Skip to main content
Log in

Seasonality and growth rings in lianas of Bignoniaceae

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Lianas are one of the most important components of tropical forest, and yet one of the most poorly known organisms. Therefore, our paper addresses questions on the environmental and developmental aspects that influence the growth of lianas of Bignoniaceae, tribe Bignonieae. In order to better understand their growth, we studied the stem anatomy, seasonality of formation and differentiation of secondary tissues, and the influence of the cambial variant in xylem development on a selected species: Tynanthus cognatus. Afterwards, we compared the results found in T. cognatus with 31 other species of Bignonieae to identify general patterns of growth in lianas of this tribe. We found that cambial activity starts toward the end of the rainy season and onset of the dry season, in contrast to what is known for tropical trees and shrubs. Moreover, their pattern of xylem formation and differentiation is strongly influenced by the presence of massive wedges of phloem produced by a variant cambium. Thus, the variant cambium is the first to commence its activity and only subsequently does cambial activity progress towards the center of the regular region, leading to the formation of confluent growth rings. In summary, we conclude that: the cambium responds to environmental changes; the xylem growth rings are annual and produced in a brief period of about 2 months, something that may explain why lianas possess narrow stems; and furthermore, phloem wedges greatly influence cambial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alfieri FJ, Evert RF (1968) Seasonal development of the secondary phloem in Pinus. Am J Bot 55(4):518–528

    Article  Google Scholar 

  • Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216(5):841–853

    CAS  PubMed  Google Scholar 

  • Amano E, Angyalossy V (2005) The cambium activity in pernambuco-wood (Caesalpinia echinata Lam., Leguminosae). XVII International Botanical Congress Abstracts, Vienna, Austria

  • Angyalossy V (2006) O floema secundário em espécies arbóreas. Livre Docente Professorial thesis, Universidade de São Paulo, São Paulo, Brazil

  • Baas P, Schweingruber FH (1987) Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull n.s. 10(2):161–169

    Google Scholar 

  • Baker DA (2000) Vascular transport of auxins and cytokinins in Ricinus. J Plant Growth Regul 32(2–3):157–160

    CAS  Google Scholar 

  • Barbosa ACF, Pace MR, Witovisk L, Angyalossy V (2010) A new method to obtain good anatomical slides of heterogeneous plant parts. IAWA J 31(4)

  • Berlyn GP, Miksche JP (1976) Botanical microtechnique and cytochemistry. Iowa State University Press, Ames

    Google Scholar 

  • Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20(3):239–247

    Google Scholar 

  • Bormann FH (1965) Changes in the growth pattern of white pine trees undergoing suppression. Ecology 46:269–277

    Article  Google Scholar 

  • Brandes AFN (2007) Anatomia do lenho e dendrocronologia de lianas da família Leguminosae ocorrentes na Mata Atlântica. Dissertation, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Brazil

  • Bukatsch F (1972) Bemerkungem zur Doppelfärbung Astra-blau-Safranin. Mikrokosmos 6:255

    Google Scholar 

  • Carlquist SJ (1985) Observations on functional wood histology of vines and lianas: vessel dimorphism, tracheids, vasicentric tracheids, narrow vessels, and parenchyma. Aliso 11(2):139–157

    Google Scholar 

  • Carlquist SJ (1991) Anatomy of vine and liana stems: a review and synthesis. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge

    Google Scholar 

  • Carlquist S (1995) Wood and bark anatomy of Ranunculaceae (including Hydrastis) and Glaucidiaceae. Aliso 14:65–84

    Google Scholar 

  • Carlquist SJ (2001) Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood, 2nd edn. Springer, New York

    Google Scholar 

  • Colenutt ME, Luckman BH (1991) Dendrochronological investigation of Larix lyalii at Larch Valley, Alberta. Can J For Res 21:1222–1233

    Article  Google Scholar 

  • Coradin VTR (2000) Formação de anéis de crescimento e sazonalidade da atividade cambial de dez espécies lenhosas do cerrado. PhD thesis, Universidade Federal de Brasília, Brazil

  • Croat TC (1978) Flora of Barro Colorado Island. Stanford University Press, Stanford

    Google Scholar 

  • Davis JD, Evert RF (1968) Seasonal development of the secondary phloem in Populus tremuloides. Bot Gaz 129(1):1–8

    Article  Google Scholar 

  • Davis JD, Evert RF (1970) Seasonal cycle of phloem development in woody vines. Bot Gaz 131(2):128–138

    Article  Google Scholar 

  • Derr W, Evert RF (1967) The cambium and seasonal development of the phloem in Robinia pseudoacacia. Am J Bot 54(2):147–153

    Article  Google Scholar 

  • Deshpande BP, Rajendrababu T (1985) Seasonal changes in the structure of the secondary phloem of Grewia tiliaefolia, a deciduous tree from India. Ann Bot 56:61–71

    Google Scholar 

  • Dobbins DR (1971) Studies on the anomalous cambial activity in Doxantha unguis-cati (Bignoniaceae). II. A case of differential production of secondary tissues. Am J Bot 58:697–705

    Article  Google Scholar 

  • Dos Santos G (1995) Wood anatomy, chloroplast DNA, and flavonoids of the tribe Bignonieae (Bignoniaceae). PhD thesis, University of Reading, Reading, UK

  • Esau K (1948) Phloem structure in the grapevine, and its seasonal changes. Hilgardia 18(5):217–296

    Google Scholar 

  • Evert RF (1963) Ontogeny and structure of the secondary phloem in Pyrus malus. Am J Bot 50(1):8–37

    Article  Google Scholar 

  • Ewers FW (1985) Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bull n.s. 6(4):309–317

    Google Scholar 

  • Ewers FW, Fisher JB (1991) Why vines have narrow stems: histological trends in Bauhinia (Fabaceae). Oecologia 88:233–237

    Article  Google Scholar 

  • Ewers FW, Fisher JB, Chiu ST (1990) A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia 84:544–552

    Google Scholar 

  • Fisher JB, Ewers FW (1991) Structural responses to stem injury in vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, London

    Google Scholar 

  • Gasson P, Dobbins DR (1991) Wood anatomy of the Bignoniaceae, with a comparison of trees and lianas. IAWA Bull n.s. 12(4):389–417

    Google Scholar 

  • Gentry AH (1991) The distribution and evolution of climbing plants. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge

    Google Scholar 

  • Gomes EPC (1992) Fitossociologia do componente arbóreo de um trecho arbóreo de mata em São Paulo, SP. Masters dissertation, Universidade de São Paulo, Brazil

  • Isnard S, Silk WK (2009) Moving with climbing plants from Charles Darwin’s time into the 21st century. Am J Bot 96(7):1205–1221

    Article  Google Scholar 

  • Jacoby GC (1989) Overview of tree-ring analysis in tropical regions. IAWA Bull n.s. 10(2):99–108

    Google Scholar 

  • Karnovzky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Krause C, Morin H (1995) Changes in radial increment in stems and roots of balsam fir [Abies balsamea (L.) Mill.] after defoliation by spruce budworm. For Chron 71:747–754

    Google Scholar 

  • León-Gómez C, Monroy-Ata A (2005) Seasonality in cambial activity of four lianas from a Mexican lowland tropical rainforest. IAWA J 26(1):111–120

    Google Scholar 

  • Lev-Yadun S, Liphschitz N (1986) Growth ring terminology–some proposals. IAWA Bull n.s. 7(1):72

    Google Scholar 

  • Lohmann LG (2006) Untangling the phylogeny of neotropical lianas (Bignonieae, Bignoniaceae). Am J Bot 93:304–318

    Article  CAS  Google Scholar 

  • Lohmann LG (2010) A new generic classification of Bignonieae (Bignoniaceae) based on molecular phylogenetic data and morphological synapomorphies. Ann Mo Bot Gard

  • Luchi AE (1998) Periodicidade de crescimento em Hymenaea courbaril L. e anatomia ecológica do lenho de espécies de mata ciliar. PhD thesis, Universidade de São Paulo, Brazil

  • Marcati CR (2000) Sazonalidade cambial em espécies tropicais. PhD Thesis, Universidade de São Paulo, Brazil

  • Marcati CR, Angyalossy V, Evert RF (2006) Seasonal variation in wood formation of Cedrela fissilis (Meliaceae). IAWA J 27:199–211

    Google Scholar 

  • Marcati CR, Milanez CRD, Machado SR (2008) Seasonal development of secondary xylem in Schizolobium parahyyba (Vell.) Blake (Leguminosae: Caesalpinioideae). Trees 22(1):3–12

    Article  Google Scholar 

  • Mariaux A (1967) Les cernes dans les bois tropicaux africains, nature et périodicité. Rev Bois For Trop 113:3–14; 114:23–37

    Google Scholar 

  • O’Brien TP, Feder N, Mccully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Obaton M (1960) Les lianes ligneuses à structure anormale des forêts denses d’Afrique Occidentale–Les divers types d’anomalies. Ann of Sci Nat (Bot) 12(1):20–220

    Google Scholar 

  • Pace MR (2009) Evolução da variação cambial e do floema secundário em Bignonieae (Bignoniaceae). Dissertation, Universidade de São Paulo, Brazil

  • Pace MR, Lohmann LG, Angyalossy V (2009) The rise and evolution of the cambial variant in Bignonieae (Bignoniaceae). Evol Dev 11(5):465–479

    Article  PubMed  Google Scholar 

  • Paliwal GS, Prasad NVSRK (1970) Seasonal activity of cambium in some tropical trees. I. Dalbergia sissoo. Phytomorphology 20:333–339

    Google Scholar 

  • Paliwal GS, Prasad NVSRK, Sajwan VS, Aggarwal SK (1975) Seasonal activity of cambium in some ropical trees. II. Polyalthia longifolia. Phytomorphol 25:478–484

    Google Scholar 

  • Pfeiffer H (1926) Das abnorme Dickenwachstum. In: Linsbauer K (ed) Hanbuch der Pflanzenanatomie. Borntraeger, Berlin

    Google Scholar 

  • Phillips OL, Vasquez Martinez R, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Monteaqudo Mendoza A, Neill D, Nunez Vargas P, Alexiades M, Cerón C, Di Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774

    Article  CAS  PubMed  Google Scholar 

  • Rajput KS, Rao KS (1998) Seasonal anatomy of secondary phloem of teak (Tectona grandis L. Verbenaceae) growing in dry and moist deciduous forests. Phyton 38(2):251–258

    Google Scholar 

  • Roberts SD (1994) The occurrence of non-ring producing branches in Abies lasiocarpa. Trees 8:263–267

    Article  Google Scholar 

  • Rupp P (1964) Polyglycol als Einbettungsmedium zum Schneiden botanischer Präparate. Mikrokosmos 53:123–128

    Google Scholar 

  • Schenck H (1893) Beitrage zur biologie anatomie und anatomie der lianen in besonderen der in brasilien einheimischen arten 2. Beitrage zur anatomie der lianen. In: Schimper ASFW (ed) Botanische Mitteilungen aus der Tropen 5. Gustav Fischer, Jena

    Google Scholar 

  • Schneider H (1945) The anatomy of peach and cherry phloem. Bull Torrey Bot Club 72(2):137–156

    Article  Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230

    Article  Google Scholar 

  • Solereder H (1908) Systematic anatomy of the dicotyledons, vol I, II. Charenton Press, Oxford

    Google Scholar 

  • Tomazello M, Cardoso NS (1999) Seasonal variations of the vascular cambium of teak (Tectona grandis L.) in Brazil. In: Wimmer R, Vetter RE (eds) Tree ring analysis—biological, methodological and environmental aspects. CABI Publishing, New York

    Google Scholar 

  • Worbes M (1985) Structural and other adaptations to long-term flooding by trees in Central Amazonia. Amazoniana 9:459–484

    Google Scholar 

  • Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the Neotropics. IAWA Bull. n. s. 10:109–122

    Google Scholar 

  • Worbes M (1995) How to measure growth dynamics in tropical trees—a review. IAWA J 16:337–351

    Google Scholar 

  • Worbes M (2002) One hundred years of tree-ring research in the tropics—a brief history and an outlook to future challenges. Dendrochronologia 20:217–231

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank ACF Barbosa for help with anatomical procedures; M. Groppo, A. Zuntini, M. Souza-Baena, M. Lopes, H. Lorenzi, D. Sampaio and D. Villaboel for collections in Brazil and Bolivia; an anonymous reviewer for helpful suggestions; the São Paulo Research Foundation (FAPESP, 07/51677-0), and the National Counsel of Technological and Scientific Development (CNPq, grant 481034/2007-2) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André C. Lima.

Additional information

Communicated by R. Aloni.

Appendix: analyzed species

Appendix: analyzed species

Adenocalymma bracteatum (Cham.) DC., Castanho 153, Lohmann 861, Brazil, Amazonas. A. comosum (Cham.) DC., Pace 53, Brazil, São Paulo. A. divaricatum Miers, Udulutsch 2808, Brazil, Bahia. A. flaviflorum (Miq.) L.G. Lohmann, Sousa-Baena 2, Brazil, Espírito Santo. A. nodosum (Silva Manso) L.G. Lohmann, Pace 20, Brazil, Minas Gerais. A. salmoneum J.C. Gomes, Lohmann 658, Brazil Amazonas. Amphilophium crucigerum (L.) L.G. Lohmann, Pace 1, Pace 2, Pace 3, Pace 34, Brazil, São Paulo. A. elongatum (Vahl) L.G. Lohmann, Pace 45, Brazil, Plantarum’s living collection São Paulo. A. magnoliifolium (Kunth) L.G. Lohmann, Lohmann 851, Brazil, Amazonas; Dos Santos 272*, Brazil, Pará. A. paniculatum (L.) Kunth, Pace 46, Brazil, São Paulo. Bignonia binata Thunb, Galvanese 22, Brazil, Amazonas. B. campanulata Cham., Pace 39, Brazil, São Paulo. B. magnifica W. Bull, Pace 51, Brazil, Plantarum’s living collection São Paulo. Callichlamys latifolia (Rich.) K. Schum, Zuntini 175, Brazil, Espírito Santo; Pace 42, Plantarum’s living collection Brazil, São Paulo. Cuspidaria convoluta (Vell.) A.H. Gentry: Pace 48, Brazil, Plantarum’s living collection São Paulo. Dolichandra unguis-cati (L.) L.G. Lohmann, Ceccantini 2687, Brazil, Minas Gerais; Groppo 322, Brazil, São Paulo. Fridericia chica (Bonpl.) L.G. Lohmann, Pace 50, Brazil, São Paulo. F. platyphylla (Cham.) L.G. Lohmann, Pace 22, Pace 23, Brazil, Minas Gerais. F. samydoides (Cham.) L.G. Lohmann, Pace 49, Brazil, São Paulo. Lundia cordata (Vell.) DC.: Zuntini 1, Brazil, Espírito Santo. L. damazioi C. DC.: Pace 55, Pace 56, Brazil, São Paulo. L. virginalis Kraenzl: Zuntini 126. Manaosella cordifolia (DC.) A.H. Gentry, Pace 41, Brazil, Plantarum’s living collection São Paulo. Mansoa difficilis (Cham.) Bureau & K. Schum., Pace 35, Brazil, São Paulo; Zuntini 4, `Brazil, Espírito Santo. M. onohualcoides A.H. Gentry, Zuntini 276, Brazil, Espírito Santo. Perianthomega vellozoi Bureau: Pace 10, Pace 15, Brazil, Minas Gerais; Pace 28, Pace 29, Bolivia, Santa Cruz. Pleonotoma tetraquetra (Cham.) Bureau: Ozório-Filho 11, Brazil, São Paulo. Pyrostegia venusta (Ker Gawl.) Miers, Pace 17, Brazil, São Paulo; Pace 36, Brazil, São Paulo. Stizophyllum riparium (Kunth) Sandwith: Pace 16, Pace 33, Brazil, São Paulo; Zuntini 9, Brazil, Espírito Santo. Tanaecium bilabiatum (Sprague) L.G. Lohmann, Lohmann 850, Brazil, Amazonas. T. pyramidatum (Rich.) L.G. Lohmann, Pace 14, Pace 35, Brazil, São Paulo. T. cognatus (Cham.) Miers: Pace 9a, Pace 9b, Lima 2 Lima 3, Lima4, Lima 5, Lima 6, Lima 7, Brazil, São Paulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, A.C., Pace, M.R. & Angyalossy, V. Seasonality and growth rings in lianas of Bignoniaceae. Trees 24, 1045–1060 (2010). https://doi.org/10.1007/s00468-010-0476-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0476-z

Keywords

Navigation