Skip to main content
Log in

“MCC SANAQ®burst”—A New Type of Cellulose and its Suitability to Prepare Fast Disintegrating Pellets

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Introduction

Microcrystalline cellulose (MCC) is the commonly used pelletization aid in wet extrusion-spheronization processes. MCC has the structure of cellulose I and is denoted as MCC I. Recently, MCC II, a different polymorphic type of MCC, became commercially available, known under the name MCC SANAQ®burst. Due to the fact, that MCC II can be used as a filler and a disintegrant in tableting, MCC SANAQ®burst was investigated as new pelletization aid with the goal to prepare disintegrating pellets.

Materials

MCC II pellets were compared to the corresponding conventional pellets, manufactured on the basis of MCC I, namely Avicel® PH 102. Formulations with 10%, 20%, and 50% of either MCC I or MCC II as pelletization aids were produced.

Methods

One series of binary mixtures, contained lactose monohydrate as filler and a second series chloramphenicol as model drug. All pellets were characterized by their yield, aspect ratio, equivalent diameter, water content, tensile strength, disintegration behavior and—if applicable—drug release.

Results and Discussion

The production of pellets with sufficient quality properties by addition of 10%, 20%, and 50% of MCC II as pelletization aid was possible. In contrast to MCC I pellets, MCC II-based pellets showed disintegration resulting in a much faster drug release.

Conclusion

MCC SANAQ®burst is a promising pelletization aid providing disintegrating and fast-dissolving pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thommes M, Kleinebudde P. Use of κ-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. I. Influence of type and fraction of filler. Eur J Pharm Biopharm. 2006;63:59–67.

    Article  CAS  PubMed  Google Scholar 

  2. Okada S, Nakahara H, Isaka H. Adsorption of drugs on microcrystalline cellulose suspended in aqueous solutions. Chem Pham Bull. 1987;35:761–8.

    CAS  Google Scholar 

  3. Bornhöft M, Thommes M, Kleinebudde P. Preliminary assessment of carrageenan as excipient for extrusion/spheronisation. Eur J Pharm Biopharm. 2005;59:127–31.

    Article  PubMed  Google Scholar 

  4. Tho I, Sande SA, Kleinebudde P. Pectinic acid, a novel excipient for production of pellets by extrusion/spheronisation: preliminary studies. Eur J Pharm Biopharm. 2002;54:95–9.

    Article  CAS  PubMed  Google Scholar 

  5. Liew CV, Gu L, Soh JLP, Heng PWS. Functionality of cross-linked polyvinylpyrrolidone as a spheronisation aid: a promising alternative to microcrystalline cellulose. Pharm Res. 2005;22(8):1387–98.

    Article  CAS  PubMed  Google Scholar 

  6. Dukic´-Ott A, Thommes M, Remon JP, Kleinebudde P, Vervaet C. Production of pellets via extrusion—spheronisation without the incorporation of microcrystalline cellulose: a critical review. Eur J Pharm Biopharm 2009; 71 (1) 38–46.

    Google Scholar 

  7. Kumar V, Reus-Medina M, Yang D. Preparation, characterization, and tabletting properties of a new cellulose-based pharmaceutical aid. Int J Pharm. 2002;235:129–40.

    Article  CAS  PubMed  Google Scholar 

  8. Reus-Medina M, Lanz M, Kumar V, Leuenberger H. Comparative evaluation of the powder properties and compression behavior of a new cellulose-based direct compression excipient and Avicel PH-102. J Pharm Pharmacol. 2004;56:951–6.

    Article  CAS  PubMed  Google Scholar 

  9. Lanz M, Pharmaceutical powder technology: towards a science based understanding of the behavior of powder systems, Dissertation, University of Basel, 2006.

  10. Phadnis NV, Suryanarayanan R. Polymorphism in anhydrous theophylline—implications on the dissolution rate of theophylline tablet. J Pharm Sci. 1997;86:1256–63.

    Article  CAS  PubMed  Google Scholar 

  11. Chemburkar SR, Bauer J, Deming K, Spiwek H, Patel K, Morris J, et al. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org Process Res Dev. 2000;4:413–17.

    Article  CAS  Google Scholar 

  12. Listionhadi Y, Hourigan JA, Sleigh RW, Stelle RJ. Moisture sorption, compressibility and caking of lactose polymorphs. Int J Pharm. 2008;359:123–34.

    Article  Google Scholar 

  13. Burger A, Henck JO, Hetz S, Rollinger JM, Weissnicht AA, Stottner H. Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. J Pharm Sci. 2000;89:457–68.

    Article  CAS  PubMed  Google Scholar 

  14. Kono H, Numata Y, Erate T, Takai M. 13C and 1H resonance assignment of mercerized cellulose II by two-dimensional MAS NMR spectroscopies. Macromolecules. 2004;37:5310–16.

    Article  CAS  Google Scholar 

  15. Kroon-Batenburg LMJ, Kroon J. The crystal and molecular structures of cellulose I and II. Glycoconj J. 1997;14:677–90.

    Article  CAS  PubMed  Google Scholar 

  16. El-Sabawi D, Price R, Edge S. Novel temperature controlled surface dissolution of excipient particles for carrier based dry powder inhaler formulations. Drug Dev Ind Pharm. 2006;32:243–51.

    Article  CAS  PubMed  Google Scholar 

  17. Merck Index “Different Monographs” in: The Merck Index—an Encyclopedia of Chemicals, Drugs and Biologicals; Merck & Co Rahway, NJ, USA 1989.

  18. Sanderson H, Thomsen M. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action. Toxicol Lett. 2009;187:84–93.

    Article  CAS  PubMed  Google Scholar 

  19. Shipway PH, Hutchings IM. Fracture of brittle spheres under compression and impact loading I. Elastic stress distributions. Philos Mag A. 1993;67:1389–404.

    Article  Google Scholar 

  20. Schröder M, Kleinebudde P. Structure of disintegrating pellets with regard to fractal geometry. Pharm Res. 1995;12(11):1694–700.

    Article  PubMed  Google Scholar 

  21. Langguth P, Fricker G, Wunderli-Allenspach H. Biopharmazie. Weinheim: Wiley; 2004.

    Google Scholar 

  22. Korsmeyer RW, Peppas NA. Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. J Memb Sci. 1981;9:211–27.

    Article  CAS  Google Scholar 

  23. Höpner T, Jayme G, Ulrich JC. Bestimmung des Wasserrückhaltevermögens (Quellwertes) von Zellstoffen. Das Papier. 1955;19/20:476–82.

    Google Scholar 

  24. Thommes M, Ely DR, Kleinebudde P. The water binding behaviour of κ-Carrageenan determined by three different methods. Pharm Dev Tech. 2009;14(3):249–58.

    Article  CAS  Google Scholar 

  25. Brittain HG, Lewen G, Newman AW, Fiorelli K, Bogdanowich S. Changes in material properties accompanying the national formulary (NF) identity test for microcrystalline cellulose. Pharm Res. 1993;10(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  26. Kleinebudde P. Shrinking and swelling properties of pellets containing microcrystalline cellulose and low substituted hydroxypropylcellulose: I. shrinking properties. Int J Pharm. 1994;109:209–19.

    Article  CAS  Google Scholar 

  27. Reynolds AD. A new technique for the production of spherical particles. Manuf Chemist. 1970;41:40–3.

    Google Scholar 

  28. Kleinebudde P. The crystallite-gel-model for microcrystalline cellulose in wet-granulation, extrusion, and spheronisation. Pharm Res. 1997;14(6):804–9.

    Article  CAS  PubMed  Google Scholar 

  29. Krässig HA. Cellulose: structure, accessibility and reactivity. Yverdon: Gordon and Breach Science Publisher; 1993.

    Google Scholar 

  30. Cambridge Structural Database (CSD), The Cambridge Crystallographic Data Centre; 12 Union Road, Cambridge, UK.

  31. Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 2002;124(31):9074–82.

    Article  CAS  PubMed  Google Scholar 

  32. Nishiyama Y, Sugiyama J, Chanzy H, Langan P. Crystal structure and hydogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc. 2003;125(47):14300–6.

    Article  CAS  PubMed  Google Scholar 

  33. Zimm KR, Schwartz JB, O’Connor RE. Drug release from a multiparticulate pellet system. Pharm Dev Techn. 1995;1:37–42.

    Article  Google Scholar 

  34. O’Connor RE, Schwartz JB. Drug release mechanism from a microcrystalline cellulose pellet system. Pharm Res. 1993;10(3):356–61.

    Article  PubMed  Google Scholar 

  35. Nishiyama Y. Structure and properties of the cellulose microfibril. J Wood Sci 2009 (in press).

  36. Langan P, Nishiyama Y, Chanzy H. A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc. 1999;121:9940–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support and the gift of MCC SANAQ®burst from Pharmatrans SANAQ Ltd, Basel, Switzerland. Furthermore, the authors are grateful to SciConcept for their support regarding crystal structure analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kleinebudde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krueger, C., Thommes, M. & Kleinebudde, P. “MCC SANAQ®burst”—A New Type of Cellulose and its Suitability to Prepare Fast Disintegrating Pellets. J Pharm Innov 5, 45–57 (2010). https://doi.org/10.1007/s12247-010-9080-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-010-9080-4

Keywords

Navigation