Skip to main content
Log in

Geochemistry of lamprophyres from the Western Alps, Italy: implications for the origin of an enriched isotopic component in the Italian mantle

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Cenozoic lamprophyres (minettes, spessartites, kersantite) from the Western Alps, northern Italy, represent small volume, mafic melts with high Mg#s and high Ni and Cr contents. All the lamprophyres show light REE enrichment, high incompatible element contents, and Ta, Ti and Nb troughs on chondrite-normalized diagrams. Age-corrected 87Sr/86Sr isotopic ratios (assuming t = 30 Ma) are highly variable and range from 0.70590 to 0.71884; 143Nd/144Nd ratios range from 0.51203 to 0.51242. Pb isotopic ratios are: 206Pb/204Pb = 18.669–18.895, 207Pb/204Pb = 15.605–15.689 and 208Pb/204Pb = 38.224–39.134. 87Sr/86Sr ratios show a negative correlation with 143Nd/144Nd, and a positive correlation with K, Ba, and Rb as well as with Ti, Th, Ta, Nb and Zr abundances. The primitive nature of the lamprophyres, coupled with their enriched incompatible trace element and isotopic signatures, suggest derivation from a metasomatized upper mantle source. Linear arrays in isotope space and elemental data plots suggest mixing between two distinct end-members in the Italian mantle; an enriched end-member that is isotopically similar to pelagic sediments, and a significantly less enriched end-member that approaches Bulk Earth values. New isotopic data indicate that the mantle source(s) of the lamprophyres from the Western Alps contain a very high proportion of the enriched end-member. The geochemical signature of the enriched end-member is attributed to fluids or melts derived from pelagic sediments subducted during the closure of the Tethyan Ocean in the late Cretaceous to early Tertiary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allegre CJ, Turcotte DL (1986) Implications of a two-component marble-cake mantle. Nature 323:123–127

    Article  Google Scholar 

  • Alvarez W, Pialli G (1989) Driving of thrust belts by sinking of densified (eclogitic) lower continental crust; the Apennine-Tyrrhenian system. GSA Abstracts with Programs 21:318

    Google Scholar 

  • Armienti P, Gasperini D (2007) Do we really need mantle components to define mantle composition? J. Petrology 48:693–709

    Article  Google Scholar 

  • Beccaluva L, Bigioggero B, Chiesa S, Colombo A, Fanti G, Gatto GO, Gregnanin A, Montrasio A, Piccirillo EM, Tunesi A (1983) Post collisional orogenic dyke magmatism in the Alps. Memorie della Societe Geologica Italiana 26:341–359

    Google Scholar 

  • Beccaluva L, Coltorti M, Milani L, Salvini L, Siena F, Tassinari R (2000) Tertiary nephelinite to tholeiite magma generation in the Veneto Volcanic Province, Southern Alps. Goldschmidt Conference Abstracts 5(2): 204

    Google Scholar 

  • Bell [u1]K, Castorina F, Rosatelli G, Stoppa F (2003) Large scale, mantle plume activity below Italy: Isotopic evidence and volcanic consequences. Geophysical Research Abstracts 5:14217

    Google Scholar 

  • Bell K, Castorina F, Lavecchia G, Rosatelli G, Stoppa F (2004) Is there a mantle plume below Italy? EOS 85–50:541–547

    Google Scholar 

  • Bell K, Castorina F, Rosatelli G and Stoppa F (2006) Plume activity, magmatism, and the geodynamic evolution of the Central Mediterranean. Ann Geophysics 49–1(Suppl): 357–371

    Google Scholar 

  • Carta Geologica D’Italia, Foglio 1 (1983) In: Ogniben L (ed) Structural model of Italy, 1:1,000,000 scale. Consiglio Nazionale delle Ricerche

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequences. Contrib Mineral Petrol 86:107–118

    Article  Google Scholar 

  • Chopin C (1987) Very high pressure metamorphism in the Western Alps: implications for subduction of continental crust. Philos Trans R Soc London A321:183–197

    Article  Google Scholar 

  • Civetta L, Innocenti F, Manetti P, Peccerillo A, Poli G (1981) Geochemical characteristics of potassic volcanics from Mts. Ernici (Southern Latium, Italy). Contrib Mineral Petrol 78:37–47

    Article  Google Scholar 

  • Compagnoni R (1977) The Sesia-Lanzo Zone: high-pressure––low-temperature metamorphism in the Austroalpine continental margin. Rendiconti della Società Italiana di Mineralogia e Petrologia 33:335–374

    Google Scholar 

  • Conticelli S (1998) The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, petrological and isotope data from the Torre Alfina lavas and xenoliths, Central Italy. Chem Geol 149:51–81

    Article  Google Scholar 

  • Conticelli S, D’Antonio M, Pinarelli L, Civetta L (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany. Mineral Petrol 74:189–222

    Article  Google Scholar 

  • Conticelli S, Melluso L, Perini G, Avanzinelli R, Boari E (2004) Petrologic, geochemical and isotopic characteristics of potassic and ultrapotassic magmatism in central-southern Italy: inference on its genesis and on the nature of mantle sources. Periodico di Mineralogia 73:135–164

    Google Scholar 

  • Coward M and Dietrich D (1989) Alpine tectonics––an overview. In: Coward MP, Dietrich D, Park RG (eds) Alpine Tectonics. Geological Society of London Special Publication 45:1–29

  • D’Antonio M, Tilton GR, Civetta L (1996) Petrogenesis of Italian alkaline lavas deduced from Pb–Sr–Nd isotope relationships. In: Earth processes: reading the isotopic code. Geophysical Monograph 95:253–267

    Google Scholar 

  • Dal Piaz G, Bistacchi A, Massironi M (2003) Geological outline of the Alps Episodes 26(3):175–180

    Google Scholar 

  • De Astis G, Peccerillo A, Kempton PD, La Volpe L, Wu TW (2000) Transition from calc-alkaline to potassium-rich magmatism in subduction environments: geochemical and Sr, Nd, Pb isotopic constraints from the island of Vulcano (Aeolian arc). Contrib Mineral Petrol 139:684–703

    Article  Google Scholar 

  • Doglioni C, Gueguen E, Sabat F, Fernandez M (1997) The Western Mediterranean extensional basins and the Alpine orogen. Terra Nova 9:109–112

    Google Scholar 

  • Ellam RM, Hawkesworth CJ, Menzies MA, Rogers NW (1989) The volcanism of southern Italy: role of subduction and the relationship between potassic and sodic alkaline magmatism. J Geophys Res 94(B4):4589–4601

    Google Scholar 

  • Faure G, Mensing TM (2005) Isotopes. John Wiley & Sons, New Jersey, 897 pp

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth-Sci Rev 24:81–134

    Article  Google Scholar 

  • Foley SF (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–453

    Article  Google Scholar 

  • Fraser KJ, Hawkesworth CJ, Erlank AJ, Mitchell RH, Scott-Smith BH (1985) Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth and Planet Sci Lett 76:57–70

    Article  Google Scholar 

  • Gasperini D, Blichert-Toft J, Bosch D, Del Moro A, Macera P, Albarede F (2002) Upwelling of deep mantle material through a plate window: evidence from the geochemistry of Italian basaltic volcanics. J Geophys Res 107(B12):2367

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer-Verlag, Berlin, 358 pp

  • Goffé B, Chopin C (1986) High-pressure metamorphism in the Western Alps: zoneography of metapelites, chronology and consequences. Schweitz Mineral Petrogr Mitt 66:41–52

    Google Scholar 

  • Hart SR (1984) The DUPAL anomaly: a large-scale isotopic anomaly in the southern hemisphere. Nature 309:753–756

    Article  Google Scholar 

  • Hart SR (1988) Heterogeneous mantle domains—signatures, genesis and mixing chronologies. Earth Planet Sci Lett 90:273–296

    Article  Google Scholar 

  • Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment: isotopic evidence. Science 256:517–520

    Article  Google Scholar 

  • Haskin LA, Haskin MA, Frey FA, Wildman TR (1968) Relative and absolute terrestrial abundances of the rare earths. In: Arhens LH (ed) Origin and distribution of the elements, vol 1. Pergamon, Oxford, pp 889–911

  • Hawkesworth CJ, Vollmer R (1979) Crustal contamination versus enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian volcanics. Contrib Mineral Petrol 69:151–165

    Article  Google Scholar 

  • Hoernle K, Zhang Y-S, Graham D (1995) Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39

    Article  Google Scholar 

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45

    Article  Google Scholar 

  • Hunziker JC, Martinotti G (1984) Geochronology and evolution of the Western Alps. Memorie della Società Geologica Italiana 29:43–56

    Google Scholar 

  • Hurford AJ, Hunziker JC, Stockhert B (1991) Constraints on the late thermotectonic evolution of the Western Alps: evidence for episodic rapid uplift. Tectonics 10:758–769

    Google Scholar 

  • Juteau M, Michard A, Albarede F (1986) The Pb–Sr–Nd isotope geochemistry of some recent circum-Mediterranean granites. Contrib Mineral Petrol 92:331–340

    Article  Google Scholar 

  • Kagami H, Ulmer P, Hansmann W, Dietrich V, Steiger RH (1991) Nd–Sr isotopic and geochemical characteristics of the southern Adamello (Northern Italy) intrusives: implications for crustal versus mantle origin. J Geophys Res 96(B9):14331–14346

    Google Scholar 

  • Keller JVA, Minelli G, Pialli G (1994) Anatomy of late orogenic extension: the Northern Apennines case. Tectonophysics 238:275–294

    Article  Google Scholar 

  • Laubscher HP (1983) Detachment, shear and compression in the central Alps. Geol Soc Am Memoir 158:19–211

    Google Scholar 

  • Lavecchia G, Creati N (2006) A mantle plume head trapped in the transition zone beneath the Mediterranean: a new idea. Ann Geophys 49(Suppl): 373–387

    Google Scholar 

  • Le Maitre RW (ed) (2002) Igneous rocks. A classification and glossary of terms. Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Cambridge University Press, Cambridge, pp 1–39

    Google Scholar 

  • Lucente FP, Chiarabba C, Cimini GB, Giardini D (1999) Tomographic constraints on the geodynamic evolution of the Italian region. J Geophy Res 104(B9):20307–20327

    Article  Google Scholar 

  • Macera P, Gasperini D, Piromallo C, Blichert-Toft J, Bosch D, Del Moro A, Martin F (2003) Geodynamic implications of deep mantle upwelling in the source of Tertiary volcanics from the Veneto region (South-Eastern Alps). J Geodyn 36:563–590

    Article  Google Scholar 

  • McCulloch MT, Jaques AL, Nelson DR, Lewis JD (1983) Nd and Sr isotopes in kimberlites and lamproites from Western Australia: enriched mantle origin. Nature 302:400–403

    Article  Google Scholar 

  • McKenzie D (1984) The generation and compaction of partially molten rock. J Petrol 25:713–765

    Google Scholar 

  • Meen JK, Ayers JE, Fregeau EJ (1989) A model of mantle metasomatism by carbonated alkaline melts: trace-element and isotopic compositions of mantle source regions of carbonatite and other continental igneous rocks. In: Bell K (ed) Carbonatites-genesis and evolution, Unwin Hyman, London, pp 464–499

    Google Scholar 

  • Mirnejad H, Bell K (2006) Origin and source evolution of the Leucite Hills lamproites: evidence from Sr–Nd–Pb–O isotopic compositions. J Petrol 47:2463–2489

    Article  Google Scholar 

  • Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archean subducted sediments. J Petrol 43:981–1001

    Article  Google Scholar 

  • Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta 38:757–775

    Article  Google Scholar 

  • Nelson DR, McCulloch MT, Sun S-S (1986) The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochimica et Cosmochimica Acta 50:321–245

    Google Scholar 

  • Oschidari vH, Ziegler URF (1992) Vergleichende Sm-Nd und Rb-Sr-untersuchungen an Gergeller Gerollen aus der Gonfolite Lombarda (“sudalpine molasse”) und an Bergeller und Novate granitoiden des ursprungsgebietes. Eclogae Geol Helv 85:375–384

    Google Scholar 

  • Owen JP (2006) Mineralogy, petrology, and isotope geochemistry of magmatic rocks from the Western Alps, Ernici and Roccamonfina, Italy: Constraints on mantle enrichment processes. Unpublished Ph.D. Thesis, Carleton University, Ottawa, 452 pp

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, Chichester, pp 525–548

    Google Scholar 

  • Peccerillo A (1985) Roman comagmatic province (central Italy): Evidence for subduction-related magma genesis. Geology 13:103–106

    Article  Google Scholar 

  • Peccerillo A (2001) Geochemistry of Quaternary magmatism in central-southern Italy: genesis of primary melts and interaction with crustal rocks. Geochemistry International 39:521–535

    Google Scholar 

  • Peccerillo A, Panza GF (1999) Upper mantle domains beneath central-southern Italy: petrological, geochemical and geophysical constraints. Pure Appl Geophy 156:421–443

    Article  Google Scholar 

  • Peccerillo A, Martinotti G (2006) The Western Mediterranean lamproitic magmatism: origin and geodynamic significance. Terra Nova 18:109–117

    Article  Google Scholar 

  • Peccerillo A, Turco E (2004) Petrological and geochemical variations of Plio-Quaternary volcanism in the Tyrrhenian Sea area: regional distribution of magma types, petrogenesis and geodynamic implications. Periodico di Mineralogia 73:231–251

    Google Scholar 

  • Piromallo C, Morelli A (2003) P-wave tomography of the mantle under the Alpine-Mediterranean area. J Geophys Res 108(B2):1–23

    Article  Google Scholar 

  • Piromallo C, Faccenna C (2004) How deep can we find traces of Alpine subduction? Geophys Res Lett 31:L06605

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Polve M, Allegre CJ (1980) Orogenic lherzolite complexes studied by 87Rb–87Sr: a clue to understanding mantle convection currents? Earth Planet Sci Lett 51:71–93

    Article  Google Scholar 

  • Ringwood AE, Kesson SE, Hibberson W, Ware N (1992) Origin of kimberlites and related magmas. Earth Planet Sci Lett 113:521–538

    Article  Google Scholar 

  • Rock NMS (1991) Lamprophyres. Van Nostrand Reinhold, New York, USA, pp 1–102

    Google Scholar 

  • Rogers NW, Hawkesworth CJ, Parker RJ, Marsh JS (1985) The geochemistry of potassic lavas from Vulsini, central Italy and implications for mantle enrichment processes beneath the Roman region. Contrib Mineral Petrol 90:244–257

    Article  Google Scholar 

  • Royden L, Patacca E, Scandone P (1987) Segmentation and configuration of subducted lithosphere in Italy: An important control on thrust-belt and foredeep-basin evolution. Geology 15:714–717

    Article  Google Scholar 

  • Schmid SM, Pfiffner OA, Froitzheim N, Schonborn G, Kissling E (1996) Geophysical–geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 15:1036–1064

    Article  Google Scholar 

  • Schmid SM, Fugenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae 97:93–117

    Article  Google Scholar 

  • Serri G, Innocenti F, Manetti P (1993) Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics 223:117–147

    Article  Google Scholar 

  • Shen Y, Solomon SC, Bjarnason IT, Purdy GM (1996) Hot mantle transition zone beneath Iceland and the adjacent Mid-Atlantic Ridge inferred from P-to-S conversions at the 410 and 660 discontinuities. Geophys Res Lett 23:3527–3530

    Article  Google Scholar 

  • Sims KWW, De Paolo DJ (1997) Inferences about mantle magma sources from incompatible element concentration ratios in oceanic basalts. Geochimica et Cosmochimica Acta 61:765–784

    Article  Google Scholar 

  • Sleep NH (1990) Hotspots and mantle plumes: some phenomenology. J Geophys Res 95:6715–6736

    Google Scholar 

  • Snoke AW, Kalakay TJ, Quick JE, Sinigoi S (1999) Development of a deep-crustal shear zone in response to syntectonic intrusion of mafic magma into the lower crust, Ivrea-Verbano zone, Italy. Earth Planet Sci Lett 166:31–45

    Article  Google Scholar 

  • Spakman W, Van Der Lee S, Van Der Hilst R (1993) Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Phys Earth Planet Inter 79:3–74

    Article  Google Scholar 

  • Thompson RN (1982) British Tertiary volcanic province. Scot J Geol 18:49–107

    Article  Google Scholar 

  • Tilton GR, Schreyer W, Schertl H-P (1989) Pb-Sr-Nd isotopic behavior of deeply subducted crustal rocks from the Dora Maira Massif, Western Alps, Italy. Geochimica et Cosmochimica Acta 53:1391–1400

    Article  Google Scholar 

  • Turi B, Taylor HP (1976) Oxygen isotope studies of potassic volcanic rocks of the Roman Province, Central Italy. Contrib Mineral Petrol 60:1–31

    Article  Google Scholar 

  • Venturelli G, Thorpe RS, Dal Piaz GV, Del Moro A, Potts PJ (1984) Petrogenesis of calc-alkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from the Northwestern Alps, Italy. Contrib Mineral Petrol 86:209–220

    Article  Google Scholar 

  • Vollmer R (1976) Rb-Sr and U–Th–Pb systematics of alkaline rocks: the alkaline rocks from Italy. Geochimica et Cosmochimica Acta 40:283–295

    Article  Google Scholar 

  • Vollmer R (1977) Isotopic evidence for genetic relations between acid and alkaline rocks in Italy. Contrib Mineral Petrol 60:109–118

    Article  Google Scholar 

  • von Blanckenburg F, Fruh-Green G, Diethelm K, Stille P (1992) Nd-, Sr-, O-isotopic and chemical evidence for a two-stage contamination history of mantle magma in the Central-Alpine Bergell intrusion. Contrib Mineral Petrol 110:33–45

    Article  Google Scholar 

  • von Blanckenburg F, Davies JH (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14:120–131

    Article  Google Scholar 

  • von Blanckenburg F, Kagami H, Deutsch A, Oberli F, Meier M, Wiedenbeck M, Barth S, Fischer H (1998) The origin of Alpine plutons along the Periadriatic Lineament. Schweizerische Mineralogische und Petrographische Mitteilungen 78:55–66

    Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Chapman & Hall, London, 466 pp

  • Wilson M, Rosenbaum JM, Dunworth EA (1995) Melilitites: partial melts of a thermal boundary layer? Contrib Mineral Petrol 119:181–196

    Article  Google Scholar 

  • Wilson M, Bianchini G (1999) Tertiary–Quaternary magmatism within the Mediterranean and surrounding regions. In: Durand B, Jolivet L, Horvath F Seranne M (eds) The Mediterranean basins: tertiary extension within the Alpine Orogen. Geological Society of London Special Publication 156:141–168

  • Wörner G, Zindler A, Staudiget H, Schmincke H-U (1986) Sr, Nd, and Pb isotope geochemistry of Tertiary and Quaternary alkaline volcanics from West Germany. Earth Planet Sci Lett 79:107–119

    Article  Google Scholar 

  • Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290:1910–1917

    Article  Google Scholar 

  • Zartman RE, Doe BR (1981) Plumbotectonics––the model. Tectonophysics 75:135–162

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank K. Bell for his excellent Ph.D. supervision and invaluable guidance. His insightful ideas and tireless editing substantially improved the manuscript. Thanks also go to A. Peccerillo for suggesting this problem and for support with the fieldwork, G. Martinotti without whose help the dykes would not have been found, and G. Lavecchia for useful discussions. J. Blenkinsop, I. de Jong, P. Jones, and B. Cousens assisted with analytical work at Carleton University. This work benefited from comments from D. Gasperini and an anonymous reviewer. This work was supported by National Science and Engineering Research Council (NSERC) grant A7813 to K. Bell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Paige Owen.

Additional information

Communicated by T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, J.P. Geochemistry of lamprophyres from the Western Alps, Italy: implications for the origin of an enriched isotopic component in the Italian mantle. Contrib Mineral Petrol 155, 341–362 (2008). https://doi.org/10.1007/s00410-007-0246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0246-0

Keywords

Navigation