Skip to main content
Log in

Quantum electrodynamics and experiment demonstrate the nonretarded nature of electrodynamical force fields

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

In quantum electrodynamics, the quantitatively most successful theory in the history of science, intercharge forces obeying the inverse square law are due to the exchange of space-like virtual photons. The fundamental quantum process underlying applications as diverse as the gyromagnetic ratio of the electron and electrical machinery is then Møller scattering eeee. Analysis of the quantum amplitude for this process shows that the corresponding intercharge force acts instantaneously. This prediction has been verified in a recent experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quantum Electrodynamics. Advanced Series on Directions in High Energy Physics, Vol. 7, Ed. by T. Kinoshita (World Sci., Singapore, 1990).

    Google Scholar 

  2. B. Odum et al., Phys. Rev. Lett. 97, 030801 (2006).

  3. R. S. Van Dyck, Jr., P. B. Schwindenberg, and H. G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987).

    Article  ADS  Google Scholar 

  4. G. Gabrielse et al., Phys. Rev. Lett. 97, 030802 (2006).

  5. V. Gerginov et al., Phys. Rev. A 73, 033504 (2006).

  6. R. P. Feynman, QED-The Strange Theory of Light and Matter (Princeton Univ. Press, Princeton, 1985), p. 85.

    Google Scholar 

  7. J. Schwinger, Phys. Rev. 73, 416 (1948).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. B. Schwarzschild, Phys. Today 59, 15 (2006).

    Article  Google Scholar 

  9. F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics (John Wiley and Sons, New York, 1984), p. 140.

    Google Scholar 

  10. A. Einstein, Ann. Phys. 17, 891 (1905); W. Perrett and G. B. Jeffery, The Principle of Relativity (Dover, New York, 1952), p. 37.

    Article  Google Scholar 

  11. J. H. Field, Physica Scr. 74, 702 (2006).

    Article  MathSciNet  Google Scholar 

  12. R. P. Feynman, Theory of Fundamental Processes (W.A. Benjamin, New York, 1962), Ch. 20.

    MATH  Google Scholar 

  13. R. P. Feynman, Phys. Rev. 76, 749 (1949).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. H. Hertz, On the Finite Velocity of Propagation of Electromagnetic Waves in Electric Waves (Dover, New York, 1962), p. 107.

    Google Scholar 

  15. A. L. Kholmetskii et al., J. Appl. Phys. 101, 023532 (2007).

  16. R. Smirnov-Rueda, Found. Phys. 35, 10 (2005).

    ADS  Google Scholar 

  17. J. Z. Buchwald, The Creation of Scientific Effects—Heinrich-Hertz and Electric Waves (University of Chicago Press, Chicago, 1994), p. 281, Sec. 16.5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Field.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, J.H. Quantum electrodynamics and experiment demonstrate the nonretarded nature of electrodynamical force fields. Phys. Part. Nuclei Lett. 6, 320–324 (2009). https://doi.org/10.1134/S1547477109040062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477109040062

PACS numbers

Navigation