Skip to main content
Log in

BKT phase transition in a 2D system with long-range dipole-dipole interaction

  • Methods of Physical Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kosterlitz and D. Thouless, J. Phys. C 6, 12 (1973).

    Article  Google Scholar 

  2. A. Tsvelik, Quantum Field Theory in Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  3. V. Berezinskii, Sov. Phys. JETP 32, 493 (1971).

    MathSciNet  ADS  Google Scholar 

  4. Z. Hadzibabic et al., Nature 441, 1118 (2006).

    Article  ADS  Google Scholar 

  5. S. Maleev, Sov. Phys. JETP 43, 1240 (1976).

    ADS  Google Scholar 

  6. V. Pokrovsky and M. Feigelman, Sov. Phys. JETP 45, 291 (1977).

    ADS  Google Scholar 

  7. V. Bedanov, J. Phys. Condens. Matter 4, 75 (1992).

    Article  ADS  Google Scholar 

  8. P. Belobrov, R. Gekht, and V. Ignatchenko, Sov. Phys. JETP 57, 636 (1983).

    Google Scholar 

  9. J. Brankov and D. Danchev, Physica A 144, 128 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Maier and F. Schwabl, Phys. Rev. B 70, 134430 (2004).

    Article  ADS  Google Scholar 

  11. G. Zimmerman, A. Ibrahim, and F. Wu, Phys. Rev. B 37, 2059 (1988).

    Article  ADS  Google Scholar 

  12. K. De Bell, A. MacIsaac, and J. Whitehead, Rev. Mod. Phys. 72, 225 (2000).

    Article  ADS  Google Scholar 

  13. M. Feigelman, Sov. Phys. JETP 76, 784 (1979).

    Google Scholar 

  14. A. Giuliani, J. Lebowitz, and E. Lieb, Phys. Rev. B 76, 184426 (2007).

    Article  ADS  Google Scholar 

  15. A. Kashuba and V. L. Pokrovsky, Phys. Rev. Lett. 70, 3155 (1993).

    Article  ADS  Google Scholar 

  16. D. Feldman, Phys. Rev. Lett. 84, 4886 (2000).

    Article  ADS  Google Scholar 

  17. D. E. Feldman, Phys. Rev. B 56, 3167 (1997).

    Article  ADS  Google Scholar 

  18. P. Fedichev and L. Menshikov, arXiv:0808.0991 (2008).

  19. P. Fedichev and L. Menshikov, arXiv:0904.2176 (2009).

  20. P. Fedichev and L. Menshikov, cond-mat/0601129 (2006).

  21. N. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

    Article  ADS  Google Scholar 

  22. A. Oleinikova et al., J. Phys. Chem. B 109, 1988 (2005).

    Article  Google Scholar 

  23. A. Oleinikova et al., Phys. Rev. Lett. 95, 247802 (2005).

    Article  ADS  Google Scholar 

  24. N. Smolin et al., J. Phys. Chem. B 109, 10995 (2005).

    Article  Google Scholar 

  25. D. Sivukhin, General Physics Course, Vol. 3: Electricity (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  26. J. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

    MATH  Google Scholar 

  27. P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).

    Article  ADS  Google Scholar 

  28. J. Kosterlitz, J. Phys. C 7, 1046 (1974).

    Article  ADS  Google Scholar 

  29. R. A. Pelcovits and B. I. Halperin, Phys. Rev. B 19, 4614 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Fedichev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedichev, P.O., Men’shikov, L.I. BKT phase transition in a 2D system with long-range dipole-dipole interaction. Phys. Part. Nuclei Lett. 9, 71–75 (2012). https://doi.org/10.1134/S1547477112010098

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477112010098

Keywords

Navigation