Skip to main content

Advertisement

Log in

Intraperitoneal CMP-001: A Novel Immunotherapy for Treating Peritoneal Carcinomatosis of Gastrointestinal and Pancreaticobiliary Cancer

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The treatment options for patients with peritoneal carcinomatosis (PC) of gastrointestinal and pancreaticobiliary origins are limited. The virus-like particle, CMP-001, composed of the Qβ bacteriophage capsid protein encapsulating a CpG-A oligodeoxynucleotide, activates plasmacytoid dendritic cells (pDCs) and triggers interferon alpha (IFNα) release, leading to a cascade of anti-tumor immune effects.

Methods

To evaluate the ability of CMP-001 to trigger an immune response in patients with PC, peritoneal cells were isolated and stimulated ex vivo with CMP-001. Both IFNα release and percentage of pDC were quantified using enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. To evaluate the anti-tumor response in vivo, murine PC models were generated using mouse cancer cell lines (Panc02 and MC38) in immunocompetent mice treated with intraperitoneal CMP-001 or saline control. Survival was followed, and the immunophenotype of cells in the peritoneal tumor microenvironment was evaluated.

Results

The pDCs accounted for 1% (range 0.1–3.9%; n = 17) of the isolated peritoneal cells. Ex vivo CMP-001 stimulation of the peritoneal cells released an average of 0.77 ng/ml of IFNα (range, 0–4700 pg/ml; n = 14). The IFNα concentration was proportional to the percentage of pDCs present in the peritoneal cell mixture (r = 0.6; p = 0.037). In murine PC models, intraperitoneal CMP-001 treatment elicited an anti-tumor immune response including an increase in chemokines (RANTES and MIP-1β), pro-inflammatory cytokines (IFNγ, interleukin 6 [IL-6], and IL-12), and peritoneal/tumor immune infiltration (CD4+/CD8+ T and natural killer [NK] cells). The CMP-001 treatment improved survival in both the Panc02 (median, 35 vs 28 days) and the MC38 (median: 57 vs 35 days) PC models (p < 0.05).

Conclusions

As a novel immunotherapeutic agent, CMP-001 may be effective for treating patients with PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Elias D, Gilly F, Boutitie F, et al. Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: retrospective analysis of 523 patients from a multicentric French study. J Clin Oncol. 2010;28:63–8.

    Article  PubMed  Google Scholar 

  3. Franko J, Shi Q, Goldman CD, et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of North Central Cancer Treatment Group phase III trials N9741 and N9841. J Clin Oncol. 2012;30:263–7.

    Article  PubMed  Google Scholar 

  4. Franko J, Shi Q, Meyers JP, et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol. 2016;17:1709–19.

    Article  PubMed  Google Scholar 

  5. Thomassen I, van Gestel YR, Lemmens VE, de Hingh IH. Incidence, prognosis, and treatment options for patients with synchronous peritoneal carcinomatosis and liver metastases from colorectal origin. Dis Colon Rectum. 2013;56:1373–80.

    Article  PubMed  Google Scholar 

  6. van Oudheusden TR, Razenberg LG, van Gestel YR, Creemers GJ, Lemmens VE, de Hingh IH. Systemic treatment of patients with metachronous peritoneal carcinomatosis of colorectal origin. Sci Rep. 2015;5:18632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Labidi-Galy SI, Sisirak V, Meeus P, et al. Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer. Cancer Res. 2011;71:5423–34.

    Article  CAS  PubMed  Google Scholar 

  8. Wertel I, Polak G, Bednarek W, Barczynski B, Rolinski J, Kotarski J. Dendritic cell subsets in the peritoneal fluid and peripheral blood of women suffering from ovarian cancer. Cytometry B Clin Cytom. 2008;74:251–8.

    Article  CAS  PubMed  Google Scholar 

  9. Mitchell D, Chintala S, Dey M. Plasmacytoid dendritic cell in immunity and cancer. J Neuroimmunol. 2018;322:63–73.

    Article  CAS  PubMed  Google Scholar 

  10. Makkouk A, Joshi VB, Wongrakpanich A, et al. Biodegradable microparticles loaded with doxorubicin and CpG ODN for in situ immunization against cancer. AAPS J. 2015;17:184–93.

    Article  CAS  PubMed  Google Scholar 

  11. Krieg AM. CpG still rocks! Update on an accidental drug. Nucleic Acid Ther. 2012;22:77–89.

    Article  CAS  PubMed  Google Scholar 

  12. Lemke-Miltner CD, Blackwell SE, Yin C, Krug AE, Morris AJ, Krieg AM, Weiner GJ. Antibody opsonization of a TLR9-agonist-containing virus-like particle enhances in situ immunization. J Immunol. 2020;204:1386–94.

    Article  CAS  PubMed  Google Scholar 

  13. De Cesare M, Calcaterra C, Pratesi G, et al. Eradication of ovarian tumor xenografts by locoregional administration of targeted immunotherapy. Clin Cancer Res. 2008;14:5512–8.

    Article  PubMed  Google Scholar 

  14. De Cesare M, Sfondrini L, Campiglio M, et al. Ascites regression and survival increase in mice bearing advanced-stage human ovarian carcinomas and repeatedly treated intraperitoneally with CpG-ODN. J Immunother. 2010;33:8–15.

    Article  PubMed  CAS  Google Scholar 

  15. De Cesare M, Sfondrini L, Pennati M, et al. CpG-oligodeoxynucleotides exert remarkable antitumor activity against diffuse malignant peritoneal mesothelioma orthotopic xenografts. J Transl Med. 2016;14:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ray A, Dittel BN. Isolation of mouse peritoneal cavity cells. J Vis Exp. 2010;35:1488.

    Google Scholar 

  17. Hemmi H, Takeuchi O, Kawai T, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–5.

    Article  CAS  PubMed  Google Scholar 

  18. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15:471–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression: implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16:356–71.

    Article  CAS  PubMed  Google Scholar 

  20. Negus RP, Stamp GW, Hadley J, Balkwill FR. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am J Pathol. 1997;150:1723–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Maghazachi AA, Al-Aoukaty A, Schall TJ. CC chemokines induce the generation of killer cells from CD56 + cells. Eur J Immunol. 1996;26:315–9.

    Article  CAS  PubMed  Google Scholar 

  22. Menten P, Wuyts A, Van Damme J. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev. 2002;13:455–81.

    Article  CAS  PubMed  Google Scholar 

  23. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4:540–50.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshimura T, Robinson EA, Tanaka S, Appella E, Kuratsu J, Leonard EJ. Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J Exp Med. 1989;169:1449–59.

    Article  CAS  PubMed  Google Scholar 

  25. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.

    Article  CAS  PubMed  Google Scholar 

  26. Ardolino M, Azimi CS, Iannello A, et al. Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J Clin Invest. 2014;124:4781–94.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Athie-Morales V, Smits HH, Cantrell DA, Hilkens CM. Sustained IL-12 signaling is required for Th1 development. J Immunol. 2004;172:61–9.

    Article  CAS  PubMed  Google Scholar 

  28. Murphy KM, Ouyang W, Farrar JD, et al. Signaling and transcription in T helper development. Annu Rev Immunol. 2000;18:451–94.

    Article  CAS  PubMed  Google Scholar 

  29. Ruffell B, Chang-Strachan D, Chan V, et al. Macrophage IL-10 blocks CD8 + T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26:623–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okada M, Kitahara M, Kishimoto S, Matsuda T, Hirano T, Kishimoto T. IL-6/BSF-2 functions as a killer helper factor in the in vitro induction of cytotoxic T cells. J Immunol. 1988;141:1543–9.

    CAS  PubMed  Google Scholar 

  31. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28:445–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morano WF, Aggarwal A, Love P, Richard SD, Esquivel J, Bowne WB. Intraperitoneal immunotherapy: historical perspectives and modern therapy. Cancer Gene Ther. 2016;23:373–81.

    Article  CAS  PubMed  Google Scholar 

  33. Heiss MM, Murawa P, Koralewski P, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong H, Brown CE, Ostberg JR, et al. L1 Cell Adhesion molecule-specific chimeric antigen receptor-redirected human T cells exhibit specific and efficient antitumor activity against human ovarian cancer in mice. PLoS ONE. 2016;11:e0146885.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ma Z, Li W, Yoshiya S, et al. Augmentation of immune checkpoint cancer immunotherapy with IL18. Clin Cancer Res. 2016;22:2969–80.

    Article  CAS  PubMed  Google Scholar 

  36. Strohlein MA, Heiss MM. The trifunctional antibody catumaxomab in treatment of malignant ascites and peritoneal carcinomatosis. Future Oncol. 2010;6:1387–94.

    Article  PubMed  Google Scholar 

  37. Hofmann MA, Kors C, Audring H, Walden P, Sterry W, Trefzer U. Phase 1 evaluation of intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J Immunother. 2008;31:520–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kim YH, Girardi M, Duvic M, et al. Phase I trial of a toll-like receptor 9 agonist, PF-3512676 (CPG 7909), in patients with treatment-refractory, cutaneous T-cell lymphoma. J Am Acad Dermatol. 2010;63:975–83.

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Song W, Czerwinski DK, et al. Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either in the host or in the tumor itself. J Immunol. 2007;179:2493–500.

    Article  CAS  PubMed  Google Scholar 

  40. Molenkamp BG, Sluijter BJ, van Leeuwen PA, et al. Local administration of PF-3512676 CpG-B instigates tumor-specific CD8 + T-cell reactivity in melanoma patients. Clin Cancer Res. 2008;14:4532–42.

    Article  CAS  PubMed  Google Scholar 

  41. Wang S, Campos J, Gallotta M, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8 + T cells. Proc Natl Acad Sci U S A. 2016;113:E7240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Witzig TE, Wiseman GA, Maurer MJ, et al. A phase I trial of immunostimulatory CpG 7909 oligodeoxynucleotide and 90 yttrium ibritumomab tiuxetan radioimmunotherapy for relapsed B-cell non-Hodgkin lymphoma. Am J Hematol. 2013;88:589–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sommariva M, de Cesare M, Meini A, et al. High efficacy of CpG-ODN, cetuximab and cisplatin combination for very advanced ovarian xenograft tumors. J Transl Med. 2013;11:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Storni T, Ruedl C, Schwarz K, Schwendener RA, Renner WA, Bachmann MF. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J Immunol. 2004;172:1777–85.

    Article  CAS  PubMed  Google Scholar 

  45. Schlecht G, Garcia S, Escriou N, Freitas AA, Leclerc C, Dadaglio G. Murine plasmacytoid dendritic cells induce effector/memory CD8 + T-cell responses in vivo after viral stimulation. Blood. 2004;104:1808–15.

    Article  CAS  PubMed  Google Scholar 

  46. Krug A, Rothenfusser S, Hornung V, et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol. 2001;31:2154–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Holden Comprehensive Cancer Center through funds from the “Mezhir Awards for Collaborative Research” and the National Cancer Institute of the National Institutes of Health under award number P30 CA086862 for supporting the Molecular Epidemiology Resource Core and Flow Cytometry Facility. Ann M. Miller was supported by the National Institutes of Health Free Radical and Radiation Biology T32 CA078586 training grant. The investigational agent CMP-001 was kindly provided by Checkmate Pharmaceuticals. The Panc02 and MC38 cells were kind gifts from Dr. Xinhui Wang (Massachusetts General Hospital, MA) and Dr. Lorenzo Ferri (McGIll University, PQ, Canada), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. F. Chan MD, PhD.

Ethics declarations

Disclosure

Caitlin Lemke-Miltner holds stock options in Checkmate Pharmaceuticals. Sue Blackwell owns stocks and holds stock options in Checkmate Pharmaceuticals. George J. Weiner received research funding from Checkmate Pharmaceuticals, but not for this work. Carlos H. F. Chan received the study compound CMP-001 from Checkmate Pharmaceuticals, but did not receive any research funding for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, A.M., Lemke-Miltner, C.D., Blackwell, S. et al. Intraperitoneal CMP-001: A Novel Immunotherapy for Treating Peritoneal Carcinomatosis of Gastrointestinal and Pancreaticobiliary Cancer. Ann Surg Oncol 28, 1187–1197 (2021). https://doi.org/10.1245/s10434-020-08591-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-020-08591-7

Navigation