Skip to main content
Log in

Dendrochronology of lianas of the Leguminosae family from the Atlantic Forest, Brazil

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Information about plant growth, development and age forms the basis for understanding complex forest ecological processes. Although lianas play an important role in tropical forests, little is known about their growth and development from either climatic or ecological perspectives. Therefore, we studied the growth rings in Legume liana species collected in a mountainous Atlantic Forest in southeastern Brazil. Four of the eight studied species did not show cambial variants, three had a lobed stem, and one had a furrowed xylem. Distinct growth rings were observed in all species. Semi-ring porosity, marginal parenchyma, fibrous zone and radially flattened latewood cells were the main characteristic features of these growth rings. Species without cambial variants, including Dalbergia frutescens, Piptadenia adiantoides, P. micracantha and Senegalia tenuifolia, showed very distinct growth rings visible in macroscopic and microscopic analysis. Ring-width time series and cambial wound assessment were performed to analyze periodicity and dendrochronology. The species with cambial variants, S. grandistipula, S. lacerans, S. martiusiana and S. pedicellata, also showed distinct growth rings, however, sometimes barely detectable or not detected at all. Cambial wounding, cross-dating and climate-growth relationships indicated the annual nature of growth rings in species without cambial variant. Cross-dating between radii within one individual and between individuals was successful, and the synchronized series enabled us to build species chronologies and a mean chronology. Climate-growth analysis revealed significant correlations between chronologies and precipitation, indicating that available moisture is the main factor determining growth rates of lianas in the Atlantic forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Araque OZ, De Pernía NE, León WJ (2000) Estudio anatómico del leño de seis especies de lianas. Rev For Venez 44:39–48

    Google Scholar 

  • Baas P, Schweingruber FH (1987) Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull 8:245–274

    Google Scholar 

  • Baas P, Vetter RE (1989) Growth rings in tropical trees. IAWA Bull N. ser. 10:95–174

    Google Scholar 

  • Bamber RK, Ter Welle BJH (1994) Adaptative trends in the wood anatomy of lianas. In: Iqbal M (ed) Growth patterns in vascular plants. Dioscorides Press, Portland, pp 272–287

    Google Scholar 

  • Bormann FH, Berlym G (1981) Age and growth of tropical trees: new directions for research. Yale Univ Sch For Eviron Stud Bull 94:1–137

    Google Scholar 

  • Botosso PC (1984) Some anatomical wood characteristics as source of cyclic structural change (regular or irregular) of growth periodicity for 20 amazonian species. IAWA Bull 5:545–546

    Google Scholar 

  • Bräker OU (2002) Measuring and data processing in tree-ring research: a methodological introduction. Dendrochronologia 20:203–216

    Article  Google Scholar 

  • Brandes AFN, Barros CF (2008) Anatomia do lenho de oito espécies de lianas da família Leguminosae ocorrentes na Floresta Atlântica. Acta Bot Bras 22:465–480

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12

    Article  PubMed  Google Scholar 

  • Brienen RJW, Zuidema PA (2006) The use of tree rings in tropical forest management: projecting timber yields of four Bolivian tree species. For Ecol Manag 226:256–267

    Article  Google Scholar 

  • Bukatsch F (1972) Bemerkungen zur doppelfärbung astrablau-safranin. Mikrokosmos 61:33–36

    Google Scholar 

  • Caballé G (1993) Liana structure, function and selection: a comparative study of xylem cylinders of tropical rainforest species in Africa and America. Bot J Linn Soc 113:41–60

    Article  Google Scholar 

  • Callado CH, Neto SJS, Scarano FR, Barros CF, Costa CG (2001a) Anatomical features of growth rings in flood-prone trees of the Atlantic rain forest in Rio de Janeiro, Brazil. IAWA J 22:29–42

    Google Scholar 

  • Callado CH, Neto SJS, Scarano FR, Costa CG (2001b) Periodicity of growth rings in some flood-prone trees of the Atlantic rain forest in Rio de Janeiro, Brazil. Trees 15:492–497

    Google Scholar 

  • Callado CH, Neto SJS, Scarano FR, Costa CG (2004) Radial growth dynamics of Tabebuia umbellata (Bignoniaceae), a flood-tolerant trees from the Atlantic forest swamps in Brazil. IAWA J 25:175–183

    Google Scholar 

  • Carlquist S (1985) Observations on functional wood histology of vines and lianas: vessel dimorphism, tracheids, vasicentric tracheids, narrow vessels, and parenchyma. Aliso 11:139–157

    Google Scholar 

  • Carlquist S (1991) Anatomy of vine and liana stems: a review and synthesis. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 53–72

    Google Scholar 

  • Carlquist S (1995) Wood and bark anatomy of Ranunculaceae (including Hydrastis) and Glaucidiaceae. Aliso 14:65–84

    Google Scholar 

  • Carlquist S (2001) Comparative wood anatomy: systematic, ecological and evolutionary aspects of dicotyledon wood, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

  • Clark DA, Clark DB (1994) Climate-induced annual variation in canopy tree growth in a Costa Rican tropical rain forest. J Ecol 82:865–872

    Article  Google Scholar 

  • Committee IAWA (1989) List of microscopic features of hardwood identification. IAWA Bull N. ser. 10:219–332

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-ring Bull 41:45–53

    Google Scholar 

  • Devall MS, Parresol BR, Wright SJ (1995) Dendroecological analysis of Cordia alliodora, Pseudobombax septenatum and Annona spraguei in central Panama. IAWA J 16:411–424

    Google Scholar 

  • Dünisch O, Montóia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17:244–250

    Google Scholar 

  • Eckstein D, Baas P (1999) Dendrochronology in Monsoon Asia. IAWA J 20:223–350

    Google Scholar 

  • Eckstein D, Sass U, Baas P (1995) Growth periodicity in tropical trees. IAWA J 16:323–442

    Google Scholar 

  • Enquist BJ, Leffler AJ (2001) Long-term tree ring chronologies from sympatric tropical dry-forest trees: individualistic responses to climatic variation. J Trop Ecol 17:41–60

    Article  Google Scholar 

  • Eshete G, Stahl G (1999) Tree rings as indicators of growth periodicity of acacias in the Rift Valley of Ethiopia. For Ecol Manag 116:107–117

    Article  Google Scholar 

  • Estrada GCD, Callado CH, Soares MLG, Lisi CS (2008) Annual growth rings in the mangrove Laguncularia racemosa (Combretaceae). Trees 22:663–670

    Article  Google Scholar 

  • Ewers FW, Fisher JB, Chiu ST (1990) A survey if vessel dimensions in stem of tropical lianas and others growth forms. Oecologia 84:544–552

    Google Scholar 

  • Ewers FW, Fisher JB, Fichtner K (1991) Water flux and xylem structure in vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 127–160

    Google Scholar 

  • Fichtler E, Trouet V, Beeckman H, Coppin P, Worbes M (2004) Climatic signal in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forest in Namibia. Trees 18:442–451

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. The Blackburn press, New Jersey

    Google Scholar 

  • Garfi G, Ficarrotta S (2003) Influence of ivy (Hedera helix L.) on the growth of downy oak (Quercus pubescens s.l.) in the Monte Carcaci Nature Reserve (central-western Sicily). Ecol Mediter 29:5–14

    Google Scholar 

  • Gasson P, Dobbins DR (1991) Wood anatomy of the Bignoniaceae, with a comparison of trees and lianas. IAWA Bull 12:389–417

    Google Scholar 

  • Gebrekirstos A, Mitlöhner R, Teketay D, Worbes M (2008) Climate–growth relationships of the dominant tree species from semi-arid savanna woodland in Ethiopia. Trees 22:631–641

    Article  Google Scholar 

  • Gentry AH (1991) The distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 3–50

    Google Scholar 

  • Gerwing JJ (2004) Life history diversity among six species of canopy lians in an old-growth forest of the eastern Brazilian Amazon. For Ecol Manag 190:57–72

    Article  Google Scholar 

  • Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, Dewalt SJ, Ewango CEN, Foster R, Kenfack D, Martínez-Ramos M, Parren M, Parthasarathy N, Pérez-Salicrup DR, Putz FE, Thomas DW (2006) A standard protocol for Liana censuses. Biotropica 38:256–261

    Article  Google Scholar 

  • Grau HR, Easdale AT, Paolini L (2003) Subtropical dendroecology–dating disturbances and forest dynamics in northwestern Argentina montane ecosystems. For Ecol Manag 177:131–143

    Article  Google Scholar 

  • Heuzé P, Dupouey J, Schnitzler A (2009) Radial growth response of hedera helix to hydrological changes and climatic variability in the rhine floodplain. River Res Applic 25:393–404

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Holmes RL (1994) Dendrochronology Program Library: users manual (Updated November 1994). Laboratory of Tree-Ring Research,University of Arizona, Tucson

    Google Scholar 

  • Isnard S, Silk WK (2009) Moving with climbing plants from Charles Darwin’s time into the 21st century. Am J Bot 96:1205–1221

    Article  Google Scholar 

  • Jacoby GC (1989) Overview of tree-ring analysis in tropical regions. IAWA Bull 10:99–108

    Google Scholar 

  • Leon-Gómez C, Monroy-Ata A (2005) Seasonality in cambial activity of four lianas from a Mexican lowland tropical rainforest. IAWA J 26:111–120

    Google Scholar 

  • Lima AC, Pace MR, Angyalossy V (2010) Seasonality and growth rings in lianas of Bignoniaceae. Trees 24:1045–1060. doi:10.1007/s00468-010-0476-z

    Article  Google Scholar 

  • Lisi CS, Tomazello Fo M, Botosso PC, Roig FA, Maria VRB, Ferreira-Fedele L, Voigt ARA (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in Southeast Brazil. IAWA J 29:189–207

    Google Scholar 

  • Lorimer CG, Dahir SE, Singer MT (1999) Frequency of partial and missing rings in Acer saccharum in relation to canopy position and growth rate. Plant Ecol 143:189–202

    Article  Google Scholar 

  • Mariaux A (1967) Les cernes dans les bois tropicaux africains, nature et periodicité. Rev Bois For Trop 113(3–14/114):23–37

    Google Scholar 

  • Morim MP (2006) Leguminosae arbustivas e arbóreas da Floresta Atlântica do Parque Nacional do Itatiaia, Sudeste do Brasil: Padrões de distribuição. Rodriguésia 57:27–45

    Google Scholar 

  • Nabe-Nielsen L (2002) Growth and mortality rates of the liana Machaerium cuspidatum in relation to light and topographic position. Biotropica 34:319–322

    Google Scholar 

  • Nola P (1997) Interactions between Fagus sylvatica L. and Hedera helix L.: a dendroecological approach. Dendrochronologia 15:23–37

    Google Scholar 

  • Oliveira JM, Santarosa E, Pillar VD, Roig FA (2009) Seasonal cambium activity in the subtropical rain forest tree Araucaria angustifolia. Trees 23:107–115

    Article  Google Scholar 

  • Oliveira JM, Roig FA, Pillar VD (2010) Climatic signals in tree-rings of Araucaria angustifolia in the southern Brazilian highlands. Austral Ecol 35:134–147

    Article  Google Scholar 

  • Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica 32:793–810

    Google Scholar 

  • Pérez-Salicrup DR, Schnitzer S, Putz FE (2004) Community ecology and management of lianas. For Ecol Manag 190:1–2

    Article  Google Scholar 

  • Priya PB, Bhat KM (1999) Influence of rainfall, irrigation and age on the growth periodicity and wood structure in Teak (Tectona grandis). IAWA J 20:181–192

    Google Scholar 

  • Putz FE (1990) Liana stem diameter growth and mortality rates on Barro Colorado Island, Panama. Biotropica 22:103–105

    Article  Google Scholar 

  • Schenck H (1893) Beiträge zur biologie und anatomie der lianen, in besonderen der in Brasilien einheimishe arten. 2. Beiträge zur anatomie der lianen. In: Schimpers AFW (ed) Botanische Mittheilungen aus der Tropen 5. G. Fischer, Jena, pp 1–271

    Google Scholar 

  • Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166:262–276

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230

    Article  Google Scholar 

  • Schnitzler A, Heuzé P (2006) Ivy (Hedera helix L.) dynamics in riverine forests: effects of river regulation and forest disturbance. For Ecol Manag 236:12–17

    Article  Google Scholar 

  • Schöngart J (2008) Growth-oriented logging (GOL): a new concept towards sustainable forest management in Central Amazonian várzea floodplains. For Ecol Manag 256:46–58

    Article  Google Scholar 

  • Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461. doi:10.1007/s00442-005-0147-8

    Article  PubMed  Google Scholar 

  • Schöngart J, Orthmann B, Hennenberg KJ, Porembski S, Worbes M (2006) Climate-growth relationships of tropical tree species in West Africa and their potential for climate reconstruction. Glob Chang Biol 12:1139–1150

    Article  Google Scholar 

  • Schweingruber FH (2007) Wood structure and environment. Springer-Verlag, Berlin

    Google Scholar 

  • Schweingruber FH, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. For Snow Landsc Res 79:195–415

    Google Scholar 

  • Segadas-Vianna F, Dau L (1965) Ecology of the Itatiaia Range, Southeastern Brazil. II. Climates and climatic altitudinal zonation. Arq Mus Nac 53:31–53

    Google Scholar 

  • Seitz RS, Kanninen M (1989) Tree ring analysis of Araucaria angustifolia in southern Brazil: preliminary results. IAWA Bull N. ser. 10:170–174

    Google Scholar 

  • Stahle DW (1999) Useful strategies for the development of tropical tree-ring chronologies. IAWA J 20:249–253

    Google Scholar 

  • Stokes MA, Smiley TL (1996) An introduction to tree-ring dating, 2nd edn. The University of Arizona Press, Arizona

    Google Scholar 

  • Verheyden A, Helle G, Schleser GH, Beeckman H (2006) High-resolution carbon and oxygen isotope profiles of tropical and temperate liana species. Schr Forsch Jülich Reihe Umw 61:31–35

    Google Scholar 

  • Vetter RE, Botosso PC (1989) Remarks on age and growth rate determination of Amazonian trees. IAWA Bull N. ser. 10:133–145

    Google Scholar 

  • Worbes M (1985) Structural and other adaptation to long-term flooding by trees in Central Amazonia. Amazoniana 9:459–484

    Google Scholar 

  • Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the neotropics. IAWA Bull N. ser. 10:109–122

    Google Scholar 

  • Worbes M (1995) How to measure growth dynamics in tropical trees: a review. IAWA J 16:337–351

    Google Scholar 

  • Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403

    Article  Google Scholar 

  • Worbes M (2002) One hundred year of tree-ring research in the tropics: a brief history and an outlook to future challenges. Dendrochronologia 20:217–231

    Article  Google Scholar 

  • Worbes M, Staschel R, Roloff A, Junk WJ (2003) Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. For Ecol Manag 173:105–123

    Article  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer-Verlag, Berlin

    Google Scholar 

Download references

Acknowledgments

Our thanks go to the Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Petrobras and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for financial support; Parque Nacional do Itatiaia for logistical support and Dr. Achim Braeuning for the revision of the paper and valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Fritz Neves Brandes.

Additional information

Communicated by A. Braeuning.

Contribution to the special issue “Tropical Dendroecology”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandes, A.F.N., Lisi, C.S. & Barros, C.F. Dendrochronology of lianas of the Leguminosae family from the Atlantic Forest, Brazil. Trees 25, 133–144 (2011). https://doi.org/10.1007/s00468-010-0529-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0529-3

Keywords

Navigation