Skip to main content
Log in

The Aharonov–Bohm Effect: an Algebraic Approach

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

An algebraic approach to the Aharonov–Bohm effect is considered. The constructed mathematical scheme agrees with experimental data and provides a clear physical interpretation of this effect that does not contradict classical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in quantum theory,” Phys. Rev. 115, 485–491 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. R. G. Chambers, “Shift of an electron interference pattern by enclosed magnetic flux,” Phys. Rev. Lett. 5, 3 (1960).

    Article  ADS  Google Scholar 

  3. N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano, and H. Yamada, “Experimental confirmation of Aharonov–Bohm effect using a toroidal magnetic field confined by a superconductor,” Phys. Rev. A 34, 815–822 (1986).

    Article  ADS  Google Scholar 

  4. Y. Aharonov, E. Cohen, and D. Rohrlich, “Nonlocality of the Aharonov–Bohm effect,” Phys. Rev. A 93, 42110 (2016).

    Article  ADS  Google Scholar 

  5. J. A. Wheeler, Mathematical Foundation of Quantum Theory (Academic, New York, 1978).

    Google Scholar 

  6. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 966–968 (2007).

    Article  ADS  MATH  Google Scholar 

  7. D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Quantum teleportation protocol,” in The Physics of Quantum Information, Ed. by D. Bouwmeester, A. K. Ekert, and A. Zeilinger (Springer, 2000), p. 51.

    Book  MATH  Google Scholar 

  8. D. Bouwmeester, J. W. Pan, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation of qubits,” in The Physics of Quantum Information, Ed. by D. Bouwmeester, A. K. Ekert, and A. Zeilinger (Springer, 2000), p. 67.

    Book  MATH  Google Scholar 

  9. Y.-H. Kim, R. Yu, S. P. Kulik, Y. Shih, and M. O. Scully, “Delayed “choice” quantum eraser,” Phys. Rev. Lett. 84, 1–5 (2000).

    Article  ADS  Google Scholar 

  10. X. S. Ma, J. Kofler, A. Qarry, N. Tetik, T. Scheidl, R. Ursin, S. Ramelow, T. Herbst, L. Ratschbacher, A. Fedrizzl, T. Jennew, and A. Zellinger, “Quantum erasure with causally disconnected choice,” Proc. Natl. Acad. Sci. U. S. A. 110, 1221–1226 (2013).

    Article  ADS  Google Scholar 

  11. D. A. Slavnov, “Quantum teleportation,” Theor. Math. Phys. 157, 1433 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. A. Slavnov, “The locality problem in quantum measurements,” Phys. Part. Nucl. 41, 149–173 (2010).

    Article  Google Scholar 

  13. D. A. Slavnov, “The wave-particle duality,” Phys. Part. Nucl. 46, 665–677 (2015).

    Article  Google Scholar 

  14. D. A. Slavnov, “Quantum erasure and the locality problem,” Phys. Part. Nucl. 48, 622–634 (2017).

    Article  Google Scholar 

  15. H. Araki, “On the algebra of all local observables,” Prog. Theor. Phys. 32, 844–854 (1964).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. R. Haag and D. Kastler, “An algebraic approach to quantum field theory,” J. Math. Phys. 5, 848–861 (1964).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley, 1972).

    MATH  Google Scholar 

  18. S. S. Khoruzhii, Introduction to Algebraic Quantum Field Theory (Nauka, Moscow, 1986).

    Google Scholar 

  19. N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Nauka, Moscow, 1987).

    MATH  Google Scholar 

  20. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics (Springer, 1979).

    Book  MATH  Google Scholar 

  21. I. E. Segal, Mathematical Problems of Relativistic Physics (American Mathematical Society, 1963).

    MATH  Google Scholar 

  22. J. Dixmier, Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1969).

    MATH  Google Scholar 

  23. D. A. Slavnov, “Measurements and mathematical formalism of quantum mechanics,” Phys. Part. Nucl. 38, 147–176 (2007).

    Article  Google Scholar 

  24. A. N. Kolmogorov, Basic Concepts of Probability Theory (Nauka, Moscow, 1974).

    Google Scholar 

  25. J. Neveu, Bases mathématiques du calcul des probabilités (Masson & Cie, 1964).

    MATH  Google Scholar 

  26. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge Univ. Press, 1993), pp. 14–21.

    Google Scholar 

  27. D. A. Slavnov, “The possibility of reconciling quantum mechanics with classical probability theory,” Theor. Math. Phys. 149, 1690 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. A. Naimark, Normed Rings (Nauka, Moscow, 1968).

    MATH  Google Scholar 

  29. E. L. Feinberg, “On the 'special role' of the electromagnetic potentials in quantum mechanics” Sov. Phys. Usp. 5, 753–760 (1963).

    Article  ADS  Google Scholar 

  30. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Avalon, 1995).

    Google Scholar 

  31. L. de Broglie, The Revolution in Physics: A Non-mathematical Survey of Quanta (Noonday Press, New York, 1959).

    MATH  Google Scholar 

  32. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  33. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A. Tonomura, J. Endo, T. Matsuda, and T. Kawasaki, “Demonstration of single-electron buildup of an interference pattern,” Am. J. Phys. 57, 117–120 (1989).

    Article  ADS  Google Scholar 

  35. A. Tonomura, “Direct observation of thitherto unobservable quantum phenomena by using electrons,” Proc. Natl. Acad. Sci. U. S. A. 102, 14952–14959 (2005).

    Article  ADS  Google Scholar 

  36. R. Feynman, The Character of Physical Law (MIT Press, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Slavnov.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavnov, D.A. The Aharonov–Bohm Effect: an Algebraic Approach. Phys. Part. Nuclei 50, 77–86 (2019). https://doi.org/10.1134/S1063779619010040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779619010040

Navigation