernandez-Palacios J-M, Gallardo A (2008) Changes in soil N and P availability in a Pinus canariensis fire chronosequence. For Ecol Manage 256:384–387. doi:10.1016/j.foreco.2008.04.033

    Article  Google Scholar 

  • Ehleringer JR, Cooper TA (1988) Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76:562–566. doi:10.1007/BF00397870

    Google Scholar 

  • Elhani S, Guehl JM, Nys C, Picard JF, Dupouey JL (2005) Impact of fertilization on tree-ring d15 N and d13C in beech stands: a retrospective analysis. Tree Physiol 25:1437–1446

    PubMed  CAS  Google Scholar 

  • Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126

    Article  PubMed  CAS  Google Scholar 

  • Francey RJ, Farquhar GD (1982) An explanation of 13C/12C variations in tree rings. Nature 297:28–31

    Article  CAS  Google Scholar 

  • Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele P (1999) A 1000 year high precision record of d13C in atmospheric CO2. Tellus B51:170–193

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London, p 567

    Google Scholar 

  • Fritts HC, Swetnam TW (1986) Dendroecology: a tool for evaluating variations in past and present forest environments. Laboratory of Tree-Ring Research, University of Arizona, Tucson, 61 p

  • Giovannini G, Lucchesi S (1997) Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Sci 162:479–486

    Article  CAS  Google Scholar 

  • Grissino-Mayer HD (2001) Evaluating cross dating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57:205–221

    Google Scholar 

  • Grissino-Mayer HD, Romme WH, Floyd ML, Hanna DD (2004) Climatic and human influences on fire regimes of the souther San Juan Mountains, Colorado, USA. Ecology 85:1708–1724

    Article  Google Scholar 

  • Grogan P, Bruns TD, Chapin FS III (2000) Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122:537–544. doi:10.1007/s004420050977

    Article  Google Scholar 

  • Helmisaari HS, Siltala T (1989) Variation in nutrient concentrations of pinus sylvestris stems. Scand J For Res 4:443–451

    Article  Google Scholar 

  • Herman DJ, Rundel PW (1989) Nitrogen isotope fractionation in burned and unburned chaparral soils. Soil Sci Soc Am J 53:1229–1236

    Article  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203. doi:10.1111/j.1469-8137.1998.00239.x

    Article  Google Scholar 

  • Kaennel M, Schweingruber FH (1995) Multilingual glossary of dendrochronology, terms and definitions in English, German, French, Spanish, Italian, Portuguese and Russian. Paul Haupt, Berne, p 467

    Google Scholar 

  • LA IP (2007) Carta dei Suoli del Piemonte (1:250.000). Selca, Florence

    Google Scholar 

  • Loader NJ, Switsur VR (1996) Reconstructing past environmental change using stable isotopes in tree rings. Bot J Scotland 48:65–78

    Article  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801. doi:10.1016/j.quascirev.2003.06.017

    Article  Google Scholar 

  • McHugh CW, Kolb TE (2003) Ponderosa pine mortality following fire in northern Arizona. Int J Wildl Fire 12:7–22. doi:10.1071/WF02054

    Article  Google Scholar 

  • Merrill W, Cowling EB (1966) Role of nitrogen in wood deterioration amounts and distribution of nitrogen in tree stems. Can J Bot 44:1555–1580. doi:10.1139/b66-168

    Article  CAS  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71. doi:10.1016/S0378-1127(99)00032-8

    Article  Google Scholar 

  • Niklasson M, Granström A (2000) Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–1499

    Article  Google Scholar 

  • O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336

    Article  Google Scholar 

  • Oberhuber W, Kofler W (2000) Topographic influences on radial growth of Scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecol 146:231–2400. doi:10.1023/A:1009827628125

    Article  Google Scholar 

  • Pallardy SG, Kozlowski TT (2008) Physiology of woody plants. Academic Press, New York

    Google Scholar 

  • Rieske LK (2002) Wildfire alters oak growth, foliar chemistry, and herbivory. For Ecol Manage 168:91–99. doi:10.1016/S0378-1127(01)00731-9

    Article  Google Scholar 

  • Robertson I, Rolfe J, Switsur VR, Carter AHC, Hall MA, Baker AC, Waterhouse JS (1997) Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in Southwest Finland. Geophys Res Lett 24:1487–1490. doi:10.1029/97GL01293

    Article  CAS  Google Scholar 

  • Saurer M, Siegenthaler IU, Schweingruber FH (1995) The climate carbon isotope ratios in tree ring and the significance in site condition. Tellus 47(3):320–330. doi:10.1034/j.1600-0889.47.issue3.4.x

    Article  Google Scholar 

  • Saurer M, Cherubini P, Ammann M, De Cinti B, Siegwolf RTW (2004) First detection of nitrogen from NO x in tree rings: a 15N/14N study near a motorway. Atmos Environ 38:2779–2787. doi:10.1016/j.atmosenv.2004.02.037

    Article  CAS  Google Scholar 

  • Schleser GH, Helle G, Lucke A, Vos H (1999) Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quat Sci Rev 18:927–943. doi:10.1016/S0277-3791(99)00006-2

    Article  Google Scholar 

  • Schweingruber FH (1988) Tree rings. Basic and applications of dendrochronology. D. Reidel, The Netherlands

    Google Scholar 

  • Sheppard PR, Thompson TL (2000) Effect of extraction pretreatment on radial variation of nitrogen concentration in tree rings. J Environ Qual 29:2037–2042

    Article  CAS  Google Scholar 

  • Simard S, Elhani S, Morin H, Krause C, Cherubini P (2008) Carbon and oxygen stable isotopes from tree-rings to identify spruce budworm outbreaks in the boreal forest of Québec. Chem Geol 252:80–87. doi:10.1016/j.chemgeo.2008.01.018

    Article  CAS  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. The University of Chicago Press, Chicago, p 73

    Google Scholar 

  • Swetnam TW (1993) Fire history and climate change in giant sequoia groves. Science 262:885–889

    Article  PubMed  CAS  Google Scholar 

  • Veblen TT, Kitzberger T, Villalba R, Donnegan J (1999) Fire history in northern Patagonia: the roles of humans and climatic variation. Ecol Monogr 69:47–67

    Article  Google Scholar 

  • Weaver H (1951) Fire as ecological factor in the south-western ponderosa pine forests. J For 49:93–98

    Google Scholar 

  • Whelan RJ (1995) The ecology of fire. Cambridge University Press, Cambridge, p 346

    Google Scholar 

  • Zimmerman JK, Ehleringer JR (1990) Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Catasetum viridiflavum. Oecologia 83:247–249. doi:10.1007/BF00317759

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Magdalena Noetzli (WSL) for her help with analyses, to Fabio Meloni, Riccardo Ceccato and Danilo Godone (all at University of Turin) for help with field work, to Daniele Castagneri (University of Turin) for useful comments on a previous draft of the paper, to Silvia Dingwall for revising our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Cherubini.

Additional information

Communicated by A. Braeuning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beghin, R., Cherubini, P., Battipaglia, G. et al. Tree-ring growth and stable isotopes (13C and 15N) detect effects of wildfires on tree physiological processes in Pinus sylvestris L.. Trees 25, 627–636 (2011). https://doi.org/10.1007/s00468-011-0539-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0539-9

Keywords

Navigation