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Abstract Fault detection and isolation of high-speed train

suspension systems is of critical importance to guarantee

train running safety. Firstly, the existing methods con-

cerning fault detection or isolation of train suspension

systems are briefly reviewed and divided into two cate-

gories, i.e., model-based and data-driven approaches. The

advantages and disadvantages of these two categories of

approaches are briefly summarized. Secondly, a 1D con-

volution network-based fault diagnostic method for high-

speed train suspension systems is designed. To improve the

robustness of the method, a Gaussian white noise strategy

(GWN-strategy) for immunity to track irregularities and an

edge sample training strategy (EST-strategy) for immunity

to wheel wear are proposed. The whole network is called

GWN-EST-1DCNN method. Thirdly, to show the perfor-

mance of this method, a multibody dynamics simulation

model of a high-speed train is built to generate the lateral

acceleration of a bogie frame corresponding to different

track irregularities, wheel profiles, and secondary suspen-

sion faults. The simulated signals are then inputted into the

diagnostic network, and the results show the correctness

and superiority of the GWN-EST-1DCNN method. Finally,

the 1DCNN method is further validated using tracking data

of a CRH3 train running on a high-speed railway line.

Keywords High-speed train suspension system � Fault
diagnosis � Track irregularities � Wheel wear � Deep
learning � Literature review

1 Introduction

As railway transportation is developing at a considerable

speed in many regions worldwide, condition monitoring of

high-speed trains is receiving increasing attention, in

which, failures of suspension systems will increase the

vibration of vehicle components and reduce the running

stability, and may even lead to severe accidents, such as

derailment [1, 2]. Therefore, it is of critical importance to

diagnose the faults of railway vehicle suspension systems.

1.1 Literature review

Currently, the approaches for fault detection or isolation

(FD/I) of railway vehicle suspension systems can be clas-

sified into two main categories, i.e., the model-based

approach and data-driven approach [3].

1.1.1 Model-based approach

The first reported approaches for railway vehicle suspen-

sion fault diagnosis (RVSFD) are mainly model-based

approaches. This type of approach usually requires the

development of a sophisticated dynamic model to deter-

mine the relationship between faulty states and vehicle

responses. Data collected by the sensors are then fed into

such models to predict the corresponding vehicle dynamic
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responses. The outputs of the model are compared with the

real-time measurement data, and the residual between the

measured data and the prediction data is designated to

identify failures [4]. As shown in Table 1, the model-based

approaches with different strategies for FD/I of railway

vehicle suspensions over the past two decades can be

mainly classified into four sub-categories [5]: (1) Kalman

filter-based (KF-based); (2) interacting multiple models-

based (IMM-based); (3) Rao–Blackwellised particle filter-

based (RBPF-based); and (4) recursive least squares-based

(RLS-based).

(1) KF-based [10–18]: Kalman filter (KF) is an effective

tool to estimate state variables for a dynamic system.

An earlier study using KF in fault detection and

isolation (FD&I) of vehicle suspension systems is the

literature [10]. In this work, a 2D half-vehicle model,

which considered the lateral and yaw motions of two

wheelsets and one bogie as well as the lateral motion

of the carbody, was built. Based on the vehicle model

with 7 degrees of freedom (DOFs), a KF-based

method was proposed to detect and isolate the faults

of the secondary suspension (anti-yaw damper and

secondary lateral damper). The results showed that

the KF-based method was computationally efficient

and could identify the abrupt faults of vehicle

suspension systems. In [11], a light rail vehicle

(LRV) model consisting of three wagons, which

considered two DOFs of each carbody (bounce and

pitch motions) and one DOF of each bogie (bounce

motion), was built. Based on the 9-DOF-LRV model,

a KF-based method was used to generate residuals for

fault isolation of the primary and secondary suspen-

sions (dampers and springs). In [12], based on a

vehicle model with the same structure as in [10], a

hybrid extended Kalman filter-based (HEKF-based)

approach combined with a nonlinear residual gener-

ator was proposed for FD&I of the secondary

suspension (anti-yaw damper and secondary lateral

damper). In [13, 14], a three-dimensional vehicle

model with 46 DOFs was built, and a multiple

Kalman filter-based (MKF-based) approach was

applied for FD&I of the secondary suspension system

(anti-yaw damper, secondary vertical damper, and

secondary lateral damper). With this MKF-based

method, high robustness against track uncertainties

can be achieved. In [15], based on a 7-DOF-model of

ERRI B176 benchmark vehicle, a linear KF

scheme was employed to diagnose faults of the

secondary vertical suspension. Moreover, it was

stated that this method can be used for condition

monitoring of secondary suspension instead of cal-

endar-based maintenance. In [16], based on a two-

mass oscillator with 2 DOFs (i.e., one-eighth of the

entire vehicle model), a cubature Kalman filter-based

(CKF-based) approach was proposed to diagnose the

faults of the secondary vertical suspension.

(2) IMM-based [19–21]: In [19, 20], the IMM approach

was proposed to detect the failure of the secondary

suspension (secondary lateral damper and secondary

lateral spring) of the same vehicle as described in

[10]. This approach is similar to the KF-based

approaches, while it additionally includes mode

mixing. Parallel KFs are no longer separated but

interact with each other. The input state-space vector

at each time step for a given filter is a combination of

the output state-space vector of all filters at the

previous time step. This combination is based on the

mode likelihood and given transition probabilities

Table 1 Summary of approaches used in RVSFD

Categories References Sub-categories

Model-based Li et al. [10], Wei et al. [11], Jesussek et al. [12], Jesussek et al. [13], Jesussek et al. [14],

Onat et al. [15], Zoljic-Beglerovic et al. [16], Wei et al. [17], and Xu et al. [18]

KF-based

Hayashi et al. [19], Hayashi et al. [20], and Mori et al. [21] IMM-based

Li et al. [22], Li et al. [23], and Li et al. [24] RBPF-based

Liu et al. [25], and Liu et al. [26] RLS-based

Lebel et al. [5], Wei et al. [6], Xue et al. [7], Wei et al. [8], and Liu [9] Others

Data-based Wei et al. [8], Mei et al. [29], Mei et al. [30], Dumitriu et al. [31], Aravanis et al. [32],

Aravanis et al. [33], Aravanis et al. [34], Aravanis et al. [35], Sakellariou et al. [36],

Sakellariou et al. [37], and Rossouw et al. [38]

SM-based

Qin et al. [39], Kulkarni et al. [40], Wei et al. [41], and Hong et al. [42] ML-based

Ye et al. [3], and Gasparetto et al. [27] HM-based

Wu et al. [43] DL-based
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between modes. Based on the above studies, a model

updating procedure was proposed in [21] to adapt the

baseline model when a fault was detected, and to

allow for the identification of simultaneous faults. In

this work, a 2D vehicle model with 7 DOFs (the same

as described in [10]) and a three-dimensional (3D)

vehicle model with 34 DOFs were, respectively, built,

and the IMM approach was used to detect the faults in

the secondary suspension (secondary lateral damper

and secondary lateral spring).

(3) RBPF-based [22–24]: Another classical model-based

approach reported in the earlier literature is the RBPF

approach. For instance, an RBPF-based approach was

proposed in [22] to estimate the secondary suspension

parameters (anti-yaw damper and secondary lateral

damper) of a half-vehicle model with 7 DOFs. The

experimental results showed that the RBPF-based

method was more promising than the traditional EKF-

based approach. The RBPF-based method, however,

is usually computationally expensive, and it is thus

more suitable to be used in cases where the detection

time is of minor importance. Similar studies were

presented in [23, 24]. Although this approach relies

on MKF, it is different from the previous approaches

since the associated model is not selected in advance

to represent a fixed fault type and magnitude [5].

(4) RLS-based [25, 26]: The above model-based

approaches used in RVSFD can find traces of KF.

More precisely, they are more or less based on KF. In

[25], KF was not used, but a closely related time-

domain filter known as RLS was adopted instead.

RLS is an algorithm equipped with the memory and

machine learning features and has the capacity to

identify multiple parameters simultaneously from an

input–output linear system by filtering the error signal

between the measured and simulation outputs. In this

work, a 3D vehicle model with 42 DOFs was

simulated. The field test data from an E464 locomo-

tive were adopted to validate the feasibility of this

approach. The results showed that this approach was

promising in RVSFD. A similar study was presented

in [26].

One of the biggest merits of the aforementioned model-

based approaches is that through mathematical modeling,

and the relationship between the input as a faulty state and

the output that can reflect the system dynamic behavior can

be clearly established [27]. This can help researchers or

even field staff to clearly understand the diagnostic model,

which is helpful for engineering applications. However, the

following issues currently limit the development of these

model-based approaches:

• High modeling difficulty. Vehicle dynamics models are

challenging to be accurately built, mainly due to two

causes [8]: (1) Train suspension systems are often

nonlinear, and it is usually extremely difficult to obtain

the detailed and accurate parameters of the nonlinear

elements, such as dampers, and springs; (2) In train

dynamics simulation, it is difficult to consider the

elasticity of the carbody, bogie, wheelset, etc.

• High hardware cost. The above model-based

approaches all require the use of a relatively large

number of sensors, which makes the hardware used in

RVSFD rather expensive and raises concerns about the

reliability of the transducers. For instance, the mini-

mum number of sensors used in [24] is 3, and more in

[28].

• Low computing efficiency. Dynamics simulation

involves a large number of nonlinear force calculations

and iterative computations, especially when a compli-

cated vehicle–track coupling system needs to be

considered, resulting in low calculation efficiency.

In conclusion, the model-based approaches have great

potential in RVSFD, but the corresponding vehicle model

needs to be accurately established, and the calculation

efficiency should also be improved.

1.1.2 Data-driven approach

The data-driven approach does not rely on vehicle simu-

lation models but requires historical tracking data and prior

training. As shown in Table 1, the data-driven approaches

with different strategies for FD/I of railway vehicle sus-

pensions over the past two decades can be mainly classified

into four sub-categories: (1) statistics model-based (SM-

based); (2) traditional machine learning-based (ML-based);

(3) hybrid model-based (HM-based); and (4) deep learning-

based (DL-based).

(1) SM-based [29–35]: A classical SM-based approach

used in RVSFD is based on the cross-correlation

function. In [29], the cross-correlation function

between the accelerations of two bogies was applied

to determine the health conditions of vehicle suspen-

sion systems. The basic idea of this approach is that a

faulty element in vehicle suspensions can alter the

symmetry of a vehicle with a symmetrical configu-

ration, which results in a coupling relationship

between motions that can be observed in the cross-

correlation function. Aiming at identifying the failure

of the vertical primary suspension, this work analyzed

the impact of the faulty damper on the correlation

between the bounce, pitch, and roll acceleration

signals. Similar studies were presented in [29, 30].

Actually, if this approach is used to identify different

98 Y. Ye et al.
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failures of vehicle suspension systems, such as the

primary vertical spring failure and secondary vertical

damper failure, different cross-correlation functions

corresponding to different faults must be observed

and counted. This approach, therefore, is also a kind

of statistical method. Another interesting method

based on a stochastic functional model (FM) of the

system dynamics under varying payload was postu-

lated in [32]. Using the model-induced parameter

space, the healthy system state under variable oper-

ating conditions was represented by a certain param-

eter subspace, which was constructed in an initial

learning phase. In the inspection phase, fault detec-

tion was achieved by checking whether the current

system dynamics belonged to the healthy parameter

subspace or not. Moreover, a conventional statistical

time series detection method was also introduced in

[32] for comparison purposes, and the experimental

results showed the superiority of the FM-based

method. Similar studies were presented in [33–37].

In [38], a nonparametric, statistical time-series-based

method was proposed to characterize the primary and

secondary suspension faults of a self-steering three-

piece MKV bogie. The method made use of changes

in the vibration signal spectrum, and a verified

dynamic simulation model was developed to generate

vehicle suspension acceleration response for the

healthy and faulty states. The result showed that,

with this method, the damage of the primary,

secondary, and stabilizer springs could be detected.

(2) ML-based [39–42]: Traditional ML methods are

mainly composed of two steps: (a) feature extraction;

and (2) pattern recognition. In [39], a wavelet

entropy-support vector machine (SVM)-based

approach was proposed to diagnose the faults in

high-speed train suspension systems. More specifi-

cally, the wavelet entropy of the bogie frame

accelerations was extracted as the feature that reflects

the fault states of suspension systems, and SVM was

then adopted to classify these different faults. In this

work, three types of vehicle suspension faults,

including yaw dampers removal (YDR), lateral

dampers removal (LDR), and air springs removal

(ASR), were considered. In [40], the features used to

characterize different signals were dominating fre-

quency along with the corresponding relative damp-

ing coefficient, root mean square (RMS) of lateral

bogie frame acceleration and mean ratio of axlebox

acceleration and bogie frame acceleration. Two

classifiers (i.e., linear SVM and Gaussian SVM) were

used for the FD&I of yaw dampers of high-speed

trains. The simulation results showed that both of

these classifiers could identify the faulty yaw dampers

well. Moreover, the Gaussian SVM classifier per-

formed slightly better in the training and testing

phases, while it had a higher risk of overfitting to the

current dataset. In [41], to diagnose the faults of the

lateral suspension system of railway vehicles, four

time-domain features (mean, standard deviation,

skewness, and kurtosis) and three frequency-domain

features (frequency center (FC), root mean square

frequency (RMSF), and root variance frequency

(RVF)) of the bogie lateral accelerations were

extracted. After that, three classifiers (Dempster–

Shafer (D-S) evidence theory, Fisher discrimination

analysis (FDA), and SVM) were applied to the fault

classification, respectively. The results showed that

the three classifiers all could classify the faults with a

high accuracy, in which, the D-S evidence theory

outperformed the other two classifiers. In [42], to

monitor the stiffness and damping coefficients of the

vehicle suspension systems of high-speed trains in

real-time, the position, height, and width of the largest

peak in magnitude frequency of the axlebox acceler-

ations were considered as the input features. The

classifier used in this work was a multi-output support

vector machine (MSVR). Besides, it was also stated

that unlike the model-based approaches, this data-

driven approach did not rely on accurate dynamics

models.

(3) HM-based [3, 27]: HM-based method refers to the

combination of signal processing methods and ML-

based methods. For instance, in order to diagnose the

faults in the secondary suspensions system of high-

speed trains, a feature extraction method based on

multiscale permutation entropy and linear local

tangent space alignment (MPE-LLTSA) was pro-

posed in [3]. More specifically, a preliminary high-

dimensional feature matrix was constructed using

MPE, and LLTSA was then used to reduce the

dimensionality for obtaining a low-dimensional fea-

ture matrix. The classifier used in this work was a

multi-class SVM. The results showed that the MPE-

LLTSA-SVM method could accurately recognize the

secondary suspension faults when the track irregular-

ities and wheel profiles were relatively constant.

However, the robustness against track irregularities

and wheel wear was not well solved. In [27], the

random decrement technique (RDT) was used to

extract the free response of the bogie frame lateral

accelerations. The output of the RDT was then

analyzed using the Prony method to identify the

characteristic exponents of the system. In the fault

classification step, two classifiers were compared, i.e.,

artificial neural networks (ANN), and k-nearest
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neighbor (k-NN), and the k-NN classifier were proved

to be more reliable than the ANN classifier.

(4) DL-based [43] In recent years, DL methods have

begun to be applied to various industries, but research

on RVSFD is relatively scarce. In [43], to diagnose

the faults of suspension systems of high-speed trains,

three synchrony measurements (instantaneous phase

synchrony, amplitude envelope synchrony, and com-

posite synchrony) were applied to estimate the

similarity between bogie acceleration signals, and a

synchrony group convolutional network was proposed

for feature extraction and pattern classification of the

multichannel monitoring system. The effectiveness of

the method was validated by a simulation dataset.

One of the biggest merits of the aforementioned data-

driven approaches is that they do not rely on sophisticated

dynamics models or high-fidelity simulations. In particular,

the data-driven approaches combine the power of data

analysis and engineering domain knowledge to generate a

model that can be trained quickly and adapted easily to

different vehicle suspension systems [42]. Moreover, two

model-based approaches (robust observer, and the KF

combined with the generalized likelihood ratio test (GLRT)

and two data-driven approaches (dynamical principal

components analysis (DPCA), and the dynamical canonical

variate analysis (CVA)) were, respectively, introduced in

[8] to detect the faults in the primary and secondary sus-

pensions of an urban rail vehicle. The comparison results

showed that the data-driven approaches outperformed the

model-based approaches from the perspective of modeling,

computational efficiency, and accuracy. However, data-

driven approaches currently used in RVSFD still face the

following challenges:

• Database establishment. No matter from the perspec-

tive of data statistics or from the perspective of model

training, data-driven approaches require a massive

amount of historical tracking data, which is a common

problem facing the entire industry.

• Development of adaptive fault feature extraction

method. As far as ML-based approaches are concerned,

the first step is to extract features that reflect the fault

status of vehicle suspension systems. In reality, the

vehicle suspension systems have many nonlinear com-

ponents [44–47], including springs, dampers, etc. The

nonlinear factors of the vehicle components, usually,

result in acquired signals that contain multiple natural

oscillation modes, especially when multi-faults are

coupled together [3]. As a result, it is difficult to

characterize these nonlinear signals by using traditional

single time-domain or frequency-domain feature

extraction methods [48–51].

• High sensitivity of collected signals to track irregular-

ities and wheel wear. The running of a vehicle on a

track is achieved through the wheel–rail contact. Track

irregularities will seriously affect wheel–rail contact,

such as contact area, contact force, and affect the

vibration signals used for condition monitoring [52].

More importantly, the wheel profile will continuously

change as the mileage increases due to the presence of

wear [53, 54], which will seriously affect the vibration

signals. In short, the high sensitivity of the collected

signals to track irregularities and wheel wear could

affect the robustness of data-driven approaches.

1.2 Motivation

With the advent of the era of big data, railway companies

have started to establish related databases. Specifically,

high-speed trains are usually equipped with a large number

of sensors, and it is easy to acquire tracking data from these

trains, which lays a solid foundation for the study, appli-

cation, and promotion of data-driven approaches in

RVSFD.

The train suspension system is a highly nonlinear system

[3]. As described in Sect. 1.1.2, it is difficult to accurately

characterize these nonlinear signals with traditional single

feature extraction methods [55]. To overcome this prob-

lem, we have proposed a feature extraction method of

MPE-LLTSA in [3] to RVSFD, which can realize the

feature extraction of signals at multiple scales. However, a

deep understanding of objects, as well as the corresponding

signals, is still a prerequisite, and extensive expertise and

data analysis capabilities are required for building this

method. Therefore, a simple and adaptive feature extrac-

tion method that can overcome the nonlinear interference

of the vehicle system is required. Under the background of

the era of big data, DL is a powerful tool that has been

successfully applied in many industries, such as image

recognition [56], earthquake prediction [57], transportation

planning [58], fault diagnosis of rotating machinery [59],

multibody dynamics simulation (MBS) [59]. Exploring its

possibility in fault diagnosis of railway vehicles is a topic

of big interest. Motivated by this, this paper aims at

developing a DL-based fault diagnosis method for RVSFD.

As described in Sect. 1.1.2, track irregularities and

wheel wear will affect the vibration signals used for con-

dition monitoring of railway vehicles. Therefore, the

developed fault diagnosis method for train suspension

systems must be guaranteed to be immune to changes in

track irregularities and wheel wear before being put into

use. In our previous work [3], we have briefly discussed the

robustness of the diagnostic method caused by wheel wear,

but it was not studied in-depth. In addition, the interference
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caused by track irregularities was also not analyzed. To

improve the previous work, these two issues are the main

subjects of this study.

1.3 Contribution and structure of this paper

The main contribution of this work is summarized as

follows:

(1) A vehicle–track model considering track flexibilities,

track irregularities, and wheel wear is built.

(2) Two strategies for improving the robustness of the

diagnostic network of train suspension systems are

proposed, i.e., a Gaussian white noise strategy

(GWN-strategy) and an edge sample training strategy

(EST-strategy).

(3) A DL-based fault diagnostic network for RVSFD is

established. The diagnostic network consists of three

phases: In the first phase (data preprocessing), the

GWN-strategy is used to the acceleration signal to

make the diagnosis network immune to relatively

high-frequency impacts caused by track irregularities.

In the second phase (training dataset building), an

EST-strategy is proposed to improve the robustness of

the diagnostic network against wheel wear. Finally, in

the third phase (training and recognition), a GWN-

EST-1DCNN-based fault diagnostic network of high-

speed train suspension systems is built.

The rest of this paper is structured as follows. In Sect. 2,

an MBS model of a high-speed train is built, where three

measured track irregularities and seven tracking wheel

profiles are presented. In Sect. 3, a DL-based diagnosis

network for RVSFD is presented. In Sect. 4, the simulation

result is presented. In Sect. 5, the presented diagnosis

network is validated using the tracking data of a CRH3

train running on a high-speed railway line. Finally, con-

cluding remarks are briefly given in Sect. 6.

2 Vehicle–track coupled model

Here, the description of the vehicle–track coupled model is

divided into two parts: vehicle–track model (Sect. 2.1) and

track irregularities and wheel wear (Sect. 2.2).

2.1 Vehicle–track model

The vehicle model built in our work consists of three sub-

structures, one for the carbody and two for the bogies,

where each bogie consists of one bogie frame, two

wheelsets, and four axleboxes. These rigid bodies are

assembled by primary and secondary suspensions. By

assuming a constant running speed of the carbody, the

carbody is considered as 5 DOFs. The bogie and wheelset

can be characterized by 6 DOFs each, and each axlebox

only rotates relative to the corresponding wheelset, i.e.,

with one DOF. Finally, the MBS model of the vehicle has

49 DOFs. The final vehicle model simulated in SIMPACK

is shown in Fig. 1a. For more information, as well as the

main parameters, of the vehicle model, see Ref. [3].

The wheelset is supported by two rails, where Hertzian

contact [61] and FASTSIM [62] algorithms are used.

Simulating the track structure according to the realistic

condition (e.g., ‘rail ? rail slab ? concrete base ? sub-

structure’ [63]) would involve a large number of DOFs,

thus increasing the computational effort considerably.

Therefore, referring to Refs. [64, 65], the track model is

simplified as a co-running track with a form of ‘rail ?

track slab ? ground’ [66]. The stiffness and damping of

the fastener system are considered between the rail and the

track slab, and the stiffness and damping of the cement–

asphalt mortar are considered between sleeper and ground,

as shown in Fig. 1b. Some parameters of the track model

are listed in Table 2.

2.2 Track irregularities and wheel profiles

2.2.1 Track irregularities

The operating environment of a train is complex and

changeable, in which track irregularities are often not

constant [67–69]. The developed FD&I method must be

immune to the disturbance of track irregularities before it is

implemented in actual engineering. To investigate the

impact of track irregularities on the robustness of the fault

diagnosis method, track irregularities measured on three

different high-speed railway lines are introduced, namely

Wuhang–Guangzhou railway line (WG-line), Beijing–

Tianjin railway line (JJ-line), and Zhengzhou–Xian railway

line (ZX-line). Figure 2 shows the track irregularities of

1000 m in the whole line.

2.2.2 Wheel wear

When a train is running, the wheel profile will change

continuously due to wear, which will always affect wheel–

rail contact, including contact force, contact patch size,

etc., and further affects the dynamic characteristics of the

bogie, including the bogie frame acceleration. The FD&I

method may incorrectly attribute the change in the bogie

acceleration to a failure of the vehicle suspension system.

To analyze the impact of wheel wear on the robustness of

the diagnostic method, the wheel profile evolution of a

CRH3 high-speed train running on the WG-line is intro-

duced in our work for analysis. The total length of the WG-

line is 1,068.8 km, the minimum radius of curve of the line

Deep learning-based fault diagnostic network 101
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is 7,000 m, the gauge is 1,435 mm, and the rail cant is

1/40. This line situation is a typical example of China high-

speed railway lines. In Fig. 3, the new S1002CN profile, as

well as the worn S1002CN profiles due to wear as the

mileage increases, are presented. It can be seen that the

wear at the flange root is mild, and the wear volume is

mainly distributed in the range of -25–25 mm relative to

the nominal rolling circle of the wheel. Eventually, a

‘‘hollow wear’’ that commonly occurs in high-speed trains

is developed. More information concerning the tracking

measurement of the wheel profile evolution can be found in

[53].

3 Diagnostic network design

The description of the diagnostic network is divided into

three subsections. In Sect. 3.1, the design of the deep

neural network is described. Two strategies to improve the

robustness against track irregularities and wheel wear are

described in Sect. 3.2, i.e., a GWN-strategy and an EST-

strategy. The whole structure of the diagnostic network for

railway vehicle suspension systems is described in

Sect. 3.3.

3.1 Design of deep neural network

3.1.1 One-dimensional CNN (1DCNN)

A traditional two-dimensional CNN (2DCNN) is designed

to take advantage of the spatial features in 2D images by

using locally connected and tied-weights convolutional

filters that operate on multiple pixels simultaneously rather

than a single pixel [56, 70], and this approach can better

detect the dependencies between pixels. In a 2DCNN, 2D

input data are first converted into 3D data (width, height,

and depth), where the depth of 1 for a one-band image and

3 for a three-band image (red, green, blue). Next, a feature

map is obtained by multiple applications of convolution

operators across sub-regions of the entire image, which first

add a bias term and then apply a nonlinear activation

function. If the kth feature map at a given layer is repre-

sented as hk, whose filters are determined by weights Wk

and bias bk, the feature map hk is then expressed by

hkij ¼ r Wk � xð Þ þ bkð Þ; ð1Þ

where � is the convolution operator,

Wk � x ¼
P

m

P

n
x i� m; j� nð ÞWk m; nð Þ, and r is the acti-

vation function.

Fig. 1 Models for simulation: a vehicle model and b track model

Table 2 Primary parameters of the track model

Parameter Value Unit

Fastener stiffness (lateral kfy, vertical kfz) 30,000, 1,50,000 kN/m

Cement–asphalt mortar stiffness (lateral kby, vertical kbz) 70,000, 1,40,000 kN/m

Fastener damping (lateral cfy, vertical cfz) 150, 100 kNs/m

Cement–asphalt mortar damping (lateral cby, vertical cbz) 350, 1,400 kNs/m

Wheel–rail contact damping 100 kNs/m

Wheel–rail contact algorithm Hertzian ? FASTSIM –

Wheel–rail friction coefficient 0.35 –

Poisson ratio 0.28 –

Rail cant 1:40

Rail profile CHN60 –

102 Y. Ye et al.

123 Rail. Eng. Science (2022) 30(1):96–116



However, for 1D time-series data, such as the acceler-

ation data used in this paper, 1DCNN is usually a more

ideal choice [71]. Figure 4 shows the difference between

the 2DCNN and 1DCNN, where applying 2DCNN to a 2D

image will generate a 2D image, whereas applying 1DCNN

to a 1D image will generate a 1D image. The convolutional

filter of the 1DCNN is one-dimensional, which enables it to

detect the interdependencies in 1D data.

3.1.2 The Architecture of the designed 1DCNN

The architecture of the 1DCNN model designed in our

work is shown in Fig. 5. The proposed model includes 7

main blocks, the first 5 blocks are designed for feature

extraction, among which each block consists of a 1DCNN

layer, an advanced activation function (AAF) layer, and a

max-pooling layer. The last two blocks are designed for
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classification, where each includes a fully connected layer

and an activation layer.

For the design of the 1DCNN layer, existing studies

[56, 70] have shown that the feature maps should change

from wide and shallow to narrow and deep from the input

layer to the output layer. This rule has proven to be very

effective in many successful CNN models, such as the

classic AlexNet [56] and VGGNet [70]. This article,

therefore, follows this rule to adjust the number of the

convolution kernels in the CNN layer part, i.e., the number

of CNN convolution kernels in each subsequent layer is

twice that of the previous layer. This strategy can increase

the depth of the feature maps from the first block to the last

block. In our model, the number of convolution kernels in

the first CNN layer (block 1) is set to 32, and the number of

convolution kernels in the last CNN layer (block 5) is 512.

For the selection of the activation function, most studies

on CNN models use the rectified linear unit (ReLU)

function [72]. This function, however, has a disadvantage,

that is, a too-large learning rate or gradients could easily

lead to the ‘‘death’’ of neurons, and the ReLU function

often cannot perform well when the nonlinear relationship

of the input dataset is very complicated [73]. The vehicle

suspension system is a highly nonlinear system. For signals

from such systems, this activation function is obviously not

an ideal choice. Therefore, an advanced activation func-

tion, parametric rectified linear unit (PReLU) proposed in

[73], is used in our work, and the expression is given:

f yið Þ ¼ yi
aiyi

�
if yi [ 0

if yi � 0
; ð2Þ

2D 

convolution

Input: 3D tensor Output: 3D tensor

1D 

convolution

Input: 2D tensor Output: 2D tensor
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where yi is the input of the activation function on the ith

channel, which is the output of 1DCNN in this work; ai is a

coefficient controlling the slope of the negative part, whose

value can be automatically learned from the data during the

training phase to meet the dataset of different nonlinear

relationships.

The design of the pooling layer is critical for the CNN

model since it can significantly reduce the model param-

eters and the time required for training without sacrificing

model accuracy [55, 60]. Therefore, after the 1DCNN and

activation function layers of each block in the first 5

blocks, a local max-pooling layer is added to extract the

key features of the 1DCNN layer output and reduce the

model parameters. In addition, the stride of each max-

pooling layer is set to 2, which can reduce the width of the

feature maps. Further, in order to allow the output results of

the 1DCNN model to be the input of the fully connected

layer later (block 6), it is also necessary to transform the

dimension of the output results of 1DCNN. This article

uses the global average pooling layer [74] to replace the

original flatten layer, which can further reduce the model

parameters and increase efficiency.

In the first fully connected layer (block 6), the number of

neurons is set to 64, and the advanced activation function

PReLU is used as the activation function. The number of

neurons in the last fully connected layer (block 7) is set to 4

since the number of fault categories in this work is 4 (see

Sect. 4), and then, the Softmax [75] classification function

is used as the activation function to output the model’s

predicted probability for each type of failure.

3.2 Two strategies for increasing robustness against

track irregularities and wheel wear

3.2.1 Gaussian white noise strategy against track

irregularities

Track irregularities affect the dynamic characteristics of

railway vehicles, including the signals required for sus-

pension fault diagnosis. Under different track irregularity

conditions, the amplitude and frequency distribution of

acceleration are often different, which may affect the

robustness of the fault diagnosis method. Figure 6 shows

the lateral acceleration distributions of the bogie frame

under three different track irregularity conditions when the

yaw damper fails (YDF). It can be clearly seen that

although the three signals have roughly the same trend

distribution, such as the frequency of the peaks, there are

some different relatively high-frequency and low ampli-

tude impact components between the two peaks.

In order to make the fault diagnostic network immune to

these relatively high-frequency and low amplitude impact

components, a strategy of adding Gaussian white noise to

the original signal is proposed to overcome these impact

components caused by the track irregularities, i.e., the

GWN-strategy. This strategy of adding GWN to the raw

signal is often used in signal processing and pattern

recognition. For instance, it is commonly used in empirical

modal decomposition (EMD), and the method named

ensemble empirical modal decomposition (EEMD) has

been developed based on this [76]. It should be noticed that

the amplitude of noise affects the diagnosis accuracy.

However, there is no specific equation reported in the lit-

erature to guide the choice of the noise amplitude until

now. Thus, for an investigated signal, different noise levels

should be tried to select the appropriate one. In this paper,

after many trials, it is suggested that the amplitude of the

added white noise is about 0.2 times the standard deviation

of the investigated signal. This value is also suggested

when using EEMD proposed in Ref. [76]. It is important to

note that such an approach of adding white noise does not

eliminate the high-frequency components of the signal,

rather it makes all signals have high-frequency components

and thus, the diagnostic method is immune to these high-

frequency components. Such a similar approach is also

commonly used in CNN-based image recognition [77]. The

feasibility of this strategy is demonstrated in Sect. 4.

3.2.2 Edge sample training strategy against wheel wear

As described in Sect. 2.2.2, the wheel profile will change

as the train running mileage increases. This process is a

continuous process, which will always affect the bogie

frame acceleration. Figure 7 shows the bogie frame lateral

accelerations for a new S1002CN profile, a worn S1002CN

profile after running 95,000 km (S1002CN-W95K), and a

worn S1002CN profile after running 1,95,000 km

(S1002CN-W190K) when the yaw damper fails; it can be

clearly seen that as the wear increases, the vibration

amplitude of the bogie acceleration also increases. There-

fore, using the dataset trained under the new wheel profile

Fig. 6 Lateral acceleration of the bogie frame under three different

track irregularity conditions (YDF, S1002CN profile)
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(S1002CN) to identify the dataset under the worn wheel

profiles (S1002CN-W95K and S1002CN-W190K) may

cause misidentification, i.e., the fault diagnosis method

may incorrectly attribute the change in the bogie acceler-

ation to a failure of the vehicle suspension system.

To overcome the above problem, an EST-strategy is

proposed in this paper, i.e., during the phase of training

dataset establishment, the dataset corresponding to the new

wheel profile (S1002CN) and the dataset corresponding to

the most worn wheel profile (S1002W190K) are used as the

training dataset for the fault diagnosis method. With the

EST-strategy, the interference of the wheel wear on the

robustness of the fault diagnosis method can be suppressed,

and it is not necessary to train the dataset corresponding to

each worn wheel profile evolved during the running of the

wheel (of course, it is also unrealistic). The feasibility of

this strategy is demonstrated in Sect. 4.

3.3 Diagnostic network of railway vehicle

suspension systems

Finally, the architecture of the designed diagnostic network

of train suspension systems is illustrated in Fig. 8. The

whole process is called GWN-EST-1DCNN method, and it

consists of the following three phases:

Phase I Data preprocessing. In this phase, firstly, the

bogie frame accelerations concerning different faults are

collected, and the GWN-strategy described in Sect. 3.2.1

is then applied to the original acceleration signals.

Phase II Training dataset establishment. Based on the

ETS-strategy described in Sect. 3.2.2, the samples

corresponding to the new wheel profile (S1002CN) and

the samples corresponding to the most worn wheel

profile (S1002CN-W190K) are chosen as the training

dataset for the diagnostic network, and their upper

envelopes are extracted.

Phase III Fault diagnosis and visualization. Using the

1DCNN designed in Sect. 3.1.2 to train and classify

different kinds of faults, and the final results are

visualized by Andrews curve [78].

Andrews curve is a method for visualizing high-di-

mensional datasets by mapping each observation onto a

function. For a k-dimensional dataset,

ni ¼ xi1; xi2; . . .; xikð Þ. The Andrews curve is a plot of ðt; yitÞ
in the range of t 2 �p; p½ �, where yit is given by

yit ¼
xi1
2
þ xi2 cos k1tð Þ þ xi3 sin k1tð Þ

þxi4 cos k2tð Þ þ xi5 sin k2tð Þ þ . . .:
ð3Þ

where ki ¼ i; i ¼ 1; 2; . . . It indicates that Andrews curves

that are represented by functions close together suggest that

the corresponding data points will also be close together,

and thus, Andrews curve is suitable for visualizing the

clustering and classification of high-dimensional datasets.

More information concerning Andrews curve can be found

in [79].

4 Simulation

In the simulation experiment, a normal state and three

failure states are constructed. Firstly, the secondary lateral

dampers, the yaw dampers, and both the yaw dampers and

the secondary lateral dampers of the front bogie are,

respectively, removed (abbreviated as LDF, YDF, and

Y&LDF, respectively). Secondly, simulation experiments

are performed under the normal state and these three dif-

ferent failure states (i.e., normal, LDF, YDF, and Y&LDF),

respectively. Besides, a tri-axial accelerometer is installed

on the bogie frame (see Fig. 8). The reason for the

accelerometer position is that we plan to use the data

collected by only one sensor in the future to monitor the

faults including primary suspension faults (only secondary

suspension faults are tested in this paper), and using the

vibration acceleration data from the bogie frame is a

compromise choice. The sampling frequency is selected as

250 Hz. The acceleration signal used in this work is the

lateral acceleration signal from the tri-axial accelerometer.

The vehicle speed is equal to 250 km/h. The specific fault

construction process was described in detail in the authors’

previous work [3].

The simulation experiment consists of 4 cases. Case I

(Sect. 4.1.1) shows the feasibility of using the designed

1DCNN method for train suspension systems in the case of

the same railway line and the same wheel profile. Through

the univariate analysis method, Case II (Sect. 4.1.2) and

Fig. 7 Lateral acceleration of the bogie frame under three different

wheel profiles (YDF, WG-line)
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Case III (Sect. 4.1.3), respectively, demonstrate that the

GWN-strategy can overcome the interference caused by

track irregularities, and the EST-strategy can overcome the

interference caused by wheel wear. Through the multi-

variate analysis method, Case IV (Sect. 4.1.4)

demonstrates that the GWN-EST-1DCNN method is not

disturbed by simultaneous changes in track irregularities

and wheel wear.
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4.1 Case I (same line and same wheel profile)

A vehicle model, with S1002CN wheel profiles, running on

the WG line is taken as an example to illustrate the fea-

sibility of using the 1DCNN method for train suspension

systems in the case of the same railway line and the same

wheel profile. The training dataset and testing dataset are,

respectively, composed of 3,456 samples and 1,408 dif-

ferent samples, respectively (see Table 3). The length of

each sample is t ¼ 5 s. According to the designed network

of the 1DCNN described in Sect. 3.1, the final results,

including the convergence rate, confusion matrix, and

visualization features, are shown in Fig. 9. Figure 9a

indicates that the designed 1DCNN method with 30 epochs

is convergent. The confusion matrix for the testing samples

is shown in Fig. 9b, and it can be seen that all the states can

be totally distinguished by the 1DCNN method (100%). To

visualize the classification and clustering results, Andrews

plot is presented in Fig. 9c, which shows that the four

states can be completely separated and the clustering result

is excellent. Overall, Fig. 9 indicates that the designed

Table 3 The number of samples in different cases

Case Training dataset and the number of trained

samples (normal, LDF, YDF, Y&LDF)

Testing dataset and the number of tested

samples (normal, LDF, YDF, Y&LDF)

I WG-line: 864, 864, 864, 864 WG-line: 352, 352, 352, 352

II WG-line: 864, 864, 864, 864 ZX-line: 1,248, 1,248, 1,248, 1,248

JJ-line: 1,248, 1,248, 1,248, 1,248

III WG-line: 864, 864, 864, 864 WG-line: 352, 352, 352, 352

IV WG-line: 864, 864, 864, 864 ZX-line: 1,248, 1,248, 1248, 1248

JJ-line: 1,248, 1,248, 1,248, 1,248

(b) (c)
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Fig. 9 Results for S1002CN profile and WG-line: a convergence rate, b recognition, and c visualization
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1DCNN can diagnose the secondary suspension faults and

has the potential to be applied in RVSFD.

4.2 Case II (same wheel profile, and different

railway lines)

To demonstrate that the GWN-strategy can improve the

robustness of the diagnostic method against track irregu-

larities, three measured track irregularities plotted in Fig. 4

are introduced here. The wheel profile used here is

S1002CN. The training dataset and testing dataset are

composed of 3,456 samples and 4,992 different samples,

respectively (see Table 3). Finally, the results are shown in

Fig. 10. It can be clearly seen that the LDF state cannot be

well distinguished without the GWN-strategy. On the ZX-

line, 47.9% of the LDF state was incorrectly identified as

the normal state, and the corresponding incorrect recogni-

tion rate is 11.6% on the JJ-line. However, with the GWN-

strategy, the corresponding incorrect recognition rates

decrease from 47% and 11.6% to 16% and 4%, respec-

tively; and the classification and clustering effect become

better since it can be clearly seen that for the case of ZX-

line and Without GWN-strategy, the Andrew curve cannot

show the LDF state (blue curve) at all. The simulation

experiment proves that the GWN-strategy can improve the

robustness against track irregularities.

4.3 Case III (same railway line, and different wheel

profiles)

To demonstrate that the EST-strategy can improve the

robustness of the diagnostic method against wheel wear, a

new S1002CN wheel profile, the most worn wheel profile

(S1002CN-W190K), and a wheel profile with a degree of

wear between the two profiles (S1002CN-W95K) are

introduced here (See Fig. 3). The rail line used here is the

WG-line. The training dataset and testing dataset are

composed of 3,456 samples and 1,480 different samples,

respectively (see Table 3). Note that when using the EST-

strategy, the samples of the training dataset are randomly

selected from the dataset corresponding to the S1002CN

wheel profile and the dataset corresponding to the

S1002CN-W190K wheel profile, while without the EST-

strategy, the training dataset is only the dataset corre-

sponding to the S1002CN wheel profile; the testing dataset

is the dataset corresponding the S1002CN-W95K. Fig-

ure 11 shows the recognition results obtained by these two

methods. It can be seen that, without the EST-strategy,

29.9% of the normal state is incorrectly identified as LDF,
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and all the Y&LDF samples are incorrectly recognized as

YDF. By contrast, when using the EST-strategy, the

accuracy is significantly improved. Besides, the Andrews

curve also shows that when the EST strategy is applied, the

difference in the curve distribution of these four faults

becomes obvious. The simulation experiment proves that

the EST-strategy can improve the robustness against wheel

wear.

4.4 Case IV (different railway lines, and different

wheel profiles)

In this subsection, we test the fault states under different

track irregularities and different wheel profiles, and the

training dataset and testing dataset are composed of 3,456

samples and 4,992 different samples, respectively (see

Table 3). According to the technique route of the GWN-

EST-1DCNN method described in Sect. 3.3, the final

results in Fig. 12 show that, compared with simply using

the 1DCNN method, the GWN-EST-1DCNN method can

classify fault states regardless of whether the profile

changes or the railway line changes except for a slightly

worse prediction of the LDF samples on the ZX-line.

Overall, it can be concluded that the recognition result is

greatly improved.

4.5 Discussion

The advantages of the proposed GWN-EST-1DCNN

method mainly arise from the following two aspects:

(1) Track irregularities affect the bogie accelerations

required for train suspension fault diagnosis. Under

different track irregularities, there are some different

relatively high-frequency and low amplitude impact

components in these acceleration signals. The strat-

egy of adding Gaussian white noise (GWN-strategy)

to the original acceleration signals can improve the

immunity of the diagnostic method to track irregu-

larities since this strategy reduces the sensitivity of

diagnostic methods to changes in track spectrum.

(2) The wheel profile will change as the train running

mileage increases. As the mileage increases, the

amplitude of the bogie acceleration also increases.

Therefore, using the dataset trained under the new

wheel profile to identify the dataset under the worn

wheel profiles may cause misidentification, i.e., the

fault diagnostic method may incorrectly attribute the

change in the bogie acceleration to a failure of the

vehicle suspension system. The EST-strategy can

improve the immunity of the diagnostic method to

wheel wear mainly due to two reasons: (I) The

training dataset of the diagnostic method covers a

wider range of samples, which can identify the testing

dataset to a certain extent more accurately. (II)
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Training the diagnostic method with the datasets

corresponding to the new wheel profile and the most

worn wheel profile makes the method immune to the

changes in the acceleration amplitude caused by

wheel wear to a certain extent.

5 5. Experimental verification

5.1 Experiment setup

The actual operating conditions of railway vehicles are

more complicated. To verify the performance of the

1DCNN method in real-life conditions, the field tracking

data of a CRH3 train running on a high-speed railway line

are applied. More information concerning the monitoring

system can be found in [3]. The acceleration was measured

through a tri-axial accelerometer mounted on the bogie

frame (see Fig. 13), and the original sampling frequency

was equal to 2 kHz. In our work, the lateral acceleration

signal from the tri-axial accelerometer with a resampling

frequency 250Hz is used.

When processing the tracking data, it was found that the

acceleration signal of front bogie at the third car was

abnormally vibrating, and its amplitude, for most of the

time, was usually greater than that of the acceleration

signal of other front bogies. Upon inspection, it was found

that a hydraulic cylinder of the secondary lateral damper at

the front bogie of the third car was short of oil (see

Fig. 13b). Figure 13c shows the vehicle speed, the lateral

acceleration of the front bogie at the third car (abnormal),

and the lateral acceleration of the front bogie at the second

car (normal).

5.2 Fault diagnosis

Three states, including the normal (normal), the lateral

damper failure at the speed of 80–100 km/h (LDF80–100),

and the lateral damper failure at the speed of 180–200 km/

h (LDF180–200), are selected for analysis. The training

dataset and testing dataset are, respectively, composed of

2,560 samples (normal: 1000; LDF80–100: 780; LDF180–

200: 780) and 1024 samples (normal: 500; LDF80–100:

262; LDF180–200: 262), and the length of each sample is

t ¼ 5 s. The designed 1DCNN method described in

Sect. 3.1 is applied to these signals, and the final results,

including the convergence rate, confusion matrix, and

Andrews curve, are shown in Fig. 14. Figure 14a indicates

that the proposed 1DCNN method with 30 epochs is con-

vergent. The confusion matrix for the testing samples is

provided in Fig. 14b, and it can be seen that all the states

can be totally distinguished (100%). Andrews plot

presented in Fig. 14c shows that the three states can be

completely separated and the clustering result is excellent.

The experiment results obtained using the field tracking

data further verify that the proposed 1DCNN-based method

can accurately identify the faults of the vehicle suspension

systems at different speeds.

Due to the limitation of experimental resources, this

paper only verified the method of 1DCNN to identify the

secondary lateral damper failure using the field tracking

data.
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6 Conclusion

Track irregularities and wheel wear will affect the vibration

signals used for condition monitoring of railway vehicles.

The developed fault diagnosis method for train suspension

systems, therefore, must be guaranteed to be immune to

changes resulting from the track irregularities and wheel

wear before being put into use. Aiming at solving this

issue, a GWN-EST-1DCNN-based method for high-speed

train suspension systems is proposed. This method consists

of three phases. In the first phase (data preprocessing), a

strategy of adding Gaussian white noise (GWN-strategy) is

applied to the original signal, making the diagnostic

method be immune to the interference caused by track

irregularities. In the second phase (training dataset estab-

lishment), an EST-strategy is proposed to improve the

robustness of the diagnostic network against wheel wear. In

the third phase (training and recognition), a 1DCNN-based

fault diagnostic network of high-speed train suspension

systems is built. Simulation experiments show the superi-

ority and correctness of the proposed method. In addition,

the field tracking data of a CRH3 train running on a high-

speed railway line are used to further verify the effective-

ness of the 1DCNN method. The test results show that the

method has the potential to be applied in the field of rail-

way engineering.

This paper ends with the following notes. (1) It should

be noted that the trained DL algorithm is extremely sen-

sitive to the vehicle speed because the axlebox acceleration

caused by different suspension faults varies at different

vehicle speeds. Therefore, during on-board monitoring, the

suspension status can be determined by obtaining the

axlebox acceleration at a constant speed (e.g., 200 km/h or

250 km/h). However, to achieve real-time monitoring,

more velocity conditions need to be further analyzed. (2) In

the simulation experiments, only the complete damage of

the dampers in the secondary suspension system is simu-

lated. The degradation of suspension systems, including

dampers, will be studied in the following-up work. (3) In

the field experimental part, due to the limitation of exper-

imental resources, this paper only verified the method of

1DCNN to identify the secondary lateral damper failure

using the field tracking data.
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