Skip to main content
Log in

Construction and application of an Escherichia coli bioreporter for aniline and chloroaniline detection

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Aniline and chlorinated anilines (CAs) are classified as priority pollutants; therefore, an effective method for detection and monitoring is required. In this study, a green-fluorescence protein-based bioreporter for the detection of aniline and CAs was constructed in Escherichia coli DH5α, characterized and tested with soil and wastewater. The sensing capability relied on the regulatory control between a two-component regulatory protein, TodS/TodT, and the P todX promoter of Pseudomonas putida T-57 (PpT57), since the gene expression of todS, todT, and todC2 are positively induced with 4-chloroaniline. The bioreporter system (DH5α/pPXGFP–pTODST) is markedly unique with the two co-existing plasmids. The inducibility of the fluorescence response was culture-medium- and time-dependent. Cells grown in M9G medium exhibited a low background fluorescence level and were readily induced by 4CA after 3-h exposure, reaching the maximum induction level at 9 h. When tested with benzene, toluene, ethyl-benzene and xylene, aniline and CAs, the response data were best fit by a sigmoidal dose–response relationship, from which the K 1/2 value was determined for the positive effectors. 3CA and 4CA were relatively powerful inducers, while some poly-chlorinated anilines could also induce green fluorescence protein expression. The results indicated a broader recognition range of PpT57’sTodST than previously reported for P. putida. The test results with environmental samples were reliable, indicating the potential application of this bioreporter in the ecotoxicology assessment and bioremediation of areas contaminated with aniline- and/or CAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Applegate B, Kelly C, Lackey L, McPherson J, Kehrmeyer S, Menn FM, Bienkowski P, Sayler G (1997) Pseudomonas putida B2: a tod-lux bioluminescent reporter for toluene and trichloroethylene co-metabolism. J Ind Microbiol Biotechnol 18(1):4–9

    Article  PubMed  CAS  Google Scholar 

  2. Applegate BM, Kehrmeyer SR, Sayler GS (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethylbenzene, and xylene (BTEX) sensing. Appl Environ Microbiol 64(7):2730–2735

    PubMed  CAS  Google Scholar 

  3. Behzadian F, Barjeste H, Hosseinkhani S, Zarei AR (2011) Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Curr Microbiol 62(2):690–696. doi:10.1007/s00284-010-9764-5

    Article  PubMed  CAS  Google Scholar 

  4. Burlage RS, Palumbo AV (1994) Bioluminescent reporter bacteria detect contaminants in soil samples. Appl Biochem Biotechnol 46:731–740

    Article  Google Scholar 

  5. Busch A, Guazzaroni ME, Lacal J, Ramos JL, Krell T (2009) The sensor kinase TodS operates by a multiple step phosphorelay mechanism involving two autokinase domains. J Biol Chem 284(16):10353–10360. doi:10.1074/jbc.M900521200

    Article  PubMed  CAS  Google Scholar 

  6. Busch A, Lacal J, Martos A, Ramos JL, Krell T (2007) Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proc Natl Acad Sci USA 104(34):13774–13779. doi:10.1073/pnas.0701547104

    Article  PubMed  CAS  Google Scholar 

  7. Busch A, Lacal J, Silva-Jimenez H, Krell T, Ramos JL (2010) Catabolite repression of the TodS/TodT two-component system and effector-dependent transphosphorylation of TodT as the basis for toluene dioxygenase catabolic pathway control. J Bacteriol 192(16):4246–4250. doi:10.1128/JB.00379-10

    Article  PubMed  CAS  Google Scholar 

  8. de las Herasde A, Lorenzo V (2011) In situ detection of aromatic compounds with biosensor Pseudomonas putida cells preserved and delivered to soil in water-soluble gelatin capsules. Anal Bioanal Chem 400(4):1093–1104. doi:10.1007/s00216-010-4558-y

    Article  Google Scholar 

  9. Dom N, Knapen D, Benoot D, Nobels I, Blust R (2010) Aquatic multi-species acute toxicity of (chlorinated) anilines: experimental versus predicted data. Chemosphere 81(2):177–186. doi:10.1016/j.chemosphere.2010.06.059

    Article  PubMed  CAS  Google Scholar 

  10. Faizal I, Dozen K, Hong CS, Kuroda A, Takiguchi N, Ohtake H, Takeda K, Tsunekawa H, Kato J (2005) Isolation and characterization of solvent-tolerant Pseudomonas putida strain T-57, and its application to biotransformation of toluene to cresol in a two-phase (organic-aqueous) system. J Ind Microbiol Biotechnol 32(11–12):542–547

    Article  PubMed  CAS  Google Scholar 

  11. Farinha MA, Kropinski AM (1990) Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 172(6):3496–3499

    PubMed  CAS  Google Scholar 

  12. Hansen LH, Sorensen SJ (2000) Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol Lett 193(1):123–127

    Article  PubMed  CAS  Google Scholar 

  13. Harms H, Wells MC, van der Meer JR (2006) Whole-cell living biosensors–are they ready for environmental application? Appl Microbiol Biotechnol 70(3):273–280. doi:10.1007/s00253-006-0319-4

    Article  PubMed  CAS  Google Scholar 

  14. Keane A, Phoenix P, Ghoshal S, Lau PC (2002) Exposing culprit organic pollutants: a review. J Microbiol Methods 49(2):103–119

    Article  PubMed  CAS  Google Scholar 

  15. Lacal J, Busch A, Guazzaroni ME, Krell T, Ramos JL (2006) The TodS–TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proc Natl Acad Sci USA 103(21):8191–8196. doi:10.1073/pnas.0602902103

    Article  PubMed  CAS  Google Scholar 

  16. Li YF, Li FY, Ho CL, Liao VH (2008) Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environ Pollut 152(1):123–129. doi:10.1016/j.envpol.2007.05.002

    Article  PubMed  CAS  Google Scholar 

  17. Moller S, Sternberg C, Andersen JB, Christensen BB, Ramos JL, Givskov M, Molin S (1998) In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64(2):721–732

    PubMed  CAS  Google Scholar 

  18. Phoenix P, Keane A, Patel A, Bergeron H, Ghoshal S, Lau PC (2003) Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environ Microbiol 5(12):1309–1327

    Article  PubMed  CAS  Google Scholar 

  19. Robbens J, Dardenne F, Devriese L, De Coen W, Blust R (2010) Escherichia coli as a bioreporter in ecotoxicology. Appl Microbiol Biotechnol 88(5):1007–1025. doi:10.1007/s00253-010-2826-6

    Article  PubMed  CAS  Google Scholar 

  20. Sagi E, Hever N, Rosen R, Bartolome AJ, Premkumar JR, Ulber R, Lev O, Scheper T, Belkin S (2003) Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sens Actuators B Chem 90:2–8

    Article  Google Scholar 

  21. Tecon R, Beggah S, Czechowska K, Sentchilo V, Chronopoulou PM, McGenity TJ, van der Meer JR (2010) Development of a multi strain bacterial bioreporter platform for the monitoring of hydrocarbon contaminants in marine environments. Environ Sci Technol 44(3):1049–1055. doi:10.1021/es902849w

    Article  PubMed  CAS  Google Scholar 

  22. van der Meer JR (2010) Bacterial sensors: synthetic design and application principles. Morgan & Claypool publishers, Lausanne

    Google Scholar 

  23. Vangnai AS, Petchkroh W (2007) Biodegradation of 4-chloroaniline by bacteria enriched from soil. FEMS Microbiol Lett 268:209–216

    Article  PubMed  CAS  Google Scholar 

  24. Willardson BM, Wilkins JF, Rand TA, Schupp JM, Hill KK, Keim P, Jackson PJ (1998) Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol 64(3):1006–1012

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Environmental Research and Management Department, PTT Research and Technology Institute, and from the collaborative research project between Chulalongkorn University and Hiroshima University, is acknowledged. The authors gratefully acknowledge Dr. Robert Butcher, PCU, Faculty of Science, Chulalongkorn University, for his invaluable comments and review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa S. Vangnai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vangnai, A.S., Kataoka, N., Soonglerdsongpha, S. et al. Construction and application of an Escherichia coli bioreporter for aniline and chloroaniline detection. J Ind Microbiol Biotechnol 39, 1801–1810 (2012). https://doi.org/10.1007/s10295-012-1180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1180-3

Keywords

Navigation