Skip to main content
Log in

Ultracold collisions in the system of three helium atoms

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The Faddeev differential equations for a system of three particles with a hard-core interaction are described. Numerical results on the binding energies of the 4He3 and 3He4He2 trimers and on ultracold collisions of 3,4He atoms with 4He2 dimers obtained with the help of those differential equations are reviewed. The results obtained for the hard-core model using the Faddeev equations are compared with analogous results obtained by alternative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Grebenev, J. P. Toennies, and A. F. Vilesov, “Superfluidity within a Small Helium-4 Cluster: The Microscopic Andronikashvili Experiment,” Science 279, 2083–2086 (1998).

    Article  ADS  Google Scholar 

  2. K. K. Lehman and G. Scoles, “The Ultimate Spectroscopic Matrix,” Science 279, 2065–2066 (1998).

    Article  Google Scholar 

  3. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein Condensation in Trapped Gases,” Rev. Mod. Phys. 71, 463–512 (1999).

    Article  ADS  Google Scholar 

  4. T. Köhler, T. Gasenzer, P. S. Julienne, and K. Burnett, “Long-Range Nature of Feshbach Molecules in Bose-Einstein Condensates,” Phys. Rev. Lett. 91, 230 401 (2003).

    Google Scholar 

  5. J. A. Northby, “Experimental Studies of Helium Droplets,” J. Chem. Phys. 115, 10 065–10 077 (2001).

    Article  Google Scholar 

  6. M. Lewerenz, “Structure and Energetics of Small Helium Clusters: Quantum Simulations Using a Recent Perturbational Pair Potential,” J. Chem. Phys. 106, 4596–4603 (1997).

    Article  ADS  Google Scholar 

  7. P. Debye, “Van der Waals’ Force of Cohesion,” Phys. Zeits. 21, 178–187 (1920) [in German].

    Google Scholar 

  8. W. H. Keesom, “Van der Waals’ Force of Cohesion,” Phys. Zeits. 22, 129–141 (1921) [in German].

    Google Scholar 

  9. W. H. Keesom, “Calculations of Molecular Quadrupole Moment from Equation of State,” Phys. Zeits. 23, 225–228 (1922) [in German].

    Google Scholar 

  10. J. E. Jones, “On the Determination of Molecular Fields. II. From the Equation of State of a Gas,” Proc. Royal Soc. Ser. A 106/738, 463–477 (1924).

    Article  ADS  Google Scholar 

  11. S. G. Brush, “Interatomic Forces and Gas Theory from Newton to Lennard-Jones,” Arch. Rational Mech. Anal. 39, 1–19 (1970).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. L. Pedemonte and G. Bracco, “Study of He Flow Properties to Test He Dimer Potentials,” J. Chem. Phys. 119, 1433–1441 (2003).

    Article  ADS  Google Scholar 

  13. J. O. Hirschfelder and W. J. Meath, “The Nature of Intermolecular Forces,” in Intermolecular Forces, Ed. by J. O. Hirschfelder (Intersci. Publ., New York, 1967), pp. 3–16.

    Google Scholar 

  14. M. Born and R. Oppenheimer, “To the Quantum Theory of Molecules,” Ann. Phys. 84, 457–484 (1927) [in German].

    Article  Google Scholar 

  15. C. Eckart, “The Kinetic Energy of Polyatomic Molecules,” Phys. Rev. 46, 383–387 (1935).

    Article  ADS  Google Scholar 

  16. T. Korona, H. L. Williams, R. Bokowski, B. Jeziorsky, and K. Szalewicz, “Helium Dimer Potential from Symmetry-Adapted Perturbation Theory Calculations Using Large Gaussian Geminal and Orbital Basis Sets,” J. Chem. Phys. 106, 5109–5122 (1997).

    Article  ADS  Google Scholar 

  17. K. T. Tang, J. P. Toennies, and C. L. Yiu, “The Generalized Heitler-London Theory for Interatomic Interaction and Surface Integral Method for Exchange Energy,” Int. Reviews Phys. Chem. 17, 363–406 (1998).

    Article  Google Scholar 

  18. S. C. Wang, “Interference of Two Water Atoms,” Phys. Zeits. 28, 663–666 (1927) [in German].

    Google Scholar 

  19. J. C. Slater, “The Normal State of Helium,” Phys. Rev. 32, 349–360 (1928).

    Article  ADS  Google Scholar 

  20. F. London, “To the Theory and Systematization of Molecular Forces,” Z. Phys. 63, 245–279 (1930) [in German].

    Article  ADS  Google Scholar 

  21. R. Eisenschnitz and F. London, “Uber Das Verhaltnis Der Van Der Waalsschen Krafte Zu Den Homoopolaren Bindungskraften,” Z. Phys. 60, 491–527 (1930).

    Article  ADS  Google Scholar 

  22. J. C. Slater and J. G. Kirkwood, “The Van Der Waals Forces in Gases,” Phys. Rev. 37, 682–697 (1931).

    Article  MATH  ADS  Google Scholar 

  23. J. de Boer and A. Michels, “Contribution to the Quantum-Mechanical Theory of the Equation of State and the Law of Corresponding States. Determination of the Law of Force of Helium,” Physica A 5, 945–957 (1938).

    MATH  Google Scholar 

  24. J. B. Anderson, C. A. Traynor, and B. M. Boghosian, “An Exact Quantum Monte Carlo Calculation of the Helium-Helium Intermolecular Potential,” J. Chem. Phys. 99, 345–351 (1993).

    Article  ADS  Google Scholar 

  25. B. Liu and A. D. McLean, “The Interacting Correlated Fragments Model for Weak Interactions, Basis Set Superposition Error, and the Helium Dimer Potential,” J. Chem. Phys. 91, 2348–2359 (1989).

    Article  ADS  Google Scholar 

  26. P. E. Phillipson, “Repulsive Interaction between Two Ground-State Helium Atoms,” Phys. Rev. 125, 1981–1992 (1962).

    Article  ADS  Google Scholar 

  27. R. A. Aziz, V. P. S. Nain, et al., “An Accurate Intermolecular Potential for Helium,” J. Chem. Phys. 79, 4330–4342 (1979).

    Article  ADS  Google Scholar 

  28. D. E. Beck, “A New Interatomic Potential Function for Helium,” Mol. Phys. 14, 311–315 (1968); Mol. Phys. 15, 322 (1968).

    Article  ADS  Google Scholar 

  29. L. W. Bruch and I. J. McGee, “Semiempirical Potential and Bound State of the Helium-4 Diatom,” J. Chem. Phys. 46, 2959–2967 (1967).

    Article  ADS  Google Scholar 

  30. A. R. Janzen and R. A. Aziz, “An Accurate Potential Energy Curve for Helium Based on Ab Initio Calculations,” J. Chem. Phys. 107, 914–919 (1997).

    Article  ADS  Google Scholar 

  31. A. R. Janzen and R. A. Aziz, “Modern He-He Potentials: Another Look at Binding Energy, Effective Range Theory, Retardation, and Efimov States,” J. Chem. Phys. 103, 9626–9630 (1995).

    Article  ADS  Google Scholar 

  32. K. T. Tang and J. P. Toennies, “An Improved Simple Model for the Van Der Waals Potential Based on Universal Damping Functions for the Dispersion Coefficients,” J. Chem. Phys. 80, 3726–3741 (1984).

    Article  ADS  Google Scholar 

  33. R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, “A New Determination of the Ground State Interatomic Potential for He2,” Mol. Phys. 61, 1487–1511 (1987).

    Article  ADS  Google Scholar 

  34. R. A. Aziz and M. J. Slaman, “An Examination of Ab Initio Results for Helium Potential Energy Curve,” J. Chem. Phys. 94, 8047–8053 (1991).

    Article  ADS  Google Scholar 

  35. K. T. Tang, J. P. Toennies, and C. L. Yiu, “Accurate Analytical He-He Van Der Waals Potential Based on Perturbation Theory,” Phys. Rev. Lett. 74, 1546–1549 (1995).

    Article  ADS  Google Scholar 

  36. L. W. Bruch and I. J. McGee, “Semiempirical Helium Intermolecular Potential. II. Dilute Gas Properties,” J. Chem. Phys. 52, 5884–5895 (1970).

    Article  ADS  Google Scholar 

  37. Y.-H. Uang and W. C. Stwalley, “The Possibility of a 4He2 Bound State, Effective Range Theory, and Very Low Energy He-He Scattering,” J. Chem. Phys. 76, 5069–5072 (1982).

    Article  ADS  Google Scholar 

  38. J. de Boer, “The Equation of State of Gases at Low Temperatures,” Physica 24, S90–S97 (1958).

    Article  Google Scholar 

  39. V. Efimov, “Energy Levels Arising from Resonant Two-Body Forces in a Three-Body System,” Phys. Lett. B 33, 563–564 (1970).

    Article  ADS  Google Scholar 

  40. V. N. Efimov, “Week Bound States of Three Resonantly Interacting Particles,” Yad. Fiz. 12, 1080–1090 (1970) [Sov. J. Nucl. Phys. 12, 589 (1970)].

    Google Scholar 

  41. T. K. Lim, S. K. Duffy, and W. C. Damert, “Efimov State in the 4He Trimer,” Phys. Rev. Lett. 38, 341–343 (1977).

    Article  ADS  Google Scholar 

  42. R. F. Bishop, H. B. Ghassib, and M. R. Strayer, “Low-Energy He-He Interactions with Phenomenological Potentials,” J. Low Temp. Phys. 26, 669–690 (1977).

    Article  ADS  Google Scholar 

  43. F. Luo, G. C. McBane, G. Kim, C. F. Giese, and W. R. Gentry, “The Weakest Bond: Experimental Observation of Helium Dimer,” J. Chem. Phys. 98, 3564–3567 (1993).

    Article  ADS  Google Scholar 

  44. W. Schöllkopf and J. P. Toennies, “Nondestructive Mass Selection of Small Van Der Waals Clusters,” Science 266, 1345–1348 (1994).

    Article  ADS  Google Scholar 

  45. F. Luo, C. F. Giese, and W. R. Gentry, “Direct Measurement of the Size of the Helium Dimer,” J. Chem. Phys. 104, 1151–1154 (1996).

    Article  ADS  Google Scholar 

  46. R. Grisenti, W. Schöllkopf, J. P. Toennies, et al., “Determination of the Bond Length and Binding Energy of the Helium Dimer by Diffraction from a Transmission Grating,” Phys. Rev. Lett. 85, 2284–2287 (2000).

    Article  ADS  Google Scholar 

  47. T. Cornelius and W. Glöckle, “Efimov States for Three 4He Atoms?,” J. Chem. Phys. 85, 3906–3912 (1986).

    Article  ADS  Google Scholar 

  48. E. A. Kolganova and A. K. Motovilov, “Mechanism of the Emergence of Efimov States in the 4He Trimer,” Yad. Fiz. 62, 1253 (1999) [Phys. At. Nucl. 62, 1179 (1999)].

    Google Scholar 

  49. A. K. Motovilov and E. A. Kolganova, “Structure of Tand S-Matrices in Unphysical Sheets and Resonances in Three-Body Systems,” Few-Body Systems 10(Suppl.), 75–84 (1999).

    Google Scholar 

  50. V. Efimov, “Energy Levels of Three Resonantly Interacting Particles,” Nucl. Phys. A 210, 157–188 (1973).

    Article  ADS  Google Scholar 

  51. G. C. Hegerfeldt and T. Köhler, “How to Study the Elusive Efimov State of the 4He3 Molecule through a New Atom-Optical State-Selection Technique,” Phys. Rev. Lett. 84, 3215–3219 (2000).

    Article  ADS  Google Scholar 

  52. R. Brühl, A. Kalinin, O. Kornilov, et al., “Matter Wave Diffraction from an Inclined Transmission Grating: Searching for the Elusive 4He Trimer Efimov State,” Phys. Rev. Lett. 95, 063002(4) (2005).

  53. S. P. Merkuriev and L. D. Faddeev, Quantum Scattering Theory for Few-Particle Systems (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  54. R. N. Barnett and K. B. Whaley, “Variational and Diffusion Monte-Carlo Techniques for Quantum Clusters,” Phys. Rev. A 47, 4082–4098 (1993).

    Article  ADS  Google Scholar 

  55. D. Blume and C. H. Greene, “Monte Carlo Hyperspherical Description of Helium Cluster Excited States,” J. Chem. Phys. 112, 8053–8067 (2000).

    Article  ADS  Google Scholar 

  56. R. Guardiola, M. Portesi, and J. Navarro, “High-Quality Variational Wave Functions for Small 4He Clusters,” Phys. Rev. B 60, 6288–6291 (1999).

    Article  ADS  Google Scholar 

  57. V. R. Pandharipande, J. G. Zabolitzky, S. C. Pieper, et al., “Calculations of Ground-State Properties of Liquid 4He Droplets,” Phys. Rev. Lett. 50, 1676–1679 (1983).

    Article  ADS  Google Scholar 

  58. S. W. Rick, D. L. Lynch, and J. D. Doll, “A Variational Monte Carlo Study of Argon, Neon, and Helium Clusters,” J. Chem. Phys. 95, 3506–3520 (1991).

    Article  ADS  Google Scholar 

  59. B. D. Esry, C. D. Lin, and C. H. Greene, “Adiabatic Hyperspherical Study of the Helium Trimer,” Phys. Rev. A 54, 394–401 (1996).

    Article  ADS  Google Scholar 

  60. E. Nielsen, D. V. Fedorov, and A. S. Jensen, “The Structure of the Atomic Helium Trimers: Halos and Efimov States,” J. Phys. B 31, 4085–4105 (1998).

    Article  ADS  Google Scholar 

  61. S. Nakaichi-Maeda and T. K. Lim, “Zero-Energy Scattering and Bound States in the 4He Trimer and Tetramer,” Phys. Rev. A 28, 692–696 (1983).

    Article  ADS  Google Scholar 

  62. E. A. Kolganova, A. K. Motovilov, and S. A. Sofianos, “Three-Body Configuration Space Calculations with Hard-Core Potentials,” J. Phys. B 31, 1279–1302 (1998).

    Article  ADS  Google Scholar 

  63. A. K. Motovilov, W. Sandhas, S. A. Sofianos, and E. A. Kolganova, “Binding Energies and Scattering Observables in the 4He3 Atomic System,” Eur. Phys. J. D 13, 33–41 (2001).

    Article  ADS  Google Scholar 

  64. V. Roudnev and S. Yakovlev, “Investigation of 4He3 Trimer on the Base of Faddeev Equations in Configuration Space,” Chem. Phys. Lett. 328, 97–106 (2000).

    Article  ADS  Google Scholar 

  65. V. A. Roudnev, S. L. Yakovlev, and S. A. Sofianos, “Bound-State Calculations for Three Atoms Without Explicit Partial Wave Decomposition,” Few-Body Systems 37, 179–196 (2005).

    Article  ADS  Google Scholar 

  66. M. Salci, E. Yarevsky, S. B. Levin, and N. Elander, “Finite Element Investigation of the Ground States of the Helium Trimers 4He3 and 4He2-3He,” Int. J. Quantum Chem. 107, 464–468 (2007).

    Article  ADS  Google Scholar 

  67. T. G. Lee, B. D. Esry, B.-C. Gou, and C. D. Lin, “The Helium Trimer Has No Bound Rotational Excited States,” J. Phys. B 34, L203–L210 (2001).

    Article  ADS  Google Scholar 

  68. A. V. Matveenko and E. O. Alt, “Does He-Trimer Have Bound Rotational States?,” Hyperfine Int. 138, 421–425 (2001).

    Article  ADS  Google Scholar 

  69. A. K. Motovilov, S. A. Sofianos, and E. A. Kolganova, “Bound States and Scattering Processes in the 4He3 Atomic System,” Chem. Phys. Lett. 275, 168–172 (1997).

    Article  ADS  Google Scholar 

  70. V. Roudnev, “Ultra-Low Energy Elastic Scattering in a System of Three He Atoms,” Chem. Phys. Lett. 367, 95–101 (2003).

    Article  ADS  Google Scholar 

  71. R. Lazauskas and J. Carbonell, “Description of 4He Tetramer Bound and Scattering States,” Phys. Rev. A 73, 062717(11) (2006).

  72. E. A. Kolganova, A. K. Motovilov, and W. Sandhas, “Scattering Length of the Helium-Atom-Helium-Dimer Collision,” Phys. Rev. A 70, 052711(4) (2004).

  73. S. P. Merkuriev, C. Gignoux, and A. Laverne, Three-Body Scattering in Configuration Space, Ann. Phys. (N.Y.) 99, 30–71 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  74. S. P. Merkuriev and A. K. Motovilov, “Faddeev Equations for Simple Layer Potential Density,” Lett. Math. Phys. 7, 497–503 (1983).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  75. S. P. Merkuriev and A. K. Motovilov, “Scattering Problem for Three Solid Spheres and Potential Theory,” in Theory of Quantum Systems with Strong Interaction, Collected Vol. (Kalin. Gos. Univ., Kalinin, 1983), pp. 95–114.

    Google Scholar 

  76. S. P. Merkuriev, A. K. Motovilov, and S. L. Yakovlev, “Few-body Problem in the Boundary Condition Model and Quasipotentials,” Teor. Mat. Fiz. 94, 435–447 (1993) [Theor. Math. Phys. 94, 306 (1993)].

    Google Scholar 

  77. A. K. Motovilov, Differential Equations for Components of Wave Function in Problem of Three Solid Spheres, Vestnik Leningr. Gos. Univ., Ser. Fiz. Khim., No. 22, 76–79 (1983).

  78. W. Sandhas, E. A. Kolganova, Y. K. Ho, and A. K. Motovilov, “Binding Energies and Scattering Observables in the 4He3 and 3He4He3 Systems,” Few-Body Systems 34, 137–142 (2004).

    ADS  Google Scholar 

  79. D. Bressanini, M. Zavaglia, M. Mella, and G. Morosi, “Quantum Monte Carlo Investigation of Small 4He Clusters with a 3He Impurity,” J. Chem. Phys. 112, 717–722 (2000).

    Article  ADS  Google Scholar 

  80. E. A. Kolganova, Y. K. Ho, A. K. Motovilov, and W. Sandhas, “The 3He4He2 Three-Atomic System within the Hard-Core Faddeev Approach,” in Selected Questions of Theoretical Physics and Astrophysics, Collected Volume in Honor of 70 Years of V. B. Belyaev (OIYaI, Dubna, 2003) [in Russian].

    Google Scholar 

  81. V. Roudnev, “Localized Component Method: Application To Scattering in a System of Three Atoms,” in Few-Body Problems in Physics, Proc. of 17th Int. IUPAP Conf. on Few-Body Problems in Physics (Elsevier, Amsterdam, 2004), Vol. V, pp. S292–S294.

    Google Scholar 

  82. E. A. Kolganova, Y. K. Ho, A. K. Motovilov, and W. Sandhas, “The 3He4He Trimer within the Hard-Core Faddeev Approach,” Czech. J. Phys. 53, B301–B304 (2003).

    Article  Google Scholar 

  83. V. V. Kostrykin, A. A. Kvitsinsky, and S. P. Merkuriev, “Faddeev Approach to the Three-Body Problem in Total-Angular-Momentum Representation,” Few-Body Systems 6, 97–113 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  84. P. F. Bedaque, E. Braaten, and H.-W. Hammer, “Three-Body Recombination in Bose Gases with the Large Scattering Length,” Phys. Rev. Lett. 85, 908–911 (2000).

    Article  ADS  Google Scholar 

  85. D. Güery-Odelin and G. V. Shlyapnikov, “Excitation-Assisted Inelastic Processes in Trapped Bose-Einstein Condensation,” Phys. Rev. A 61, 013605(4) (2000).

  86. O. I. Kartavtsev and J. H. Macek, “Low-Energy Three-Body Recombination Near a Feshbach Resonance,” Few-Body Systems 31, 1432–5411 (2002).

    Article  Google Scholar 

  87. E. Nielsen and J. H. Macek, “Low-Energy Recombination of Identical Bosons by Three-Body Collisions,” Phys. Rev. Lett. 83, 1566–1569 (1999).

    Article  ADS  Google Scholar 

  88. E. Braaten and H.-W. Hammer, “Efimov Physics in Cold Atoms,” Ann. Phys. (N.Y.) 322, 120–163 (2007).

    Article  MATH  ADS  Google Scholar 

  89. B. D. Esry, C. H. Greene, and Jr. J. P. Burke, “Recombination of Three Atoms in the Ultracold Limit,” Phys. Rev. Lett. 83, 1751–1754 (1999).

    Article  ADS  Google Scholar 

  90. E. Nielsen, D. V. Fedorov, A. S. Jensen, and E. Garrido, “The Three-Body Problem with Short-Range Interactions,” Phys. Rep. 347, 373–459 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  91. F. M. Pen’kov, “One-Parametric Dependences of Spectra, Scattering Lengths and Recombination Coefficients for a System of Three Bosons,” Zh. Eksp. Teor. Fiz. 124, 536–544 (2003) [JETP 97, 485 (2003)].

    Google Scholar 

  92. H. Suno, B. D. Esry, C. H. Greene, and J. P. Burke, Jr., “Three-Body Recombination of Cold Helium Atoms,” Phys. Rev. A 65, 042725(7) (2002).

  93. A. A. Kvitsinsky, Yu. A. Kuperin, S. P. Merkuriev, et al., “Quantum Problem of N Bodies in Configuration Space,” Fiz. Elem. Chastits At. Yadra 17, 267–317 (1986) [Sov. J. Part. Nucl. 17, 113 (1986)].

    Google Scholar 

  94. A. K. Motovilov, “Explicit Representations for the T-Matrix on Unphysical Energy Sheets and Resonances in Two- and Three-Body Systems,” Few-Body Systems 38, 115–120 (2006).

    Article  ADS  Google Scholar 

  95. A. K. Motovilov, “Representations for the Three-Body T-Matrix, Scattering Matrices and Resolvent on Unphysical Energy Sheets,” Math. Nachr. 187, 147–210 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  96. E. A. Kolganova and A. K. Motovilov, “Scattering and Resonances in the 4He Three-Atomic System,” Comput. Phys. Commun. 126, 88–92 (2006).

    Article  ADS  Google Scholar 

  97. E. A. Kolganova and A. K. Motovilov, “Three-Body Resonances in Framework of the Faddeev Configuration Space Approach,” in Proc. of the 9th Intern. Conf. on Computational Modeling and Computing in Physics (JINR, Dubna, 1997), pp. 177–180.

    Google Scholar 

  98. H. P. Noyes and H. Fiedeldey, “Calculations of the Three-Nucleon Low Energy Parameters,” in Three-Particle Scattering in Quantum Mechanics, Proc. Texas A&M Conf., Ed. by J. Gillespie and J. Nuttall (Benjamin, New York, 1968), pp. 195–204.

    Google Scholar 

  99. S. P. Merkuriev and S. L. Yakovlev, “Quantum N-body Scattering Theory in Configuration Space,” Teor. Mat. Fiz. 56, 60–73 (1983) [Theor. Math. Phys. 56, 673 (1983)].

    Google Scholar 

  100. S. P. Merkuriev, S. L. Yakovlev, and C. Gignoux, “Four-Body Yakubovsky Differential Equations for Identical Particles,” Nucl. Phys. A 431, 125–138 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  101. V. N. Efimov and G. Shults, “The Model of Boundary Conditions in Problem of Two and Three Particles,” Fiz. Elem. Chastits At. Yadra 7, 875–915 (1976) [Sov. J. Part. Nucl. 7, 349 (1976)].

    Google Scholar 

  102. A. K. Motovilov, “Quantum Problem of Three Bodies in Boundary Conditions Model,” Candidate Dissertation in Mathematical Physics (Len. Gos. Univ., Leningrad, 1984).

    Google Scholar 

  103. B. Schulze and G. Wildenhain, Methods of Potential Theory for Elliptical Differential Equations of Any Order (Academie, Berlin, 1977).

    Google Scholar 

  104. V. S. Buslaev, “On Asymptotic Behavior of Spectral Characteristics of Exterior Problems for Shrödinger Operators,” Izv. Akad. Nauk SSSR, Ser. Mat. 39, 149–235 (1975).

    MATH  MathSciNet  Google Scholar 

  105. A. Messiah, Quantum Mechanics, Vol. II (North-Holland, Amsterdam, 1966).

    Google Scholar 

  106. E. A. Kolganova, A. K. Motovilov, and S. A. Sofianos, “Ultralow Energy Scattering of a He Atom off a He Dimer,” Phys. Rev. A 56, R1686–R1689 (1997).

    Article  ADS  Google Scholar 

  107. P. Barletta and A. Kievsky, “Variational Description of the Helium Trimer Using Correlated Hyperspherical Harmonic Basis Functions,” Phys. Rev. A 64, 042514(9) (2001).

  108. A. A. Samarsky, Theory of Finite-Difference Schemes (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  109. J. Carbonell, C. Gignoux, and S. P. Merkuriev, “Faddeev Calculations in Configuration Space with Carthesian Coordinates,” Few-Body Systems 15, 15–23 (1993).

    Article  ADS  Google Scholar 

  110. E. Braaten and H.-W. Hammer, “Universality in Few-Body Systems with Large Scattering Length,” Phys. Rep. 428, 259–390 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  111. E. Braaten and H.-W. Hammer, “Universality in the Three-Body Problem for 4He Atoms,” Phys. Rev. A 67, 042706(12) (2003).

  112. M. T. Yamashita, T. Frederico, A. Delfino, and L. Tomio, “Scaling Limit of Virtual States of Triatomic Systems,” Phys. Rev. A 66, 052702(7) (2002).

  113. E. A. Kolganova, A. K. Motovilov, and W. Sandhas, “Scattering Length for Helium Atom-Diatom Collision,” Few-Body Systems 38, 205–208 (2006).

    Article  ADS  Google Scholar 

  114. P. F. Bedaque, H.-W. Hammer, and U. van Kolck, “The Three-Boson System with Short-Range Interactions,” Nucl. Phys. A 646, 444–466 (1999).

    Article  ADS  Google Scholar 

  115. G. V. Skornyakov and K. A. Ter-Martirosyan, “Three Body Problem for Short-Range Forces. Low Energy Neutron Scattering by Deuterons,” Zh. Eksp. Teor. Fiz. 31, 775–790 (1956) [Sov. Phys. JETP 4, 648 (1956)].

    Google Scholar 

  116. M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV: Analysis of Operators (Academic, New York, 1978; Mir, Moscow, 1982).

    MATH  Google Scholar 

  117. H. Tamura, “The Efimov Effect of the Three-Body Schröinger Operators: Asymptotics for the Number of Negative Eigenvalues,” Nagoya Math. J. 130, 55–83 (1993).

    MATH  MathSciNet  Google Scholar 

  118. A. V. Sobolev, “The Efimov Effect. Discrete Spectrum Asymptotics,” Comm. Math. Phys. 156, 101–126 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  119. G. S. Danilov, “On the Three-Body Problem with Short-Range Forces,” Zh. Eksp. Teor. Fiz. 40, 498–507 (1961) [Sov. Phys. JETP 13, 349 (1961)].

    MathSciNet  Google Scholar 

  120. S. Albeverio, S. Lakaev, and K. A. Makarov, “The Efimov Effect and an Extended Szegó-Kac Limit Theorem,” Lett. Math. Phys. 43, 73–85 (1988).

    Article  MathSciNet  Google Scholar 

  121. L. D. Faddeev, Integral Equations Method in Scattering Theory for Three and More Particles (Mosk. Inzh. Fiz. Inst., Moscow, 1971) [in Russian].

    Google Scholar 

  122. R. D. Amado and J. V. Noble, “On Efimov Effect: A New Pathology of Three-Particle Systems,” Phys. Lett. B 35, 25–27 (1971).

    Article  ADS  Google Scholar 

  123. R. D. Amado and J. V. Noble, “On Efimov Effect: A New Pathology of Three-Particle Systems. II,” Phys. Rev. D: Part. Fields 5, 1992–2002 (1971).

    ADS  Google Scholar 

  124. D. R. Yafaev, “To the Theory of Discrete Spectrum of Three-Particle Shrödinger Operator,” Matem. Sborn. 94, 567–593 (1974).

    Google Scholar 

  125. A. C. Phillips, “Three-Body Systems in Nuclear Physics,” Rep. Prog. Phys. 40, 905–961 (1977).

    Article  ADS  Google Scholar 

  126. L. H. Thomas, “The Interaction between a Neutron and a Proton and the Structure of H3,” Phys. Rev. 47, 903–909 (1935).

    Article  MATH  ADS  Google Scholar 

  127. R. A. Minlos and L. D. Faddeev, “On Point Interaction for System of Three Bodies in Quantum Mechanics,” Dokl. Akad. Nauk SSSR 141, 1335–1338 (1961) [Sov. Phys. Dokl. 6, 1072 (1961)].

    Google Scholar 

  128. S. Albeverio, R. Höegh-Krohn, and T. T. Wu, “A Class of Exactly Solvable Three-Body Quantum Mechanical Problems and the Universal Low Energy Behavior,” Phys. Lett. A 83, 105–109 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  129. K. A. Makarov and V. V. Melezhik, “Two Sides of Medal: Efimov Effect and Collapse in the System of Three Particles with Point Interactions,” Teor. Mat. Fiz. 107, 415–432 (1996) [Theor. Math. Phys. 107, 755 (1996)].

    MathSciNet  Google Scholar 

  130. M. D. Lee, T. Köhler, and P. S. Julienne, “Excited Thomas-Efimov Levels in Ultracold Gases,” Phys. Rev. A 76, 012720(16) (2007).

  131. S. Jonsell, “Efimov States for Systems with Negative Scattering Lengths,” Europhys. Lett. 76, 8–14 (2006).

    Article  ADS  Google Scholar 

  132. T. Kraemer, M. Mark, P. Waldburger, et al., “Evidence for Efimov Quantum States in an Ultracold Gas of Caesium Atoms,” Nature 440, 315–318 (2006).

    Article  ADS  Google Scholar 

  133. H.-C. Nägerl, T. Kraemer, M. Mark, et al., “Experimental Evidence for Efimov Quantum States,” condmat/0611629.

  134. A. J. Moerdijk, B. J. Verhaar, and A. Axelsson, Resonances in Ultracold Collisions of 6Li, 7Li, and 23Na, Phys. Rev. A 51, 4852–4861 (1995).

    Article  ADS  Google Scholar 

  135. B. D. Esry and C. H. Greene, “A Ménage à Trois Laid Bare,” Nature 440, 289–290 (2006).

    Article  ADS  Google Scholar 

  136. E. A. Kolganova, A. K. Motovilov, and W. Sandhas, “Ultracold Scattering Processes in Three-Atomic Helium Systems,” Nucl. Phys. A 790, 752c–756c (2007).

    Article  ADS  Google Scholar 

  137. E. A. Kolganova, A. K. Motovilov, and W. Sandhas, “Binding Energies and Scattering Observables in the 4He3 and 3He4He2 Three-Atomic Systems,” Few-Body Systems 34, 137–142 (2004).

    ADS  Google Scholar 

  138. W. Sandhas, E. A. Kolganova, A. K. Motovilov, and Y. K. Ho, “Binding Energies and Scattering Observables in the 3He4He2 Atomic System,” in Proc. of 17th Intern. IUPAP Conf. on Few-Body Problems in Physics (Elsevier, Amsterdam, 2004), Vol. V, pp. S337–S339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Kolganova, A.K. Motovilov, W. Sandhas, 2009, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2009, Vol. 40, No. 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolganova, E.A., Motovilov, A.K. & Sandhas, W. Ultracold collisions in the system of three helium atoms. Phys. Part. Nuclei 40, 206–235 (2009). https://doi.org/10.1134/S106377960902004X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377960902004X

PACS numbers

Navigation