Skip to main content

Advertisement

Log in

Diverse climate sensitivity of Mediterranean tree-ring width and density

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Understanding long-term environmental controls on the formation of tree-ring width (TRW) and maximum latewood density (MXD) is fundamental for evaluating parameter-specific growth characteristics and climate reconstruction skills. This is of particular interest for mid-latitudinal environments where future rates of climate change are expected to be most rapid. Here we present a network of 28 TRW and 21 MXD chronologies from living and relict conifers. Data cover an area from the Atlantic Ocean in the west to the Mediterranean Sea in the east and an altitudinal gradient from 1,000 to 2,500 m asl. Age trends, spatial autocorrelation functions, carry-over effects, variance changes, and climate responses were analyzed for the individual sites and two parameter-specific regional means. Variations in warm season (May–September) temperature mainly control MXD formation (r = 0.58 to 0.87 from inter-annual to decadal time-scales), whereas lower TRW sensitivity to temperature remains unstable over space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andreu L, Gutiérrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Glob Change Biol 13:804–815

    Google Scholar 

  • Barber V, Juday G, Finney B (2000) Reduced growth of Alaska white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–672

    Article  CAS  PubMed  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density around the Northern Hemisphere: Part 1, local and regional climate signals. Holocene 12:737–757

    Article  Google Scholar 

  • Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, AD 755–2004. J Clim 19:5606–5623

    Article  Google Scholar 

  • Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J (2007a) Growth/climate response of a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol 27:689–702

    PubMed  Google Scholar 

  • Büntgen U, Frank DC, Verstege A, Nievergelt D, Esper J (2007b) Climatic response of multiple tree-ring parameters from the Central Spanish Pyrenees. Trace 5:60–72

    Google Scholar 

  • Büntgen U, Frank DC, Grudd H, Esper J (2008a) Long-term summer temperature variations in the Pyrenees. Clim Dyn 31:615–631

    Article  Google Scholar 

  • Büntgen U, Frank DC, Wilson R, Carrer M, Urbinati C, Esper J (2008b) Testing for tree-ring divergence in the European Alps. Glob Change Biol 14:2443–2453

    Article  Google Scholar 

  • Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Change 63:181–200

    Article  Google Scholar 

  • Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arctic Alpine Res 30:1–10

    Article  Google Scholar 

  • Camarero JJ, Gutiérrez E, Fortin MJ, Ribbens E (2005) Spatial patterns of tree recruitment in a relict population of Pinus uncinata: forest expansion through stratified diffusion. J Biogeogr 32:1979–1992

    Article  Google Scholar 

  • Carrer M, Urbinati M (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170:861–872

    Article  PubMed  Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53

    Google Scholar 

  • Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. The Holocene 7:359–368

    Article  Google Scholar 

  • Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237

    Article  Google Scholar 

  • Eschbach W, Nogler P, Schär E, Schweingruber FH (1995) Technical advances in the radiodensitometrical determination of wood density. Dendrochronologia 13:155–168

    Google Scholar 

  • Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res 59:81–98

    Google Scholar 

  • Felten von S, Hättenschwiler S, Saurer M, Siegwolf R (2007) Carbon allocation in shoots of alpine treeline conifers in a CO2 enriched environment. Trees 21:283–294

    Article  Google Scholar 

  • Frank D, Esper J (2005) Characterization and climate response patterns of a high elevation, multi species tree-ring network for the European Alps. Dendrochronologia 22:107–121

    Article  Google Scholar 

  • Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007a) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310

    Article  Google Scholar 

  • Frank D, Esper J, Cook ER (2007b) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34. doi:10.1029/2007GL030571

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gao XJ, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high-resolution simulations with a regional climate model. Glob Plan Change 62:195–209

    Article  Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2000) The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees 14:409–414

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33. doi:10.1029/2006GL025734

  • Gricar J, Cufar K, Oven P, Schmitt U (2005) Differentiation of terminal latewood tracheids in silver fir during autumn. Ann Bot 95:959–965

    Article  PubMed  Google Scholar 

  • Kagawa A, Sugimoto A, Maximov T (2006) Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytol 171:793–804

    Article  CAS  PubMed  Google Scholar 

  • Kirdyanov A, Vaganov EA, Hughes MK (2007) Separating the climatic signal from tree-ring width and maximum latewood density records. Trees 21:37–44

    Article  Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, San Diego

    Google Scholar 

  • Luckman BH, Wilson RJS (2005) Summer temperatures in the Canadian Rockies during the last millennium: a revised record. Clim Dyn 24:131–144

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Moser L, Fonti P, Büntgen U, Franzen J, Esper J, Luterbacher J, Frank D (in press) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol

  • Richman MB (1986) Rotation of principal components. J Clim 6:293–335

    Article  Google Scholar 

  • Rolland C, Schueller F (1994) Relationships between mountain pine and climate in the French Pyrenees (Font-Romeu) studied using the radiodensitometrical method. Pirineos 144:55–70

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T (2006a) Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the alpine timberline. Iawa 27:383–394

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006b) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12

    Article  PubMed  Google Scholar 

  • Ruiz-Flaño P (1988) Dendroclimatic series of Pinus uncinata R. in the Central Pyrenees and in the Iberian System. A comparative study. Pirineos 132:49–64

    Google Scholar 

  • Schweingruber FH (1985) Dendro-ecological zones in the coniferous forest of Europe. Dendrochronologia 3:67–75

    Google Scholar 

  • Schweingruber FH, Fritts HC, Bräker OU, Drew LG, Schär E (1978) The X-ray technique as applied to dendrochronology. Tree-Ring Bull 38:61–91

    Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago, Chicago, Reprinted 1996. University of Arizona Press, Tucson, US

  • Szeicz JM, MacDonald GM (1995) Dendroclimatic Reconstruction of Summer Temperatures in Northwestern Canada Since A.D. 1638 based on Age Dependent Modelling. Q Res 44:257–266

    Article  Google Scholar 

  • Tardif J, Camarero JJ, Ribas M, Gutiérrez E (2003) Spatiotemporal variability in tree growth in the Central Pyrenees: climatic and site influences. Ecol Mono 73:241–257

    Article  Google Scholar 

  • van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834

    Article  Google Scholar 

  • Wang L, Payette S, Bégin Y (2001) 1300-year tree-ring width and density series based on living, dead and subfossil black spruce at tree-line in Subarctic Québec, Canada. Holocene 11:333–341

    Article  CAS  Google Scholar 

  • Wiegand T, Camarero JJ, Rüger N, Gutiérrez E (2006) Abrupt population changes in treeline ecotones along smooth gradients. J Ecol 94:880–892

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average of value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wilmking M, Juday G, Barber V, Zald H (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob Change Biol 10:1724–1736

    Article  Google Scholar 

  • Wilmking M, D’Arrigo R, Jacoby G, Juday G (2005) Divergent growth responses in circumpolar boreal forests. Geophys Res Lett 32:L15715. doi:10.1029/2005GL023331

    Article  Google Scholar 

  • Wilson RJS, D’Arrigo R, Buckley B, Büntgen U, Esper J, Frank D, Luckman B, Payette S, Vose R, Youngblut D (2007) A matter of divergence: Tracking recent warming at hemispheric scales using tree-ring data. J Geophys Res 11. doi:10.1029/2006JD008318

Download references

Acknowledgments

R. Wilson, A. Verstege, and F. Anders assisted fieldwork. F. Schweingruber and other ITRDB contributors provided tree-ring data. The NP d’Aigüestortes I Estany de Sant Maurici (namely J. V. Canillas) kindly provided sampling permission. Spatial field correlations were generated using the KNMI Climate Explorer (http://climexp.knmi.nl). Supported by the SNF project NCCR-Climate (Extract) and the EU project MILLENNIUM (#017008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Büntgen.

Additional information

Communicated by T. Buckley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büntgen, U., Frank, D., Trouet, V. et al. Diverse climate sensitivity of Mediterranean tree-ring width and density. Trees 24, 261–273 (2010). https://doi.org/10.1007/s00468-009-0396-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-009-0396-y

Keywords

Navigation