Skip to main content
Log in

Neutron activation analysis in the life sciences

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

“At present physics has two very important tasks: care for people’s health and care for the environment. All over the world, physics is being reoriented to meet these objectives.”

Vladimir Trukhin, dean, Physics Faculty, Moscow State University

Moskovskii Komsomolets, April 20 (2005)

Abstract

Development of methods for instrumental neutron activation analysis (INAA) and their applications in the life sciences are reviewed. Emphasis is placed on epithermal activation with reactor neutrons (ENAA), and the advantages of this technique in analysis of environmental objects are shown. The results of applied INAA studies in the field of the life sciences carried out at the world’s leading nuclear centers are reported. Experience in employing a radioanalytical complex at the IBR-2 reactor (Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna) for such studies is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Vernadskii, Biogeochemical Studies of 1922–1932 (Akad. Nauk SSSR, Moscow, Leningrad, 1940) [in Russian].

    Google Scholar 

  2. N. N. Moiseev, V. V. Aleksandrova, and A. M. Tarko, Man and the Biosphere (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  3. A. A. Kist, Phenomenology of Biogeochemistry and Bioinorganic Chemistry (FAN, Tashkent, 1987), p. 236 [in Russian].

    Google Scholar 

  4. V. I. Vernadskii, Selected Works, in 5 vols. (Akad. Nauk SSSR, Moscow, 1954), vol. 5 [in Russian]; http://vernadsky.lib.ru.

    Google Scholar 

  5. IAEA, NAHRES-75, Technical Report (IAEA, Vienna, 2003), pp. 1–173.

    Google Scholar 

  6. Heavy Metals in the Environment, IX, Ed. by R. J. Allan and J. O. Nriagu (CEP Consultants, Edinburgh, 1993), Vol. 1, pp. 1–457; Vol. 2, pp. 1–585.

    Google Scholar 

  7. G. V. Iyengar and K. S. Subramanian, in Environmental Biomonitoring: Exposure Assessment and Specimen Banking, ACS Symposium, Series 654 (1997), pp. 1–18.

  8. B. Markert, J. Oehlmann, and M. Roth, in Environmental Biomonitoring: Exposure Assessment and Specimen Banking, ACS Symposium, Series 654 (1997), pp. 19–29.

  9. Principles of Analytic Chemistry, Ed. by Yu. A. Zolotov (Vysshaya Shkola, Moscow, 1999) [in Russian].

    Google Scholar 

  10. R. Dybczynski, J. Radioanal. Nucl. Chem. 60, 45–52 (1980).

    Google Scholar 

  11. A. V. Gorbunov, S. F. Gundorina, T. L. Onischenko, and M. V. Frontasyeva, J. Radioanal. Nucl. Chem. 129, 443–451 (1989).

    Google Scholar 

  12. R. M. Parr and E. Cortes-Toro, Biol. Trace Element Res. 26–27, 671–685 (1990).

    Google Scholar 

  13. J. W. Winchester et al., Nucl. Inst. Meth. Phys. Res. B 49, 351–369 (1990).

    ADS  Google Scholar 

  14. W. D. Ehmann and D. E. Vance, Radiochemistry and Nuclear Methods of Analysis (Wiley, New York, 1991).

    Google Scholar 

  15. T. Weizhi, J. Radioanal. Chem., Articles 151, 7–40 (1991).

    Google Scholar 

  16. E. Larsen et al., J. Trace Micro. Tech. 10, 43–52 (1992).

    Google Scholar 

  17. R. E. Jervis, in Nuclear Analytical Methods in the Life Sciences 1994, Ed. by J. Kucera, I. Obrusnik, and E. Sabbioni (Humana Press, New York, 1994), pp. 159–167.

    Google Scholar 

  18. R. Dams, in Nuclear Analytical Methods in the Life Sciences, 1994, Ed. by J. Kucera, I. Obrusnik, and E. Sabbioni (Humana Press, New York, 1994), pp. 539–548.

    Google Scholar 

  19. D. A. Becker, R. R. Greenberg, and S. F. Stone, J. Radioanal. Nucl. Chem. 160, 41–53 (1992).

    Google Scholar 

  20. S. Landsberger, D. Wu, S. J. Vermett, and W. Cizek, J. Radioanal. Nucl. Chem. 217, 117–121 (1997).

    Google Scholar 

  21. M. V. Frontasyeva and E. Steinnes, in Harmonization of Health Related Environmental Measurements Using Nuclear and Isotopic Techniques (IAEA, Vienna, 1997), pp. 301–311.

    Google Scholar 

  22. A. Gaudry, J.-L. Joron, S. Ayrault, X. Bertho, and D. Piccot, The Necessary Role of Neutron Activation Analysis as a Bulk Multielement Method with Respect to ICP-MS and ICP-OES for Environmental and Earth Sciences Studies (Lab. Pierre Sue, CEA Saclay, 2000).

    Google Scholar 

  23. I. J. Roelandts, Radioanal. Nucl. Chem. 243, 209–218 (2000).

    Google Scholar 

  24. J.-L. Joron, PhD Thesis (University of Paris VII, Paris, 2000).

  25. M. De Bruin, J. Radioanal. Nucl. Chem., Articles 160, 31–40 (1992).

    Google Scholar 

  26. E. I. Hamilton, The Chemical Elements and Man (C. Thomas, New York, 1979).

    Google Scholar 

  27. G. V. Iyengar, Nutr. Res. Suppl. 1(12), 5–11 (1985).

    Google Scholar 

  28. G. V. Iyengar, Elemental Analysis of Biological Systems, Vol. 1 (CRC, Boca Raton, 1989).

    Google Scholar 

  29. W. Mertz, Science 213, 1332–1338 (1981).

    ADS  Google Scholar 

  30. E. J. Underwood, Trace Elements in Human and Animal Nutrition, 4th ed. (Acad. Press, New York, London, 1997).

    Google Scholar 

  31. G. V. Iyengar, “Human Health and Trace Elements Research,” Sci. Total Environ. 19, 105–109 (1981).

    Google Scholar 

  32. G. C. Cotzias, in Proceedings of the 1st Annual Conference on Trace Elements in Environmental Health, 1, Ed. by D. D. Hemphill (University of Missouri, Columbia, 1967), pp. 5–12.

    Google Scholar 

  33. J. C. Smith, in Trace Elements in Human and Animal Nutrition, Ed. by W. Mertz (Acad. Press, New York, 1987), pp. 2–16.

    Google Scholar 

  34. W. Mertz, Trace Elements in Human and Animal Nutrition, Vols. 1, 2 (Academic, New York, 1977).

    Google Scholar 

  35. Principles of Ecotoxicology, Ed. by C. H. Walker, S. P. Hopkin, R. M. Silby, and D. B. Peakall (Taylor and Francis, London, 1997).

    Google Scholar 

  36. Spurenelement-Symposium: Arsen, Ed. by M. Anke, H.-J. Schneider, and C. Bruckner (East Germany, Jena, 1980).

    Google Scholar 

  37. Micronutrient Interactions: Vitamins, Minerals and Hazardous Elements, Ed. by O. A. Levander and L. Cheng (Ann. N.Y. Acad. Sci., New York, 1980).

    Google Scholar 

  38. National Academy of Sciences, Recommended Dietary Allowances (Nat. Acad. of Sci., Washington, DC, 1980).

  39. W. John, Sci. Total Environ. 27, 21–29 (1983).

    Google Scholar 

  40. R. Dybczynnski, K. Kulisa, et al., Biol. Trace Element Res. 26-27, 335–345 (1990).

    Google Scholar 

  41. I. Olmez and M. Hayes, Biol. Trace Element Res. 26–27, 355–361 (1990).

    Google Scholar 

  42. P. Bode, M. De Bruin, et al., Biol. Trace Element Res. 26–27, 377–383 (1990).

    Google Scholar 

  43. A. A. Kist, in Nuclear Analytical Methods in the Life Sciences 1994, Ed. by J. Kucera, I. Obrusnik, and E. Sabbioni (Humana Press, 1994), pp. 153–158.

  44. O. Wappelhorst, I. Kühn, J. Oehlmann, and B. Markert, Sci. Total Environ. 249, 243–256 (2000).

    Google Scholar 

  45. H. Th. Wolterbeek and T. G. Verburg, Sci. Total Environ. 319, 53–64 (2004).

    Google Scholar 

  46. L. Weltje et al., Sci. Total Environ. 286, 191–214 (2002).

    Google Scholar 

  47. L. Weltje, Bioavailability of Lantanides to Freshwater Organisms. Speciation, Accumulation and Toxicity, ISBN 90-407-2358-3 (Deft University, the Netherlands, 2003).

    Google Scholar 

  48. G. Hevesy and H. Levi, Kjl. Danske Videnskab. Selskab. Math-Fys. Medd. 14(5), 1–34 (1936).

    Google Scholar 

  49. G. V. Heversy and H. Levi, Kjl. Danske Videnskab. Selskab. Math-Fys. Medd. 15(11), 1–18 (1938).

    Google Scholar 

  50. G. T. Seaborg and I. J. Livingood, J. Am. Chem. Soc. 60, 1784–1795 (1938).

    Google Scholar 

  51. E. Steinnes, J. Radioanal. Nucl. Chem. 261. 701–708 (2004).

    Google Scholar 

  52. H. Brown and E. Goldberg, AECD 2296 (Sept. 10, 1948).

  53. V. P. Guinn, J. Radioanal. Nucl. Chem. 160, 9–19 (1992).

    Google Scholar 

  54. R. J. Jervis, J. Radioanal. Nucl. Chem. 160, 21–30 (1992).

    Google Scholar 

  55. G. J. Lutz, R. J. Boreni, R. S. Maddock, and W. W. Meinke, Activation Analysis: A Bibliography, NBS Technical Note 467 (Gaithesburg, MD, 1968).

  56. E. Steinnes, in Proceedings of the Intern. Conference on Hundred Years of X-Ray and Rod. RON-BEC 100, Feb. 21–24, 1996, India, pp. 157–167.

  57. R. Chauvin and P. Levegue, Int. J. Appl. Radiation Isotopes 1, 115–122 (1956).

    Google Scholar 

  58. R. H. Filby, Anal. Chim. Acta 31, 434–440 (1964).

    Google Scholar 

  59. S. Sterlinski, Anal. Chem. 42, 151 (1970).

    Google Scholar 

  60. H. P. Yule, in Activation Analysis in Geochemistry and Cosmochemistry (Universitetsforlaget, Oslo, 1971), pp. 145–166.

    Google Scholar 

  61. R. Bassini et al., J. Radioanal. Nucl. Chem. 217, 283–287 (1997).

    Google Scholar 

  62. M. F. Reis et al., in Nuclear Analytical Methods in Life Sciences. 1994, Ed. by J. Ku era, I. Obrusnik, and E. Sabbioni (Humana Press, 1994), pp. 585–596.

  63. A. Chatt and J. Holzbecher, Trans. Am. Nucl. Soc. 62, 220–222 (1990).

    Google Scholar 

  64. A. O. Brunfelt and I. Roelandts, Talanta 21, 513–521 (1974).

    Google Scholar 

  65. A. O. Brunfelt, I. Roelandts, and E. Steinnes, J. Radioanal. Chem. 38, 451–459 (1977).

    Google Scholar 

  66. E. Steinnes, J. Radioanal. Nucl. Chem. 243, 235–239 (2000).

    Google Scholar 

  67. A. O. Brunfelt and E. Steinnes, J. Radioanal. Nucl. Chem. 13, 11–21 (1973).

    Google Scholar 

  68. E. Steinnes, Anal. Chim. Acta 68, 25–31 (1974).

    Google Scholar 

  69. E. Steinnes, in Activation Analysis in Geochemistry and Cosmochemistry (Universitetsforlaget, Oslo, 1971), pp. 113–128.

  70. P. Bode and J. J. M. De Coeij, “Activation Analysis,” in Encyclopedia of Environmental Analysis and Remediation (1998), pp. 68–84.

  71. S. Landsberger, in Elemental Analysis of Airborne Particles, Vol. 1 (Oak Ridge, USA, 1999).

  72. G. Erdtmann and H. Petri, “Nuclear Activation Analysis: Fundamentals and Techniques,” in Treatise on Analytical Chemistry, Part 1, Vol. 14, Radioisotopic Methods of Analysis, Part. 1, Vol. 14, Sect. K (Wiley, New York, 1986).

    Google Scholar 

  73. J. Tolgyessy and E. H. Klehr, Nuclear Environmental Chemical Analysis (Wiley, New York, 1987).

    Google Scholar 

  74. S. J. Parry, “Activation Spectrometry in Chemical Analysis,” in Chemical Analysis: A Series, V. 119 (Wiley, New York, 1990).

    Google Scholar 

  75. Z. B. Alfassi, Activation Analysis, Vols. 1, 2 (CRS Press, Boca Raton, FL, 1989); Chemical Analysis by Nuclear Methods (Wiley, New York, 1994).

    Google Scholar 

  76. “Analysis by Nuclear Reaction and Activation. A Current Bibliography,” J. Radioanal. Nucl. Chem. 223, 251–261 (1997).

  77. S. Lansberger, S. Larson, and D. Wu, Anal. Chem. 65, 1506–1512 (1993).

    Google Scholar 

  78. T. I. Taylor, R. H. Anderson, and W. W. Havens, Science 114, 341–356 (1951).

    ADS  Google Scholar 

  79. D. Brune and K. Jirlow, Nukleonik 6, 242–251 (1964).

    Google Scholar 

  80. D. Brune, Anal. Chim. Acta 46, 17–21 (1969).

    Google Scholar 

  81. E. Steiness, Anal. Chim. Acta 247, 23–27 (1969).

    Google Scholar 

  82. A. O. Brunfelt and E. Steinnes, Anal. Chim. Acta 48, 13–24 (1969).

    Google Scholar 

  83. E. Steinnes and D. Brune, Talanta 16, 1326–1329 (1969).

    Google Scholar 

  84. E. Steinnes, Anal. Chim. Acta 57, 249–255 (1971).

    Google Scholar 

  85. A. O. Brunfelt and E. Steinnes, Talanta 18, 1197–1208 (1971).

    Google Scholar 

  86. E. Steinnes, Some Neutron Activation Methods for the Determination of Minor and Trace Elements in Rocks (Kjeller, Norway, 1972).

    Google Scholar 

  87. J. J. Rowe and E. Steinnes, Talanta 24, 433–439 (1977).

    Google Scholar 

  88. K. N. Mukhin, Experimental Nuclear Physics (Energoatomizdat, Moscow, 1984; Mir, Moscow, 1987).

    Google Scholar 

  89. N. A. Damburg and L. L. Pelekis, Izv. AN Latv. SSR, Ser. Fiz. Mat. 2, 3–9 (1971).

    Google Scholar 

  90. F. Rossitto, M. Terrani, and S. Terrani, Nucl. Instrum. Methods Phys. Res., Sect. A 103, 77–83 (1972).

    Google Scholar 

  91. E. S. Gladney and D. R. Perrin, Anal. Chem. 51, 2015–2018 (1979).

    Google Scholar 

  92. W. D. Ehmann, J. Brückner, and D. M. Kown, J. Radioanal. Nucl. Chem. 57, 491–502 (1980).

    Google Scholar 

  93. T. Sato and T. Kato, J. Radioanal. Nucl. Chem. 68, 175–180 (1982).

    Google Scholar 

  94. S. J. Parry, J. Radioanal. Nucl. Chem., Articles 81, 143–151 (1984).

    Google Scholar 

  95. R. K. Tokay, M. Skalberg, and S. Skrnemark, J. Radioanal. Nucl. Chem. Lett. 96, 265–272 (1985).

    Google Scholar 

  96. J. A. Davies, P. A. Hart, and A. C. Jefferies, J. Radioanal. Nucl. Chem., Articles 98, 275–287 (1986).

    Google Scholar 

  97. A. Alian and B. Sansoni, J. Radioanal. Nucl. Chem., Articles 89, 191–275 (1985).

    Google Scholar 

  98. D. C. Stuart and D. E. Ryan, Can. J. Chem. 59, 1470–1475 (1981).

    Google Scholar 

  99. T. G. Williamson, P. E. Beneche, B. Hostika, J. S. Breniser, and T. L. Nguyen, in Proceedings of the 7th Intern. Conference on Modern Trends in Activation Analysis, Copenhagen, 23–27 June, 1986, vol. 2 (Copenhagen, 1986), pp. 1291–1296.

  100. F. Chisela, D. Gawlik, and P. Brätter, J. Radioanal. Nucl. Chem., Articles 112, 293–308 (1987).

    Google Scholar 

  101. A. V. Rustambekov and N. V. Bagdavadze, USSR Inventor’s Certificate No. 795275.

  102. C. H. Westcott, AECL-1101 (1960).

  103. R. L. Macklin and H. S. Pomerance, in Proceedings of the Intern. Conference on Peaceful Use of Atomic Energy, Geneva, 1955, (U.N., New York, 1956), Vol. 5.

    Google Scholar 

  104. S. J. Parry, J. Radioanal. Nucl. Chem. 59, 423–427 (1980).

    Google Scholar 

  105. H. Bem and D. E. Ryan, Anal. Chim. Acta 63, 405–414 (1981).

    Google Scholar 

  106. J. Op De Beeck, J. Radioanal. Nucl. Chem., Articles 89, 169–190 (1985).

    Google Scholar 

  107. P. Schumann and D. Albert, Kernenergie 2, 88–95 (1965).

    Google Scholar 

  108. T. B. Ryves and E. B. Paul, J. Nucl. Energy 22, 759–775 (1968).

    ADS  Google Scholar 

  109. T. B. Ryves, Metrologia 5, 119–124 (1969).

    ADS  Google Scholar 

  110. R. E. H. Montoya, I. M. Cohen, P. Mendoza Hidalgo, B. Torres Chamorro, and P. Bebregal Salas, J. Radioanal. Nucl. Chem. 240, 475–479 (1999).

    Google Scholar 

  111. F. de Corte, K. Sordo-El Hammami, L. Moens, A. Simonits, A. de Wispelaere, and J. Hoste, J. Radioanal. Nucl. Chem. 62, 209–255 (1981).

    Google Scholar 

  112. F. de Corte, L. Moens, A. Simonits, K. Sordo-El Hammami, A. de Wispelaere, and J. Hoste, J. Radioanal. Chem. 72, 275–315 (1982).

    Google Scholar 

  113. E. K. Osae, B. J. B. Nyarko, Y. Serfor-Armah, and E. H. K. Akaho, J. Radioanal. Nucl. Chem. 238, 105–109 (1998).

    Google Scholar 

  114. E. Steinnes and J. Rowe, Anal. Chim. Acta 87, 451–462 (1976).

    Google Scholar 

  115. A. Simonits, F. De Corte, T. El Nimr, L. Moens, and J. Hoste, J. Radioanal. Nucl. Chem., Articles 81, 397–415 (1984).

    Google Scholar 

  116. J. V. Sandberg and P. D. Lund, J. Radioanal. Nucl. Chem. 76, 151–170 (1983).

    Google Scholar 

  117. T. Bereznai and T. D. MacMahon, J. Radioanal. Nucl. Chem. 45, 423–434 (1978).

    Google Scholar 

  118. I. M. Cohen, Radiochem. Radioanal. Lett. 15, 379–385 (1973).

    Google Scholar 

  119. H. Al-Shahristani and K. Abbass, J. Radioanal. Nucl. Chem. 27, 105–113 (1975).

    Google Scholar 

  120. Z. B. Alfassi and N. Lavi, Radiochem. Radioanal. Lett. 53, 173–182 (1982).

    Google Scholar 

  121. E. S. Gladney, W. A. Sedlacek, and W. W. Berg, J. Radioanal. Chem. 78, 213–225 (1983).

    Google Scholar 

  122. O. Johansen and E. Steinnes, Talanta 13, 1177–1181 (1966).

    Google Scholar 

  123. A. O. Brunfelt, O. Johansen, and E. Steinnes, Anal. Chim. Acta 37, 172–178 (1967).

    Google Scholar 

  124. O. Johansen and E. Steinnes, Geochim. Cosmochim. Acta 31, 1107–1109 (1967).

    ADS  Google Scholar 

  125. O. Johansen and E. Steinnes, Anal. Chem. Acta 40, 201–205 (1968).

    Google Scholar 

  126. O. V. Michelsen and E. Steinnes, Talanta 15, 574–578 (1968).

    Google Scholar 

  127. O. V. Michelsen and E. Steinnes, Talanta 16, 1436–1439 (1969).

    Google Scholar 

  128. O. Johansen and E. Steinnes, Analyst 94, 976–978 (1969).

    ADS  Google Scholar 

  129. O. Johansen and E. Steinnes, Talanta 17, 407–414 (1970).

    Google Scholar 

  130. E. Steinnes, Anal. Chim. Acta 57, 451–456 (1971).

    Google Scholar 

  131. E. Steinnes, J. Radioanal. Nucl. Chem. 10, 65–73 (1972).

    Google Scholar 

  132. E. Steinnes, Analyst 97, 241–244 (1972).

    ADS  Google Scholar 

  133. M. Mantel, J. Gilat, and S. Amiel, J. Radioanal. Nucl. Chem. 2, 395–407 (1969).

    Google Scholar 

  134. H. A. Das, J. G. van Raaphorst, and H. J. L. M. Umans, J. Radioanal. Nucl. Chem. 4, 21–33 (1970).

    Google Scholar 

  135. A. Simonits, F. De Corte, L. Moens, and J. Hoste, J. Radioanal. Nucl. Chem. 81, 369–395 (1984).

    Google Scholar 

  136. N. Lavi and Z. B. Alfassi, Analyst 109, 361–363 (1984).

    ADS  Google Scholar 

  137. R. Stella, N. Genova, and M. Di Casa, Radiochem. Radioanal. Lett. 30, 65–85 (1977).

    Google Scholar 

  138. D. Behne and F. Diel, Nuclear Activation Techniques in Life Sciences, IAEA-SM-157 (Intern. Atomic Energy Agency, Vienna, 1972).

    Google Scholar 

  139. D. Behne and H. Jurgensen, J. Radioanal. Nucl. Chem. 42, 447–453 (1978).

    Google Scholar 

  140. W. Leonhardt, Kernenergie 4, 395–406 (1961).

    Google Scholar 

  141. M. Sklavenits and D. Comar, Nuclear Activation Techniques in Life Sciences (Intern. Atomic Energy Agency, Vienna, 1963).

    Google Scholar 

  142. N. M. Spyrou, M. E. Fricker, R. Robertson, and W. B. Gilboy, Proceedings of the Symposium on Nuclear Techniques in Comparative Studies of Food and Environmental Contamination, IAEA-SM-175 (Intern. Atomic Energy Agency, Vienna, 1973).

    Google Scholar 

  143. D. Comar and C. Le Poec, Modern Trends in Activation Analysis (Texas A and M Univ., College Station, TX, USA, 1965).

    Google Scholar 

  144. R. Malvano, G. Burrigoli, and M. Scarlattini, Anal. Chim. Acta 61, 201–213 (1972).

    Google Scholar 

  145. H. L. Rook, J. Radioanal. Nucl. Chem. 39, 351–362 (1977).

    Google Scholar 

  146. L. Gvardjancic, L. Kosta, and M. Dermely, J. Radioanal. Nucl. Chem. 58, 359–369 (1980).

    Google Scholar 

  147. D. Comar, L’Analyse par Radioactivation et les Applications aux Sciences Biologiques (Univ. Paris, Paris, France, 1964).

    Google Scholar 

  148. R. Malvano and P. Grosso, J. Nucl. Biol. Med 12, 86–97 (1968).

    Google Scholar 

  149. D. Brune and P. O. Wester, Anal. Chim. Acta 52, 372–373 (1970).

    Google Scholar 

  150. M. S. Papaport, M. Mantel, and R. Nothman, Anal. Chem. 51, 1356–1365 (1979).

    Google Scholar 

  151. M. Barrette et al., Nucl. Instrum. Methods Phys. Res. 134, 189–196 (1976).

    ADS  Google Scholar 

  152. S. Yoshida and Y. Muramatsu, J. Radioanal. Nucl. Chem. 195, 297–303 (1995).

    Google Scholar 

  153. A. Fajgelj, M. Dermelj, A. R. Byrne, and P. J. Stegnar, Radioanal. Nucl. Chem. Lett. 28, 93–102 (1988).

    Google Scholar 

  154. D. R. Williams and J. S. Hislop, J. Radioanal. Nucl. Chem. 39, 359–373 (1977).

    Google Scholar 

  155. A. Chattopadhyay, K. M. Ellis, and K. Nimalasiri Desilva, Nuclear Activation Techniques in the Life Sciences 1978, IAEA-SM-227/113 (IAEA, Vienna, 1979).

    Google Scholar 

  156. N. V. Bagdavadze and L. M. Mosulishvili, J. Radioanal. Nucl. Chem. 24, 65–79 (1975).

    Google Scholar 

  157. J. J. Fardy and G. D. McOrist, J. Radioanal. Nucl. Chem. 84, 239–246 (1984).

    Google Scholar 

  158. D. C. Borg, R. E. Segel, P. Kienle, and L. Campbell, Int. J. Appl. Radiat. Isotopes 11, 10–29 (1961).

    Google Scholar 

  159. R. A. Duce, J. W. Winchester, and T. W. Van Nahl, J. Geophys. Res. 70, 1775–1799 (1965).

    ADS  Google Scholar 

  160. R. A. Duce, W. H. Zoller, and J. L. Moyers, J. Geophys. Res. 78, 7802–7811 (1973).

    ADS  Google Scholar 

  161. M. A. Kritz and J. Rancher, J. Geophys. Res. 85, 1633–1639 (1980).

    ADS  Google Scholar 

  162. J. L. Moyers and R. A. Duce, J. Geophys. Res. 77, 5229–5238 (1972).

    ADS  Google Scholar 

  163. K. A. Rahn, R. D. Borys, and R. A. Duce, Science 192, 549–550 (1976).

    ADS  Google Scholar 

  164. J. Rancher and M. A. Kritz, J. Geophys. Res. 85, 5581–5587 (1980).

    ADS  Google Scholar 

  165. J. Kuçera, Radiochem. Radioanal. Lett. 38, 229–246 (1979).

    Google Scholar 

  166. H. J. M. Bowen, J. Radioanal. Nucl. Chem. 19, 215–226 (1974).

    Google Scholar 

  167. A. Chattopadhyay and R. E. Jervis, Anal. Chem. 46, 1630–1639 (1974).

    Google Scholar 

  168. J. M. Ondov et al., Anal. Chem. 47, 1102–1109 (1975).

    Google Scholar 

  169. K. A. Nadkarni, Radiochem. Radioanal. Lett. 21, 161–172 (1975).

    Google Scholar 

  170. D. H. Klein et al., Environ. Sci. Technol. 9, 973–979 (1975).

    Google Scholar 

  171. R. R. Ruch et al., Trans. Am. Nucl. Soc. 21, 107–118 (1975).

    Google Scholar 

  172. H. T. Millard and V. E. Swanson, Trans. Am. Nucl. Soc. 21, 108–119 (1975).

    Google Scholar 

  173. S. J. Parry, J. Radioanal. Chem. 72, 195–207 (1982).

    Google Scholar 

  174. Z. Randa, Radiochem. Radioanal. Lett. 24(3), 157–165 (1976).

    Google Scholar 

  175. H. Nakahara et al., J. Radioanal Nucl. Chem. 72, 377–385 (1982).

    Google Scholar 

  176. S. J. Parry, J. Radioanal. Nucl. Chem. 248, 143–147 (2001).

    Google Scholar 

  177. H. G. Meyer, J. Radioanal. Nucl. Chem. 7, 67–79 (1971).

    Google Scholar 

  178. A. G. Hanna and H. Al-Shahristani, J. Radioanal. Nucl. Chem. 37, 581–589 (1977).

    Google Scholar 

  179. W. H. Zoller and G. E. Gordon, Anal. Chem. 42, 257–268 (1970).

    Google Scholar 

  180. R. Dams, J. A. Robbins, K. A. Rahn, and J. W. Winchester, Anal. Chem. 42, 861–880 (1970).

    Google Scholar 

  181. C. Block and R. Dams, Anal. Chim. Acta 68, 11–24 (1973).

    Google Scholar 

  182. K. A. Rahn and D. H. Lowenthal, Science 223, 132–139 (1984).

    ADS  Google Scholar 

  183. E. Steinnes, in Aspects of Nuclear Science, Proceedings of the Symposium on Aspects of Nuclear Science, 24–25 Oct., 1985 (Oslo, Norway, 1985), pp. 109–120.

    Google Scholar 

  184. A. A. Kist and E. M. Lobanov, in Activation Analysis of Biologic Objects (AN, Tashkent, 1967), pp. 130–159 [in Russian].

    Google Scholar 

  185. V. M. Nazarov, S. S. Pavlov, V. F. Peresedov, and M. V. Frontasyeva, “Channels of Irradiation and Pneumotransport Device on IBR-2,” Kratk. Soobshch. OIYaI No. 6-85 (Dubna, 1985)].

  186. V. M. Nazarov and M. V. Frontasyeva, in Proceedings of the 2nd All-Union Workshop on Nuclear Physical Analysis Methods in Environment Control (Gidrometeoizdat, Leningrad, 1985), pp. 156–161.

    Google Scholar 

  187. V. M. Nazarov, S. S. Pavlov, E. Herrera, and M. V. Frontasyeva, J. Radioanal. Nucl. Chem. Articles 167, 11–21 (1993).

    Google Scholar 

  188. V. F. Peresedov and A. D. Rogov, J. Radioanal. Nucl. Chem. 214, 277–283 (1996).

    Google Scholar 

  189. M. V. Frontasyeva and S. S. Pavlov, in Problems of Modern Physics, Ed. by A. N. Sisakyan and V. I. Trubetskov, JINR, Dubna, 1999, pp. 152–158 [in Russian].

    Google Scholar 

  190. T. M. Ostrovnaya et al., in Activation Analysis in Environment Protection, D-14-93-325, Dubna, 1993, pp. 319–326.

  191. A. V. Bogatskii et al., Biol. Membr. 1, 677–683 (1984).

    Google Scholar 

  192. T. E. Burkovskaya, V. M. Nazarov, M. V. Frontasyeva, and S. F. Gundorina, The Physiologist 35, 235–236 (1992).

    Google Scholar 

  193. M. V. Golovanov, N. A. Gundorin, S. F. Gundorina, B. Otgooloi, M. V. Frontasyeva, V. P. Chinaeva, and A. S. Shilovtseva, Med. Radiol., 1, 51–55 (1983).

    Google Scholar 

  194. R. D. Cooper and G. L. Brownell, Nucl. Instrum. Methods Phys. Res., Sect. A 51, 72–76 (1967).

    Google Scholar 

  195. S. Landsberger and S. Peshev, J. Radioanal. Nucl. Chem. 202, 201–224 (1996).

    Google Scholar 

  196. S. R. Bielgaski and S. Landsberger, J. Radioanal. Nucl. Chem. 192, 195–204 (1995).

    Google Scholar 

  197. S. Landsberger et al., J. Radioanal. Nucl. Chem. 269, 697–702 (2006).

    Google Scholar 

  198. L. Moens et al., J. Radioanal. Nucl. Chem. 82, 385–399 (1984).

    Google Scholar 

  199. E. Steinnes, J. Radioanal. Nucl. Chem. 278, 313–317 (2008).

    Google Scholar 

  200. Table of Isotopes, 7th ed., Ed. by C. M. Lederer and V. S. Shirley (Wiley, New York, 1978).

    Google Scholar 

  201. M. A. Bacci et al., J. Radioanal. Nucl. Chem. 271, 345–351 (2007).

    Google Scholar 

  202. V. T. Tustanovskii, Estimating Accuracy and Sensitivity in Activation Analysis (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  203. M. Blaauw, J. Radioanal. Nucl. Chem 191, 387–401 (1995).

    Google Scholar 

  204. F. De Corte et al., J. Radioanal. Nucl. Chem. 113, 145–161 (1987).

    Google Scholar 

  205. F. De Corte et al., J. Radioanal. Nucl. Chem. 169, 125 (1993).

    Google Scholar 

  206. F. De Corte, The k0-Standartization Method (Rijksuniversitet Gent, Gent, 1987).

    Google Scholar 

  207. K. Heydorn and E. Damsgaard, J. Radioanal. Nucl. Chem. 179, 87–91 (1994).

    Google Scholar 

  208. F. De Corte and A. De Wispelaere, J. Radioanal. Nucl. Chem. 259, 401–408 (2004).

    Google Scholar 

  209. J. Kuçera, P. Bode, and V. Stepanek, J. Radioanal. Nucl. Chem. 245, 115–122 (2000).

    Google Scholar 

  210. J. Kuçera, Presentation at IAEA TC Workshop in Dubna, 14–16 Nov., 2005.

  211. M. Bickel, Data Variation, Errors and Uncertainties, European Commission, JRC, IRMM.

  212. R. Zaghloul, E. Gantner, M. Mostafa, and H. J. Ache, J. Radioanal. Nucl. Chem. 109, 295–307 (1987).

    Google Scholar 

  213. A. Alian and B. Sansoni, J. Radioanal. Nucl. Chem. 59, 511–543 (1980).

    Google Scholar 

  214. Z. Prouza and M. Rakovi, in Isotopenpaxis, 3 (Helf, Jahrgand, 1967), vol. 10, pp. 389–394.

    Google Scholar 

  215. Guide to the Expression of Uncertainty in Measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML (1993).

  216. F. Girardi, G. Guzzi, and J. Pauly, Anal. Chem. 37, 1085–1098 (1965).

    Google Scholar 

  217. R. Fukai and W. W. Meike, Nature 184, 815–825 (1959).

    ADS  Google Scholar 

  218. D. Monnier, W. Haerdi, and J. Vogel, Helv. Chim. Acta 44, 897–903 (1961).

    Google Scholar 

  219. J. I. Kim and J. J. Born, J. Radioanal. Chem. 13, 427–442 (1973).

    Google Scholar 

  220. A. Alian, H. J. Born, and J. I. Kim, J. Radioanal. Nucl. Chem. 15, 535–546 (1973).

    Google Scholar 

  221. D. L. Massart and J. Hoste, Anal. Chim. Acta 43, 21–28 (1968).

    Google Scholar 

  222. H. Hoede and H. A. Das, J. Radioanal. Nucl. Chem. 62, 171–186 (1981).

    Google Scholar 

  223. S. Landsberger, J. Radioanal. Nucl. Chem. 179, 67–79 (1994).

    Google Scholar 

  224. P. A. Baedecker, J. Radioanal. Nucl. Chem. 39, 239–254 (1977).

    Google Scholar 

  225. A. R. Byrne and J. Kučera, in Harmonization of Health Related Environmental Measurements Using Nuclear and Isotopic Techniques, Proceedings of a Symposium, Hyderabad, India, 4–7 Nov. 1996, pp. 223–238.

  226. J. Kučera, Z. Randa, and L. Soukal, J. Radioanal. Nucl. Chem. 249, 61–65 (2001).

    Google Scholar 

  227. A. R. Byrne, J. Radioanal. Nucl. Chem. 345, 144–151 (1993).

    Google Scholar 

  228. P. Bode, in Harmonization of Health Related Environmental Measurements Using Nuclear and Isotopic Techniques, Proceedings of a Symposium, Hyderabad, India, 4–7 Nov. 1996, pp. 49–62.

  229. NBS Standard Reference Materials Catalog 1984–85, NBS Special Publication 260, Ed. by C. H. Hudson (US Government Printing Office, Washington, DC, 1984).

    Google Scholar 

  230. NIST Standard Reference Material Catalog, 1992–93, NIST Special Publication 260, Ed. by N. M. Trahey (US Government Printing Office, Washington, DC, 1992).

    Google Scholar 

  231. National Institute of Standard and Technology, Certificate of Analysis, Standard Reference Material 1515 (Apple Leaves, Gaithersburg, MD, Jan. 22, 1993).

  232. National Institute of Standard and Technology, Certificate of Analysis, Standard Reference Material 1547 (Peach Leaves, Gaithersburg, MD, Jan. 22, 1993).

  233. International Atomic Energy Agency, AQCS Programme 1992/93 (IAEA, Vienna, 1992).

  234. Survey of Reference Materials, IAEA-TEC-DOC-854, vol. 1 (Int. Atomic Energy Agency, Vienna, 1995); IAEA-TEC-DOC-880, vol. 2 (Int. Atomic Energy Agency, Vienna, 1996).

  235. E. Cortes Toro, R. M. Parr, and S. A. Clements, Biological and Environmental Reference Materials for Trace Elements, Nuclides and Organic Microcontaminants—A Survey, IAEA/RL/128 (Rev. 1) (IAEA, Vienna, 1990).

    Google Scholar 

  236. J. Kucera, G. V. Iyengar, Z. Randa, and R. M. Parr, J. Radioanal. Nucl. Chem. 259, 505–509 (2004).

    Google Scholar 

  237. A. R. Byrne, Analyst 117, 251–258 (1992).

    ADS  Google Scholar 

  238. R. M. Parr and R. Zeisler, in Nuclear Analytical Methods in the Life Sciences (Humana Press, 1994), pp. 651–661

  239. Jun Yoshinaga, Masatoshi Morita, and Kensaku Okamoto, Fresenius’ J. Anal. Chem. 357, 279–283 (1997).

    Google Scholar 

  240. V. M. Nazarov, V. P. Chinaeva, M. V. Frontasyeva, S. Parry, B. A. Bennet, Chen Sen Pal, and Li Chel Zu, J. Radioanal. Nucl. Chem., Articles 168, 163–168 (1993).

    Google Scholar 

  241. L. M. Mosulishvili et al., J. Radioanal. Nucl. Chem., Articles 83, 13–19 (1984).

    Google Scholar 

  242. D. A. Becker and E. Mackey, LA NIST, MD 20899-8395 (2004).

  243. R. R. Greenberg, J. Radioanal. Nucl. Chem. 278, 231–240 (2008).

    Google Scholar 

  244. Comité consultatif pour la quantité de matière (CCQM), 4é Session (Février 1998) (BIPM, Sévres, France, Feb. 1999), p. 71.

  245. T. J. Quinn, Metrologia 36, 65–71 (1999).

    ADS  Google Scholar 

  246. M. J. J. Koster-Ammerlaan and P. Bode, J. Radioanal. Nucl. Chem. 280, 445–449 (2009).

    Google Scholar 

  247. P. Bode, R. R. Greenberg, and E. A. De Nadai Fernandes, “Neutron Activation Analysis: A Primary (Ratio) Method to Determine SI-Traceable Values of Element Content in Complex Samples,” CHIMIA 63(10), 1–3 (2009).

    Google Scholar 

  248. P. Bode, J. Radioanal. Nucl. Chem. 245, 127–132 (2000).

    Google Scholar 

  249. G. Baumbach, Air Quality Control, Environmental Eng. Ser., Ed. by U. Förstner, R. J. Murphy, and W. H. Rulkens (Springer, Heidelberg, Berlin, 1996).

    Google Scholar 

  250. B. Markert and K. Friese, Trace Elements: Their Distribution and Effects in the Environment (Elsevier Sci., 2000).

  251. Sampling and Analytical Methodologies for Instrumental Neutron Activation Analysis of Airborne Particulate Matter, Training Course Series No. 4 (IAEA, Vienna, 1992).

  252. V. I. Kudryashov, L. S. Ivlev, S. F. Gundorina, V. M. Nazarov, and M. V. Frontasyeva, in Proceedings of the 7th All-Union Symposium on Actual Questions of Theory and Practice of Production and Application of FP Materials (Leningrad, 1987).

  253. V. I. Kudryashov, S. F. Gundorina, M. V. Frontasyeva, and Zh. Saidmuradov, “Using of X-Ray and Nuclear Physical Methods for Comparative Analysis of Ecologic Samples,” JINR Preprint R14-88-350 (Dubna, 1988).

  254. V. I. Kudryashov, S. F. Gundorina, and M. V. Frontasyeva, “Chemical Compound of Filters Used for Selection of Atmospheric Air Samples,” Preprint OIYaI R18-91-443 (Dubna, 1991).

  255. V. F. Peresedov, J. Radioanal. Nucl. Chem. 224, 21–25 (1997).

    Google Scholar 

  256. S. G. Pushkin and V. A. Mikhailov, Comparative Neutron Activation Analysis: Study of Atmospheric Aerosols (Science, Siberian Branch, Novosibirsk, 1989).

    Google Scholar 

  257. W. Maenhaut and W. H. Zoller, J. Radioanal. Nucl. Chem. 37, 637–645 (1977).

    Google Scholar 

  258. V. F. Peresedov et al., “Using of Neutron Activation Analyis on IBR-2 Reactor for Solving of Atmospheric Monitoring Problems,” Kratk. Soobshch. OIYaI No. 3 [95]-99, 43–54 (Dubna, 1999).

  259. M. V. Frontasyeva, A. B. Ramadan, and T. E. Galinskaya, in Weekly Cycles of Element Pollutants in Air of the Greater Cairo Area (Egypt) Studied by Neutron Activation Analysis, Proceedings of the Intern. Aerosol Conference, Moscow, Russia, 26–30 June, 2000, pp. 136–142.

  260. R. S. Cerveny and R. C. Balling, Jr., Nature 394, 561–563 (1998).

    ADS  Google Scholar 

  261. T. E. Graedel, L. A. Farrow, and T. A. Weber, Environ. Sci. Technol. 11, 690–694 (1977).

    Google Scholar 

  262. J. Meresova, M. Florek, K. Holy, M. Ješkovský, I. Sy’kora, M. V. Frontasyeva, S. S. Pavlov, and M. Bujdoš, Atmos. Environ. 42, 8079–8085 (2008).

    Google Scholar 

  263. K. A. Rahn, Sources of Trace Elements in Aerosols Approach to Clean Air, PhD Thesis (Univ. of Michigan, Ann Arbor, 1971).

    Google Scholar 

  264. J. Čurlík and P. Šefčík, Geochemical Atlas of the Slovak Republic. Soil (Ministry of Environment of Slovak Republic, 1999).

  265. K. A. Rahn, The Chemical Composition of the Atmospheric Aerosols, Technical Report (Graduate School of Oceanography, Univ. of Rhode Island, 1976).

  266. H. Th. Wolterbeek and M. C. Freitas, Sci. Total Environ. 232, 1056 (1999).

    Google Scholar 

  267. B. Markert et al., Int. J. Environ. Pollut. 32, 486–498 (2008).

    Google Scholar 

  268. P. Wiedeker, “Control of Hazardous Air Pollutants in OECD Countries,” in Proceedings of Intern. Conference on Managing Hazardous Air Pollutants (State of the Art, Washington, DC, 1991).

    Google Scholar 

  269. W. Nylander, “Les lichens du Jardin du Luxembourg,” Bull. de la Soc. Botanique de France 13, 364–372 (1886).

    Google Scholar 

  270. N. Van Breemen, “Deterioration of Forestland as a Result of Atmospheric Deposition in Europe: A Review,” in Sustained Productivity of Forest Soils, Proceedings of the 7th North American Forest Soils Conference, Ed. by S. P. Gessel, D. S. Lacate, G. F. Weetman, and R. F. Powers (Univ. of British Columbia, Faculty of Forest Publ., Vancouver, 1990), pp. 40–48.

    Google Scholar 

  271. D. L. Hawksworth, Int. J. Env. Studies 1, 281–296 (1971).

    Google Scholar 

  272. J. J. Barkman, Phytosociology and Ecology of Cryptogamic Epiphytes (Van Gorcum Publ., Assen, NL, 1958).

    Google Scholar 

  273. A. De Wit, Bibliotheca Lichenologica (Cramer, Vaduz, 1976), p. 5115.

    Google Scholar 

  274. J. E. Sloof, Environmental Lichenology: Biomonitoring Trace-Element Air Pollution (Techn. Univ. Deft, Netherlands, Delft, 1993).

    Google Scholar 

  275. E. Jansen and H. Van Dobben, Ambio 16, 211–213 (1987).

    Google Scholar 

  276. Plants and the Chemical Elements, Ed. by M. Fagaro (VCH, Weinheim, 1994).

    Google Scholar 

  277. B. Markert, “Instrumental Analysis of Plants,” in Plants as Biomonitors. Indicators for Heavy Metals in the Terrestrial Environment, Ed. by B. Markert (VCH, New York, 1993), pp. 65–104.

    Google Scholar 

  278. D. C. Adriano, Trace Elements in the Terrestrial Environment (Springer, New York, 1986).

    Google Scholar 

  279. H. J. M. Bowen, Environmental Chemistry of the Elements (Academic, London, 1979).

    Google Scholar 

  280. N. W. Lepp, Effect of Heavy Metal Pollution on Plants, Vol. 1: Effect of Trace Metals on Plant Function, Vol. 2: Metals in the Environment (Appl. Sci. Publ., London, 1981).

    Google Scholar 

  281. M. H. Martin and P. J. Conghtrey, Biological Monitoring of Heavy Metals Pollution. Land and Air (Applied Sci. Publ., London, 1982).

    Google Scholar 

  282. B. Wolterbeek, Env. Pollution 120, 11–21 (2002).

    Google Scholar 

  283. R. Witting, in Plants as Biomonitors, Ed. by B. Markert (VCH, Weinheim, 1993).

    Google Scholar 

  284. B. Markert et al., J. Radioanal. Nucl. Chem. 240, 425–429 (1999).

    Google Scholar 

  285. B. Markert, S. Fraenzle, and A. Fomin, in Elements and Their Compounds in the Environment, Ed. by E. Merian, M. Anke, M. Ihnat, and M. Stoeppler (Wiley-VCH, Weinheim, Tokyo, New York, 2004), pp. 235–254.

    Google Scholar 

  286. L. De Temmerman et al., “Biomonitoring of Air Pollutants with Plant-Considerations for the Future,” in Urban Air Pollution, Bioindication and Environmental Awarness, Ed. by A. Klumpp, W. Ansel, and G. Klumpp (Cuvillier, Göttingen, 2004), pp. 337–374.

    Google Scholar 

  287. Bioindicators and Biomonitors, Principles, Concepts and Applications, Ed. by B. Markert, A. Breure, and H. G. Zechmeister (Elsevier, Amsterdam, Tokyo, New York, 2003).

    Google Scholar 

  288. V. M. Nazarov, M. V. Frontasyeva, V. P. Peresedov, and V. V. Nikonov, J. Radioanal. Nucl. Chem. 192, 229–238 (1995).

    Google Scholar 

  289. V. M. Nazarov, M. V. Frontasyeva, V. P. Peresedov et al., “Epithermal Neutron Activation Analysis of Moss, Lichen and Pine Needles in Atmospheric Deposition Monitoring,” JINR Rapid Commun. No. 3[71]-95 (Dubna, 1995), pp. 25–34.

  290. M. V. Frontasyeva and E. Steinnes, J. Radioanal. Nucl. Chem. 265, 11–15 (2005).

    Google Scholar 

  291. G. Tyler, in Proceedings of the 2nd Intern. Clean Air Congress, Ed. by H. M. Englund and W. T. Berry (Academic Press, New York, 1970).

    Google Scholar 

  292. Å. Rühling and G. Tyler, Bot. Notiser 121, 321–342 (1968).

    Google Scholar 

  293. V. Puustjärvi, Arch. Soc. Zool. Bot. Fenn. Vanamo 9(Suppl.), 257–272 (1955).

    Google Scholar 

  294. Å. Rühling et al., Atmospheric Heavy Metal Deposition in Northern Europe 1990, NORD 1992:12 (Nordic Council of Ministers, 1992).

  295. E. Steinnes, in Control and Fate of Atmospheric Trace Metals, NATO ASI Series, vol. 268, Ed. by J. M. Pacyna and B. Ottar (Kluwer, Dordrecht, Holland, 1989), pp. 321–335.

    Google Scholar 

  296. Å. Rühling and G. Tyler, Appl. Ecol. 8, 497–507 (1971).

    Google Scholar 

  297. E. Steinnes, “Atmospheric Deposition of Trace Elements in Norway Studied by Means of Moss Analysis,” Kjeller Report No. KR-154 (Inst. Atomenergi, Kjeller, Norway, 1977).

    Google Scholar 

  298. H. Gydesen, K. Pilegaard, L. Rasmussen, and Å. Rühling, “Moss Analyses Used as a Means of Surveying the Atmospheric Heavy-Metal Deposition in Sweden, Denmark and Greenland in 1980,” Report SNV-PM 1670 (National Swedish Environment Protection Board, Solna, 1983).

    Google Scholar 

  299. H. B. Ross, Water, Air Soil Pollut. 50, 63–76 (1990).

    Google Scholar 

  300. E. Steinnes, “Use of Mosses in Heavy Metal Deposition Studies,” EMEP/CCC Report 3/85 (1985), pp. 161–170.

  301. E. Steinnes, J. P. Rambaek, and J. E. Hanssen, Chemosphere 25, 735–752 (1992).

    Google Scholar 

  302. Å. Rühling and G. Tyler, Br. Et Sch. Oikos 21, 92–97 (1970).

    Google Scholar 

  303. T. Berg and E. Steinnes, Env. Pollution 98, 61–71 (1997).

    Google Scholar 

  304. European Atlas: Atmospheric Heavy Metal Deposition in Europe 1995–1996, Ed. by A. Rueling and E. Steinnes, Nord 1998:15.

  305. European Atlas: Heavy Metals in European Mosses: 2000/2001 Survey, UNECE ICP Vegetation, Ed. by A. Buse, D. Norris, H. Harmens, P. Buker, T. Ashenden and G. Mills (Centre for Ecology and Hydrology, Univ. of Wales Bangor, UK, 2003).

    Google Scholar 

  306. European Atlas: Spatial and Temporal Trends in Heavy Metal Accumulation in Mosses in Europe (1990–2005), UNECE ICP Vegetation, Ed. by H. Harmens, D. Norris, and participants of the moss survey (Centre for Ecology & Hydrology, Univ. of Wales Bangor, UK, 2008).

    Google Scholar 

  307. A. Lucaciu, M. V. Frontasyeva, E. Steinnes, et al., J. Radioanal. Nucl. Chem. 240, 457–458 (1999).

    Google Scholar 

  308. E. V. Ermakova, M. V. Frontasyeva, and E. Steinnes, J. Radioanal. Nucl. Chem. 259, 51–58 (2004).

    Google Scholar 

  309. E. V. Ermakova, M. V. Frontasyeva, and E. Steinnes, Ecologic Chemistry (TEZA, St.-Petersburg, 2004) 13(3) 167–180 [in Russian].

    Google Scholar 

  310. E. V. Ermakova, M. V. Frontasyeva, S. S. Pavlov, E. A. Povtoreyko, E. Steinnes, and Ye. N. Cheremisina, J. Atmos. Chem. 49, 549–561 (2001).

    Google Scholar 

  311. K. N. Vergel’, M. V. Frontasyeva, I. Z. Kamanina, and S. S. Pavlov, Ekol. Urbaniz. Territorii, 3, 88–95 (2009).

    Google Scholar 

  312. M. V. Frontasyeva, E. Steinnes, S. M. Lyapunov, V. D. Cherchintsev, and L. I. Smirnov, in Ecology of Industrial Regions in the Beginning of 21st Century, Collected vol. (Magnitogorsk, 1999), pp. 7–13.

  313. M. V. Frontasyeva, E. Steinnes, S. M. Lyapunov, V. D. Cherchintsev, and L. I. Smirnov, J. Radioanal. Nucl. Chem. 245, 415–420 (2000).

    Google Scholar 

  314. L. I. Smirnov, M. V. Frontasyeva, and E. Steinnes, At. Energ. 97, 68–74 (2004).

    Google Scholar 

  315. Yu. S. Pankratova, N. I. Zel’nichenko, M. V. Frontasyeva, and S. S. Pavlov, Probl. Regional. Ekol., No. 1, 57–63 (2009).

  316. E. Steinnes, M. V. Frontasyeva, T. Eidkhammer-Sjebak, and P. Varskog, Ekolog. Khim. (St.-Petersburg) 13, 100–111 (2004).

    Google Scholar 

  317. K. Grodzinska, G. Szarek-Lukaszewska, M. V. Frontasyeva, S. S. Pavlov, and S. F. Gundorina, Polish J. Environ. Studies 14, 171–178 (2005).

    Google Scholar 

  318. K. Grodzinska and M. V. Frontasyeva et al., Env. Mon. Assess. 87, 255–270 (2003).

    Google Scholar 

  319. S. Korzekwa, Yu. S. Pankratova, and M. V. Frontasyeva, Ecol. Chem. Eng. 1, 43–51 (2007).

    Google Scholar 

  320. A. Klos, M. Rajfur, M. Waclawek, W. Waclawek, M. V. Frontasyeva, and Yu. S. Pankratova, Water, Air, Soil Pollut. 191, 345–352 (2008).

    Google Scholar 

  321. J. Stamenov, M. Iovchev, B. Vachev, E. Gueleva, L. Yurukova, A. Ganeva, M. Mitrikov, A. Antonov, A. Strentz, Z. Varbanov, I. Batov, K. Damov, E. Marinova, M. V. Frontasyeva, S. S. Pavlov, and L. P. Strelkova, “New Results from Air Pollution Studies in Bulgaria (Moss Survey 2000–2001),” JINR Preprint No. E14-2002-204 (Dubna, 2002).

  322. S. G. Marinova, M. V. Frontasyeva, L. D. Yurukova, L. P. Strelkova, and A. T. Marinov, in Proceedings of 6th Intern. Conference of the Balkan Physical Union, CP899, Ed. by S. A. Cetin and I. Hikmet, vol. 978 (Amer. Inst. of Physics, 2007), p. 739, http://proceedings.aip.org/proceedings/cpcr.jsp.

  323. S. Marinova, L. Yurukova, M. V. Frontasyeva, E. Steinnes, L. P. Strelkova, A. Marinov, and A. G. Karadzhinova, Ecol. Chem. Eng. 17, 37–52 (2010).

    Google Scholar 

  324. B. Mankovska, M. Florek, M. V. Frontasyeva et al., Ekologia (Bratislava) 22, 157–162 (2003).

    Google Scholar 

  325. M. Florek, B. Mankovska, J. Oszlanyi, M. V. Frontasyeva et al., Ekologia (Bratislava) 26, 99–114 (2007).

    Google Scholar 

  326. M. V. Frontasyeva, J. Meresova, K. Holy, and I. Sykora, Acta Phys. Univ. Comenianae L.LI(1–2), 155–161 (2010).

    Google Scholar 

  327. O. A. Culicov, M. V. Frontasyeva, E. Steinnes, Oi Okina, Zs Santa, and R. Todoran, Radioanal. Nucl. Chem. 254, 109–115 (2002).

    Google Scholar 

  328. A. Lucaciu, L. Timofte, O. Culicov, M. V. Frontasyeva, C. Oprea, S. Cucu-Man, R. Mocanu, and E. Steinnes, J. Atm. Chem. 49, 533–548 (2004).

    Google Scholar 

  329. S. Cucu-Man, R. Mocanu, O. Culicov, E. Steinnes, and M. V. Frontasyeva, Int. J. Environ. Anal. Chem. 84, 845–854 (2004).

    Google Scholar 

  330. O. B. Blum, O. Culicov, and M. V. Frontasyeva, in Urban Air Pollution, Bioindication and Environmental Awareness, Ed. by A. Klumpp, W. Ansel, and G. Klumpp (Cuvillier, Gottingen, 2004), pp. 249–255; in Proceedings of the EuroBionet 2002, Stuttgart, Germany, 2–6 Nov., 2002.

    Google Scholar 

  331. Yu. V. Alekseenok, M. V. Frontasyeva, and A. Zh. Korokin, in Proceedings of the 5th Intern. Summer School on Nuclear Physics Methods and Accelerators in Biology and Medicine, 6–15 July, 2009, Bratislava, Slovakia (Amer. Inst. Physics, 2009), P. 2.

  332. M. V. Frontasyeva, T. Ye. Galinskaya, M. Krmar, M. Matavuly, S. S. Pavlov, E. A. Povtoreyko, D. Radnovich, and E. Steinnes, J. Radioanal. Nucl. Chem. 259, 141–147 (2004).

    Google Scholar 

  333. M. Krmar, D. Radnovi, M. V. Frontasyeva, S. S. Pavlov, and Yu. S. Pankratova, in Advances in Environmental Modelling and Measurements, Ed. by Dt Mihailovi and B. Lali (Nova Sci., New York, 2009).

    Google Scholar 

  334. L. Barandovski, M. Cekova, M. V. Frontasyeva, S. S. Pavlov, T. Stafilov, E. Steinnes, and V. Urumov, Env. Monit. Assess. 138, 107–118 (2008).

    Google Scholar 

  335. Z. Spiric, M. V. Frontasyeva, E. Steinnes, and T. Stafilov, JINR Preprint E18-2009-149 (Dubna, 2009), J. Hazardous Mater. (2010, in press).

  336. Mahmut Coşkun, M. V. Frontasyeva, E. Steinnes, et al., Bull. Environ. Contamin. Toxicol. 74, 201–209 (2005).

    Google Scholar 

  337. H. Harmens et al., “Mosses as Biomonitors of Atmospheric Heavy Metal Deposition: Spatial (2005) and Temporal (1990–2005) Trends in Europe,” Env. Pollution (2010, in press).

  338. J. Shao, Z. Zhang, Z. Chai, X. Mao, Y. Lu, O. Stan, M. V. Frontasyeva, and P. Wu, J. Nucl. Radiochem (in Chinese) 24(6), 15–27 (2002).

    Google Scholar 

  339. Ys. Kang, Dw. Lee, Gn. Kim, M. V. Frontasyeva, S. S. Pavlov, and T. Ye. Galinskaya, in Proceedings of the Workshop on Nuclear Data Production and Evaluation, Kaeri/Gp-176/2001 (2001), pp. 141–148.

  340. N. Baljinnyam, Sh. Gerbish, G. Ganbold, S. Lodoysamba, and M. V. Frontasyeva, in Proceedings of the 2nd Intern. Conference on X-Ray Analysis (Ulaanbaatar, Mongolia, 2009), pp. 185–193.

    Google Scholar 

  341. Viet H. Nguyen, M. V. Frontasyeva, Thi Tm Trinh, D. Gilbert, and N. Bernard, Env. Sci. Poll. Res. (2009), http://doi:10.1007/S11356-009-0258-6.

  342. M. Aničić, M. Tasić, M. V. Frontasyeva, et al., Env. Pollution 157, 673–679 (2009).

    Google Scholar 

  343. M. Aničicć, M. V. Frontasyeva, M. Tomašević, and A. Popović, Env. Mon. Assess. 129, 207–219 (2007).

    Google Scholar 

  344. Z. Blaszczak, I. Ciszewska, and M. V. Frontasyeva, in Proceedings of the EXON (Dubna, 2004).

  345. O. Culicov, R. Mocanu, M. V. Frontasyeva, L. Yurukova, and E. Steinnes, Env. Mon. Assess. 108, 229–240 (2005).

    Google Scholar 

  346. O. Culicov and L. Yurukova, J. Atmos. Chem. 55, 1–12 (2006).

    Google Scholar 

  347. K. Saitanis, M. V. Frontasyeva, and E. Steinnes, in Proceedings of the BioMAP-5, 20–24 Sept. 2009, Buenos Aires, Argentina.

  348. M. Aničić, M. Tomašević, M. Tasić, S. Rajšić, A. Popović, M. V. Frontasyeva, S. Lierhagen, and E. Steinnes, J. Haz. Mater. 171, 182–190 (2009).

    Google Scholar 

  349. M. V. Frontasyeva and E. Steinnes, J. Radioanal. Nucl. Chem. 261, 101–106 (2004).

    Google Scholar 

  350. E. Steinnes and M. V. Frontasyeva, J. Radioanal. Nucl. Chem. 253, 173–177 (2002).

    Google Scholar 

  351. A. V. Gorbunov, S. M. Lyapunov, O. I. Okina, M. V. Frontasyeva, and S. F. Gundorina, Ekolog. Khim. (St.-Petersburg) 15, 47–59 (2006).

    Google Scholar 

  352. A. V. Gorbunov, M. V. Frontasyeva, A. A. Kistanov, S. M. Lyapunov, O. I. Okina, and A. B. Ramadan, J. Environ. Sci. Health, Part B: Pesticides, Food Contaminants, Agricultural Wastes 38, 181–192 (2003).

    Google Scholar 

  353. S. V. Gorelova, G. V. Pestsov, M. S. Gins, P. F. Kononkov, M. V. Frontasyeva, et al., Agrokhimiya, No. 9, 76–87 (2009).

  354. A. V. Gorbunov, S. M. Lyapunov, O. I. Okina, M. V. Frontasyeva, and S. S. Pavlov, “Assessment of Factors Influencing Trace Element Content of Mushrooms from European Part of Russia,” Preprint OIYaI D-18-2009-17 (Dubna, 2009) [in Russian].

  355. A. V. Gorbunov, S. F. Gundorina, T. L. Onischenko, and M. V. J. Frontasyeva, Radioanal. Nucl. Chem. 129, 443–451 (1989).

    Google Scholar 

  356. A. A. Volokh, A. V. Gorbunov, S. F. Gundorina, B. A. Revich, M. V. Frontasyeva, and Chen Sen Pal, Sci. Total Environment 95, 141–148 (1990).

    Google Scholar 

  357. M. V. Frontasyeva, A. V. Gorbunov, and S. M. Lyapunov, in Proceedings of the 1st RCM, of the IAEA CRP on Assessment of Levels and Health-Effects of Airborne Particulate Matter in Mining, Metal Working Industries Using Nuclear and Related Analytical Techniques, NAHRES-42, 20–24 Oct. 1997 (Vienna, 1998), pp. 143–152.

  358. A. V. Gorbunov, V. V. Golubchikov, S. M. Lyapunov, T. L. Onishchenko, O. I. Okina, A. A. Kistanov, M. V. Frontasyeva, and L. V. Rakcheeva, Ekolog. Khim. (St. Petersburg) 10, 255–268 (2001).

    Google Scholar 

  359. A. Pantelica, C. Oprea, M. V. Frontasyeva, et al., J. Radioanal. Nucl. Chem. 262, 111–118 (2004).

    Google Scholar 

  360. A. V. Gorbunov, S. M. Lyapunov, O. I. Okina, and M. V. Frontasyeva, Inzh. Fiz., No. 5 (6), 113–124 (2007).

  361. M. Biziuk, A. Astel, E. Rainska, Z. Sukowska, P. Bode, and M. Frontasyeva, “Nuclear Activation Methods in the Estimation of Environmental Pollution and the Assessment of the Industrial Plant Impact on the Citizens of Gdansk (Poland),” LANL: Accepted by Analytical Letters, Manuscript ID:452330 (Taylor and Francis, 2010).

  362. E. Rainska, M. Biziuk, C. Sarbu, K. Szczepaniak, M. F. Frontasyeva, O. Culicov, P. Bode, and A. Astel, J. Environ. Sci. Health, Part A 40, 2137–2152 (2005).

    Google Scholar 

  363. K. Szczepaniak, C. Sarbu, A. Astel, E. Rainska, M. Buziuk, O. Culikov, M. V. Frontasyeva, and P. Bode, Central Eur. J. Chem. 4, 29–55 (2006).

    Google Scholar 

  364. V. V. Nikonov, N. V. Lukina, V. S. Besel’, E. A. Bel’skii, A. Yu. Bespalova, A. V. Golovchenko, T. G. Dobrovol’skaya, V. V. Dobrovol’skii, N. V. Zukert, L. G. Isaeva, A. G. Lapenis, I. A. Maksimova, O. E. Marfenina, A. N. Panikova, D. L. Pinskii, L. M. Polyanskaya, E. Steinnes, A. I. Utkin, M. V. Frontasyeva, V. V. Tsibul’skii, I. Yu. Chernov, and M. A. Yatsenko-Khmelevskaya, Trace Elements in Boreal Forests, Ed. by A. S. Isaev (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  365. F. I. Tyutyunova, M. V. Frontasyeva, E. M. Grachevskaya, and I. G. Shchipakina, Antropogeneous Scattering of Heavy Metals in Boreal Zone of European Russia. Scientific Aspects of Ecological Problems of Russia (Nauka, Moscow, 2001), pp. 307–314 [in Russian].

    Google Scholar 

  366. V. V. Nikonov, N. V. Lukina, and M. V. Frontasyeva, Pochvovedenie 12, 1492–1501 (1999).

    Google Scholar 

  367. V. V. Nikonov, N. V. Lukina, and M. V. Frontasyeva, Pochvovedenie, No. 3, 370–382 (1999).

  368. T. Stafilov, R. Šajn, Z. Pančevski, B. Boev, M. V. Frontasyeva, and L. P. Strelkova, “Heavy Metal Contamination of Topsoils around a Lead and Zinc Smelter in the Republic of Macedonia,” J. Haz. Mater. (2009), http://doi:10.1016/j.jhazmat.2009.10.094.

  369. T. Stafilov, R. Šajn, Z. Pančevski, B. Boev, M. V. Frontasyeva, and L. P. Strelkova, Geochemical Atlas of Veles and Environs (2nd Aug., Stip, Macedonia, 2008).

  370. I. I. Sudnitsyn, I. I. Krupenina, M. V. Frontasyeva, S. S. Pavlov, and S. F. Gundorina, Agrokhimiya, No. 7, 66–70 (2009).

  371. S. V. Morzhukhina, V. V. Uspenskaya, L. P. Chermnikh, I. L. Khodakovsky, M. V. Frontasyeva, and S. F. Gundorina, in Proceedings of NATO ARW on Man-Made Radionuclides and Heavy Metals in the Environment, Ed. by M. V. Frontasyeva, P. Vater, and V. P. Perelygin, NATO Science Series, IV: Earth and Environmental Sciences, vol. 5 (Kluwer Acad., 2001), pp. 195–200.

  372. L. C. Dinescu, O. A. Culicov, O. G. Duliu, M. V. Frontasyeva, and C. D. Oprea, J. Trace Microprobe Tech. 21, 665–676 (2003).

    Google Scholar 

  373. C. Cristache, K. Gmeling, O. Culicov, M. V. Frontasyeva, M. Toma, and O. G. Duliu, J. Radioanal. Nucl. Chem. 279, 7–12 (2009).

    Google Scholar 

  374. O. G. Duliu, C. Cristache, G. Oaie, O. Culicov, M. V. Frontasyeva, and M. Toma, Marine Pollut. Bull. 58, 827–831 (2009).

    Google Scholar 

  375. O. G. Duliu, C. I. Cristache, O. A. Culicov, M. V. Frontasyeva, S. A. Szobotca, and M. Toma, Appl. Radiat. Isotopes 67, 939–943 (2009).

    Google Scholar 

  376. M. V. Frontasyeva, “Using of Nuclear Physics Methods in Pollutant Analysis on Aqueous Objects (on the Example of River Ob’ Basin),” in Monitoring of Aqueous Objects, Proceedings of the 1st Regional School-Seminar, Dubna, Aug. 1996, Ed. by G. M. Barenboim and E. V. Venitsianov (GTsVM, Moscow, 1998), pp. 122–135.

    Google Scholar 

  377. F. I. Tyutyunova, M. V. Frontasyeva, and I. G. Shchipakina, Vodn. Resur. 33, 484–491 (2006) [Water Resource 33, 446 (2006)].

    Google Scholar 

  378. D. F. Pavlov, M. V. Frontasyeva, S. S. Pavlov, and Yu. S. Pankratova, Ovidius Univ. Ann. Chem. 16, 72–75 (2005).

    Google Scholar 

  379. L. Wiesner, B. Gunter, and C. Fenske, Hydrobiologia 443, 137–145 (2001).

    Google Scholar 

  380. D. Fox, “Health Benefits of Spirulina,” in Spirulina, Algae of Life, Bullet. No. 12 (Inst. of Oceanography, Monaco, 1993).

    Google Scholar 

  381. A. Belay, Y. Ota, K. Miykawa, and H. Shimamatsu, J. Appl. Phycol., No. 5, 235–241 (1993).

  382. Spirulina Platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology, Ed. by A. Vonshak (Taylor and Fransis, London, 1997).

    Google Scholar 

  383. J. F. Atkins and R. F. Gestland, Nature 407, 463–464 (2000).

    Google Scholar 

  384. C. Chen, P. Zhang, X. Hu, and Z. Che, Biochim. Biophys. Acta 1427, 205–215 (1999).

    Google Scholar 

  385. L. C. Clark, K. P. Cantor, and W. H. Allaway, Arch. Environ. Health 46, 37–42 (1991).

    Google Scholar 

  386. C. Chen, B. Chen, J. Zhou, and H. Xu, Trace Elements Electrolyte 14, 197–201 (1997).

    Google Scholar 

  387. L. C. Clark, G. F. Combs, B. W. Turnbull et al., J. Am. Med. Assoc. 276, 1957–1963 (1996).

    Google Scholar 

  388. L. A. Daniel, Biol. Trace Elem. Res. 94, 185–199 (1996).

    Google Scholar 

  389. A. I. Voinar, Trace Elements in Nature (Moscow, 1962), pp. 74–92 [in Russian].

  390. L. M. Mosulishvili, N. I. Shoniya, N. M. Katamadze, and E. I. Ginturi, J. Anal. Chem. 49, 135–139 (1994).

    Google Scholar 

  391. L. M. Mosulishvili, N. I. Shoniya, N. M. Katamadze, and E. I. Ginturi, Med. Radiol., No. 1, 42–45 (1990).

  392. R. A. Anderson, in Essential and Toxic Trace Elements in Human Health and Diseases, Ed. by A. S. Prasad (Alan R. Liss, New York, 1988), pp. 189–197.

    Google Scholar 

  393. W. Mertz et al., in Chromium in Nutrition and Metabolism, Ed. by D. Shapcott and Y. Hubert (Elsevier, North Holland Biomedical Press, Amsterdam, 1997), pp. 1–14.

    Google Scholar 

  394. H. A. Schrolder, D. V. Frost, and I. I. Balassa, J. Chron. Dis. 23, 227–243 (1970).

    Google Scholar 

  395. R. M. Stern, in Biological and Environmental Aspects of Chromium, Ed. by Langard (Elsevier, Amsterdam, 1982), pp. 5–47.

    Google Scholar 

  396. M. I. Mikheev, in Hazardous Chemical Substances. Inorganic Compounds of Elements of V-VIII Groups (Chimia, Leningrad, 1989), pp. 297–323 [in Russian].

    Google Scholar 

  397. L. M. Mosulishvili, N. Ya. Tsibakhashvili, E. I. Kirkesali, L. A. Tsertsvadze, M. V. Frontasyeva, and S. S. Pavlov, Bull. Georgian Nat. Acad. Sci. 2(3), 88–95 (2008).

    Google Scholar 

  398. M. V. Frontasyeva, N. Tsibakhashvili, L. Mosulishvili, and E. I. Kirkesali, “Algae for the Production of Pharmaceuticals,” in Bioprocesses Sciences and Technology, Ed. by F. Columbus (Nuovo Publ., New York, 2010).

    Google Scholar 

  399. L. M. Mosilishvili, Ye. I. Kirkesali, A. I. Belokobylsky, A. I. Khizanishvili, M. V. Frontasyeva, S. F. Gundorina, and C. D. Oprea, J. Radioanal. Nucl. Chem. 252, 15–20 (2002).

    Google Scholar 

  400. L. M. Mosulishvili, E. I. Kirkesali, A. I. Belokobylsky, A. I. Khizanishvili, M. V. Frontasyeva, S. S. Pavlov, and S. F. Gundorina, “Investigation of the Possibility of Developing Iodine-Containing Treatment and Prophylactic Pharmaceuticals Based on Blue-Green Algae Spirulina Platensis Using Neutron Activation Analysis,” Pis’ma Fiz. Elem. Chastits At. Yadra, No. 4, 110–117 (2001).

  401. L. M. Mosilishvili, Ye. I. Kirkesali, A. I. Belokobylsky, A. I. Khizanishvili, M. V. Frontasyeva, S. S. Pavlov, and S. F. Gundorina, J. Pharm. Biomed. Anal. 30, 87–97 (2002).

    Google Scholar 

  402. M. V. Frontasyeva, S. S. Pavlov, L. M. Mosulishvili, E. I. Kirkesali, E. Ginturi, and N. Kuchava, Ecol. Chem. Eng. 16(S3), 277–285 (2009).

    Google Scholar 

  403. M. V. Frontasyeva, S. S. Pavlov, N. G. Aksenova, L. M. Mosulishvili, A. I. Belokobylsky, E. I. Kirkesali, E. N. Ginturi, and N. E. Kuchava, Zh. Anal. Khim. 64, 776–789 (2009) [J. Anal. Chem. 64, 746 (2009)].

    Google Scholar 

  404. L. M. Mosulishvili, A. I. Belokobylsky, E. I. Kirkesali, M. V. Frontasyeva, S. S. Pavlov, and N. G. Aksenova, Neutron Res. 15, 49–54 (2007).

    Google Scholar 

  405. L. M. Mosulishvili, A. I. Belokobylsky, A. I. Khizanishvili, E. I. Kirkesali, M. V. Frontasyeva, and S. S. Pavlov, Method of development of selenium-containing spirulina biomass medication, RF Patent No. 2001106901/14(007221) (2003).

  406. L. M. Mosulishvili, A. I. Belokobylsky, E. I. Kirkesali, M. V. Frontasyeva, and S. S. Pavlov, Method of development of cromium-containing spirulina biomass medication, RF Patent No. 2002115679/15(016488) (2003).

  407. L. M. Mosulishvili, A. I. Belokobylsky, A. I. Khizanishvili, E. I. Kirkesali, M. V. Frontasyeva, and N. G. Aksenova, Ekolog. Khim. (St-Peretburg) 14, 104–109 (2005).

    Google Scholar 

  408. M. V. Frontasyeva, E. I. Kirkesali, N. G. Aksenova, L. M. Mosulishvili, A. I. Belokobylsky, and A. I. Khizanishvili, J. Neutron Res. 14, 131–138 (2006).

    Google Scholar 

  409. N. Ya. Tsibakhashvili, M. V. Frontasyeva, et al., Anal. Chem. 78, 6285–6290 (2006).

    Google Scholar 

  410. N. Tsibakhashvili, L. Mosulishvili, T. Kalabegishvili, E. Kirkesali, I. Murusidze, S. Kerkenjia, M. Frontasyeva, and H.-Y. Holman, J. Radioanal. Nucl. Chem. 278, 357–370 (2008).

    Google Scholar 

  411. N. Ya. Tsibakhashvili, L. Mosulishvili, E. Kirkesali, T. Kalabegishvili, S. Kerkenjia, M. V. Frontasyeva, and I. Zinicovscaia, Chem. (J. Moldova) Gen., Industr. Ecol. Chem. 4(2), 8–13 (2009).

    Google Scholar 

  412. N. Tsibakhahsvili, L. Mosulishvili, E. Kirkesali, S. Kerkenjia, M. V. Frontasyeva, S. S. Pavlov, I. I. Zinicovscaia, P. Bode, and Th. G. van Meerten, “NAA for Studying Detoxification of Cr and Hg by Arthrobacter Globiformis,” in Proceedings of Intern. Conference on Radiochemistry, JRNC, Marianske Lazne, Czech Rep., 18–21 Apr., 2010.

  413. L. A. Tsertsvadze, T. D. Dzadzamia, Sh. G. Petreashvili, G. G. Shutkerashvili, E. I. Kirkesali, M. V. Frontasyeva, S. S. Pavlov, and S. F. Gundorina, in Radionuclides and Heavy Metals in Environment, Ed. by M. V. Frontasyeva, P. Vater, and V. P. Perelygin, NATO Science Series, Ser. IV: Earth and Environmental Sciences, Vol. 5, (2001), pp. 245–257.

  414. L. A. Tsertsvadze, T. D. Dzadzamia, G. I. Buachidze, Sh. G. Petreashvili, D. G. Shutkerashvili, E. I. Kirkesali, M. V. Frontasyeva, S. S. Pavlov, and S. F. Gundorina, in Sergeev’ Reading, No. 6, Engineering Geology and Protection of Geologic Media. Modern State and Developments Prospects, Proceedings of the Annual Session of Sci. Council of RAS on Problems of Geoecology, Engineering Geology and Hydrogeology, 23–24 Mar., 2004 (GEOS, Moscow, 2004), pp. 308–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Frontasyeva.

Additional information

Original Russian Text © M.V. Frontasyeva, 2011, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2011, Vol. 42, No. 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frontasyeva, M.V. Neutron activation analysis in the life sciences. Phys. Part. Nuclei 42, 332–378 (2011). https://doi.org/10.1134/S1063779611020043

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779611020043

Keywords

Navigation