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Abstract
In measurement invariance testing, when a certain level of full invariance is not achieved, the sequential backward specification
search method with the largest modification index (SBSS_LMFI) is often used to identify the source of non-invariance.
SBSS_LMFI has been studied under complete data but not missing data. Focusing on Likert-type scale variables, this study
examined two methods for dealing with missing data in SBSS_LMFI using Monte Carlo simulation: robust full information
maximum likelihood estimator (rFIML) and mean and variance adjusted weighted least squared estimator coupled with pairwise
deletion (WLSMV_PD). The result suggests that WLSMV_PD could result in not only over-rejections of invariance models but
also reductions of power to identify non-invariant items. In contrast, rFIML provided good control of type I error rates, although it
required a larger sample size to yield sufficient power to identify non-invariant items. Recommendations based on the result were
provided.
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Introduction

Measurement equivalent/invariance (ME/I) concerns whether
the relationship between the targeted latent variable and the
observed items are identical across groups (Millsap, 2012).
ME/I is an important psychometric property, which ensures
that the results obtained from a construct measure are compa-
rable and generalizable across groups (Brown, 2014). Failure
to achieve ME/I can lead to biased comparisons or selections

across groups (Chen, 2008; Millsap & Kwok, 2004;
Steinmetz, 2013).

Evaluating ME/I properties of a scale is a complex issue.
There are various basic levels of ME/I, representing more or
less restricted levels of invariance (explained in detail below).
Thus, ME/I is typically examined through a series of Chi-
square difference tests (Δχ2 tests) between nested invariance
models (representing different levels of ME/I) using multiple
group confirmatory analysis (MG-CFA) (Vandenberg, &
Lance, 2000). If a certain basic level of ME/I is not achieved,
indicating that one or more items are not invariant across
groups, researchers can follow up with a specification search
for the problematic items and release implausible constraints
correspondingly. In the current study, we refer to this kind of
specification search as sequential backward specification
search (SBSS).

The appropriate methods for specification search vary de-
pending on the nature of the item-level data. Considering the
popularity of Likert-type scales in social and behavioral sci-
ences, the items are often ordinal in nature. In addition, miss-
ing data are likely to occur due to nonresponse or planned
missing data designs. To our knowledge, although specifica-
tion search methods have been studied with ordinal complete
data (Oort, 1998; Yoon & Kim, 2014), no research on those
methods has considered missing ordinal data.
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In practice, three estimation methods have been used to
conduct SBSS when ordinal missing data present. These
methods include full information maximum likelihood
(FIML), robust full information maximum likelihood
(rFIML), and the mean and variance adjusted weighted
least-squared method paired with pairwise deletion
(WLSMV_PD) (e.g., Beam, Marcus, Turkheimer & Emery,
2018; Bou Malham & Saucier, 2014; Fokkema, Smits,
Kelderman, & Cuijpers, 2013; Sommer, et al., 2019). Given
that previous research has shown that rFIML outperformed
FIML for ordinal data (e.g., Chen, Wu, Garnier-Villarreal,
Kite & Jia, 2019), we only consider rFIML and
WLSMV_PD in the current study.

In theory, rFIML and WLSMV_PD have their own advan-
tages and limitations. rFIML is capable of utilizing all avail-
able information for model estimation, but it assumed ordinal
data to be continuous. WLSMV_PD, on the other hand, cor-
rectly accounts for the ordinal nature of the data, but it uses
pairwise deletion (PD) to handle missing data, which is less
optimal than a full information method (Savalei & Bentler,
2005).

Given that neither of the methods is ideal theoretically, it
would be interesting to know how they perform in SBSS and
which one would be better. The goal of the current study is
thus to examine the relative performance of the two methods
in SBSS with ordinal missing data. The rest of the article is
organized as follows. We first review necessary background
information for the study, including a typical ME/I test pro-
cess and specification search methods. We then explain how
rFIML and WLSMV_PD work and present designs for the
simulation study. Finally, we report the result from the simu-
lation study and provide practical recommendations to empir-
ical researchers based on our results. We conclude the article
by discussing limitations of the current study and potential
directions for future research.

A typical ME/I testing procedure with MG-CFA

There are four basic levels of ME/I, namely, configural, met-
ric, scalar, and strict invariance, representing the least restrict-
ed invariance model to the most restricted invariance model,
respectively. When the configural invariance model is exam-
ined, the same CFA model is fit to groups, with model param-
eters allowed to vary across groups. The metric invariance
model is simply the configural invariance model with equality
constraints on all factor loadings across groups. The scalar
invariance model adds equality constraints on intercepts/
thresholds across groups. Finally, equality constraints on cor-
responding residual variances are further included into the
scalar invariance model to create a strict invariance model
(Gregorich, 2006).

These four basic ME/I models are nested and thus are usu-
ally evaluated in sequence to decide which level of ME/I is

achieved, starting from the configural invariance model. If the
configural invariance fits the data, then a Chi-square differ-
ence (Δχ2) test comparing it to the metric invariance model
will be conducted. A non-significant Δχ2 test would indicate
that the metric invariance model passes. Researchers can fur-
ther test scalar invariance by comparing it to the metric invari-
ance model through another Δχ2 test, and so on (Byrne,
2013). On the other hand, a significant Δχ2 test would sug-
gest that imposing equality constraints on all target parameters
are implausible, and at least one target parameter is not equal
(non-invariant) across groups.

Partial invariance models

The four types of ME/I models described above are consid-
ered “full” invariance models, given that equality constraints
are placed on all parameters of the same type (e.g., all load-
ings) across groups (Jung & Yoon, 2016). When a full invari-
ance model is rejected, one could establish a partial invariance
model by releasing equality constraints on some but not all of
the target parameters (Byrne, Shavelson, & Muthén, 1989;
Millsap, 2012; Putnick, & Bornstein, 2016; Schmitt &
Kuljanin, 2008). For instance, a partial scalar invariance mod-
el will be a model with some of the intercepts/thresholds vary-
ing across groups.

Past research has demonstrated the importance of correctly
identifying non-invariant items in partial invariance models.
On one hand, failing to release wrong equality constraints
could distort the estimated latent mean differences across
groups (Shi, Song, & Lewis, 2017a) and group comparisons
(e.g., French and Finch, 2016). On the other hand, imposing
equality constraints on invariant parameters can improve the
statistical power of detecting latent mean differences across
groups (Xu & Green, 2016). Shi, Song, and Lewis (2017a)
also showed that in comparison to models with only one cor-
rectly specified invariant item, partial invariance models with
multiple correctly specified equality constraints could gener-
ate more accurate and efficient estimates (e.g., factor means
and factor loadings).

Sequential backward specification search for partial
invariance models

Establishing a correct partial invariance model involves an
iterative process of specification search for non-invariant pa-
rameters. Ideally, this search should be guided by both theory
and statistical criteria. In practice, however, it often relies
solely on statistical criteria (Yoon & Kim, 2014). Multiple
specification search methods have been proposed (e.g.,
Huang, 2018; Jung & Yoon, 2016; Yoon & Millsap, 2007;
Shi, Song, Liao, Terry, & Snyder 2017b). These methods
basically fall into two categories: forward search and back-
ward search methods. Forward search methods start the search
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with a model that does not contain any equality constraints on
target parameters, while backward search methods start the
search with a model with equality constraints on all target
parameters. In a partial scalar invariance model, for example,
a forward search method will start the search from the full
metric invariance model, while a backward search method
will start with the full scalar invariance model, which is the
model that has been rejected. Note that the definitions above
are provided by previous research that focuses on the search
for partial invariance models (Jung & Yoon, 2016); while if
one adopts the definitions that the backward search means to
initiate the search from a more general model (e.g., Chou &
Bentler, 2002), the search starts with a full invariance model
with equality constraints on all target parameters will then
become a “forward” search method instead.

In addition, different statistical criteria are used in the two
types of search methods. Forward specification search usually
relies or statistics such as confidence intervals (CI). Backward
searchmethods, in comparison, often use modification indices
(MFI) to identify implausible equality constraints (e.g., Byrne,
2013; Yoon & Millsap, 2007; Byrne et al. 1989; Oort, 1998;
Yoon & Millsap, 2007). MFI measures the decrease in the
Chi-square test statistic (i.e., improvement in goodness of
fit) when a fixed parameter or an equality constraint is freed
(Sörbom, 1989). MFI is assumed to follow a Chi-square dis-
tribution with df = 1. The search starts with releasing the
equality constraint which has the largest MFI among all sig-
nificant constraints (i.e., constraints with MFI > 3.841, the
critical value of a χ2 statistic with df =1 and α = 0.05), and
then refits the model to identify the second equality constraint
to release. The search process continues until none of the
MFIs for the remaining equality constraints is significant, or
until there is no need for model modification because of a
good overall model fit indicated by global fit indices such as
a non-significant χ2 test (p < 0.05). (Kim & Yoon, 2014;
Yoon & Millsap, 2007). This sequential search procedure is
referred to as the sequential backward specification search
method with the largest MFI (SBSS_LMFI).

Among the available search methods, SBSS_LMFI is not
only one of the most widely used methods (Kim & Yoon,
2014) but also one of the few search methods that have been
validated across continuous and ordinal indicators (e.g., Jung
& Yoon, 2016; Kim & Yoon, 2014; Whittaker & Khojasteh,
2013; Yoon & Millsap, 2007). Thus, we believe it will be a
good starting point for us to study the missing data issues in
specification search. The other specification search methods
will be briefly discussed at the end of the article.

Methods to handle ordinal missing data in SBSS_LMFI

Even though SBSS_LMFI has been validated with complete
data (e.g., Kim&Yoon, 2014; Yoon&Millsap, 2007; Jung&
Yoon, 2016; Shi, Song & Lewis, 2017a), to the best of our

knowledge, no study on SBSS_LMFI so far has considered
the issue of missing data. As mentioned above, two methods
can be used to deal with ordinal missing data in SBSS_LMFI.
These methods are described in detail below along with their
strengths and limitations.

Robust full informationmaximum likelihood (rFIML) rFIML is
an extension of FIML to account for continuous data with
non-normal distributions. To explain how rFIML works, we
start with the log-likelihood function for FIML. FIML ac-
counts for missing data by creating case-wise log-likelihood
functions according to missing data patterns, allowing it to
efficiently use all available information in the dataset to esti-
mate model parameters.

The log-likelihood function used in FIML for case i is
written as

li θð Þ ¼ Ki−
1

2
log Σ θð Þi

�� ��− 1

2
xi−μið Þ0Σ θð Þ−1i xi−μið Þ; ð1Þ

where Ki is a constant. Σi, μi, and xiare the model implied
covariance matrix, mean vector, and the observed data for
case i, respectively. The individual likelihoods are summed
to form the sample log-likelihood function (Arbuckle, 1996,
p248; Yuan & Bentler, 2000, p.167–168):

l θð Þ ¼ ∑
N

i¼1
li θð Þ: ð2Þ

The test statistic of the model can be then calculated as
follows, and assumed to follow a Chi-square distribution.

TFIML ¼ −2 l bθ
� �

−l bβ
� �� �

; ð3Þ

where l bθ
� �

and l bβ
� �

are maximized log likelihoods under

the tested and saturated models, respectively (Yuan&Bentler,
2000).

Past research has shown that FIML produces more accurate
parameter estimates and χ2 test statistics than traditional miss-
ing data methods such as listwise or pairwise deletion (PD)
(Enders & Bandalos, 2001). Effectively recovering missing
information often requires integrating auxiliary variables (the
variables that predict missingness but are not part of the tested
model) into the missing data handling process for CFA
models. This can be done with FIML using Graham’s saturat-
ed model method by allowing the correlations between auxil-
iary variables and residuals of manifest indicators to be freely
estimated (Graham, 2003).

However, FIML assumes multivariate normality, which is
often violated in practice and lead to biased test statistics. To
solve the problem, rFIML corrects the test statistic by multi-
plying the test statistic in Eq. (3) by a correction factor c as
follows.
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TrFIML ¼ c� TFIML: ð4Þ

Detailed information on how c is calculated can be found in
Yuan and Bentler (2000). SinceMFI is also assumed to follow
a Chi-square test distribution, it can be corrected in a similar
fashion when rFIML is used (see Muthén, 2011, Jul, 26).

As a direct extension of FIML, rFIML inherits the capabil-
ity of FIML to handle missing data in the estimation process
while accounting for nonnormality. However, rFIML still
treated ordinal data as continuous. Past research has shown
that this could result in distorted test statistics, although the
bias may be ignorable when the number of categories within
an item is no less than five (e.g., Rhemtulla, Brosseau-Liard,
& Savalei, 2012).

WLSMV with pairwise deletion (WLSMV_PD) Unlike rFIML,
WLSMV is an ordinal estimator extended from the weighted
least squares (WLS) estimation method. WLS assumes that
for each ordinal indicator yj with C categories, there is a nor-
mal distributed latent response variable (y*j ) underlying it.

This latent response variable is categorized into C categories
using C-1 thresholds (τj, 1,τj, 2,. …τj, c − 1) such as

y j ¼

1
2
⋮
C−1
C

if
if
⋮
if
if

y*j ≤τ j;1

τ j;1≤y*j ≤τ j;2

⋮
τ j;c−2 < y*j ≤τ j;c−1

τ j;c−1 < y*j

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð5Þ

The thresholds and other parameters in the model
(e.g., loadings) are typically estimated via a three-stage
process (e.g., Muthén, 1984; Muthén, De Toit & Spisic,
1997; Wirth & Edwards, 2007). First, the sample
thresholds for each indicator are estimated using univar-
iate information. Second, the polychoric correlation be-
tween each pair of ordinal indicators is estimated by
treating the sample thresholds estimated in the previous
step as fixed (Olsson, 1979 and Bollen, 1989, p.439–
443). Third, the sample thresholds and polychoric cor-
relations obtained in steps 1 and 2 are used to form a
discrepancy function, which is minimized to obtain the

estimates for the model parameters (bθ ). The discrepan-
cy function WLS can be written as

FWLS ¼ s−σ θð Þð Þ0W−1 s−σ θð Þð Þ; ð6Þ
where s is a vector of sample thresholds and polychoric
correlations (unique elements in the sample polychoric
correlation matrix), θis a vector of model-implied
thresholds and polychoric correlations; W is the weight
matrix, which is usually a consistent estimate of the
covariance matrix of s. The test statistic can be then
calculated as

TWLS ¼ N−1ð Þ � FWLS
bθ

� �
; df ¼ p*–q; ð7Þ

where FWLS bθ
� �

is the minimized discrepancy function,

N is the sample size, p* is the number of unique ele-
ments in s, and q is the number of parameters in the
model.

TWLS asymptotically follows a χ2 distribution, though sim-
ulation studies show that it requires a very large sample size,
which is often impractical for most research in social and
behavioral sciences (e.g., Flora & Curran, 2004). A solution
to this problem is to use only the diagonal elements of the
weight matrix in Eq. (6) in the discrepancy function as shown
below

FDWLS ¼ s−σ θð Þð Þ0WD
−1 s−σ θð Þð Þ; ð8Þ

whereWD is a matrix with all the off-diagonal elements inW
fixed to 0s. This approach is known as diagonally weighted
least squares estimation (DWLS) (Muthén, et al., 1997; Wirth
& Edwards, 2007).

The information loss caused by diagonalizing the
weight matrix could distort the test statistic (Savalei,
2014). WLSMV provides a correction to DWLS for the
information loss so that the mean and variance of the test
statistic will approximate a χ2 distribution (DiStefano &
Morgan, 2014; Muthén, et al., 1997). Previous research
found that WLMSV outperformed other correction
methods (DiStefano & Morgan, 2014). Thus, we consid-
ered only WLMSV in the current study.

For complete ordinal data, WLSMV appears to outperform
rFIML. It provides more accurate test statistics (Li, 2016) and
valid MFI (Yoon & Kim, 2014). However, WLMSV has its
limitations when missing data present (Muthén, Muthén &
Asparouhov, 2015). As mentioned earlier, WLSMV is a
multi-stage process that uses only univariate and bivariate
information in the first two stages. This makes WLSMV a
limited information method instead of a full information esti-
mator. Consequently, it cannot incorporate missing data pat-
terns into its discrepancy function and relies on other methods
to deal with missing data. In practice, PD has often been
coupled with WLSMV for dealing with missing data (e.g.,
Chan, Gerhardt & Feng, 2019; Erreygers, Vandebosch,
Vranjes, Baillien, & De Witte, 2018; Hakkarainen,
Holopainen, & Savolainen, 2016; Kim, Wang & Sellbom,
2018; Willoughby, Pek, Greenberg & Family Life Project
Investigators, 2012). In the current study, we refer to this
combination as WLSMV_PD.

PD is not an ideal missing data technique. Past research
found that PD could substantially inflate the type I error rates
of χ2 tests in SEM with continuous data (e.g., Enders &
Bandalos, 2001; Savalei & Bentler, 2005). A better method
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for dealing with missing data with WLSMV is multiple impu-
tation (Asparouhov, & Muthén, 2010; Teman, 2012). For ex-
ample, Asparouhov & Muthén, (2010) found that WLSMV
combined with multiple imputation would provide more ac-
curate point estimates than WLSMV_PD. Nevertheless, we
did not consider multiple imputation in the current study be-
cause so far, there is no good way to pool MFI and the χ2 test
statistic across imputations with WLSMV (Liu et al., 2017;
Muthén, 2017).

Purpose of the current research

As described above, rFIML andWLSMV_PD both have their
own strengths and limitations. rFIML is good at handling
missing data, but it assumes that ordinal data are continuous.
In contrast, WLSMV_PD is good at handling ordinal data, but
it uses a suboptimal method to deal with missing data. To the
best of our knowledge, it is still not clear which one will
perform better or under what conditions one would be pre-
ferred over the other in SBSS. Without such information, re-
searchers have often chosen one of the methods based on
personal preference, without solid justifications (e.g.,
Fokkema, et al., 2013). To fill in this gap in the literature,
the current study aims to examine the relative performance
of rFIML and WLSMV_PD in SBSS_LMFI with ordinal
missing data using Monte Carlo simulation.

Simulation design

Population generation model

Following Jung and Yoon (2016), we used a two-group
(groups A and B) single-factor CFA model as the population
model. There were six or 12 Likert-type indicators per group,
representing smaller or larger models. A population model
with six indicators per group is shown in Fig. 1. Group A
was used as the reference group, for which all the model
parameters were fixed across all conditions. Group B was
the focus group, where the model parameters for some indi-
cators were varied across conditions.

We created invariant and non-invariant conditions,
allowing us to examine both type I and type II error rates
associated with the methods. For invariant conditions, all
items in groups A and B had factor loadings fixed at 0.7
(Jung & Yoon, 2016; Sass et al., 2014). To create non-
invariant conditions, certain values (depend on the pattern of
non-invariance) were subtracted from either the loadings or
the thresholds of items 2 and 4 in group B for the six indicators
per group model. For the 12 indicators per group model, non-
invariance occurred on items 2, 4, 6, and 10. The number of
non-invariant items is doubled here to maintain the proportion
of non-invariant items constant. The residual term of each

indicator follows a normal distribution with mean at 0 and
variance as 1 – the square of the corresponding loading.

In addition, for both invariant and non-invariant conditions,
there were complete data and missing data conditions. For
missing data conditions, substantial amounts of missing data
were imposed on all non-invariant items (i.e., items 2 and 4 in
group B for the smaller model and items 2, 4, 8, and 10 in
group B for the larger model). The missingness was deter-
mined by an auxiliary continuous variable correlated with
the latent factor in group B by r = 0.5. Thus, the generated
missing data mechanism was missing at random (MAR). Note
that in the missing data conditions, in addition to the MAR
data mentioned above, we also imposed 5% missing
completely at random (MCAR) data on all items in the model
to increase the external validity of our simulations, given that
missing data could occur on all items and different missing
data mechanisms could coexist in reality. The details of the
missing data conditions and missing data generation process
are explained below.

Design factors

The design factors we manipulated included (1) Sample size,
(2) Model size, (3) Number of categories within each indica-
tor, (4) Distribution of thresholds, (5) Location of non-invari-
ance, (6) Pattern of non-invariance, and (7) Missing data pro-
portion. The first six factors were between-replication factors.
The last factor was a within-replication factor.

Sample size The sample size was varied at three levels: 500
(250 per group), 1000 (500 per group), or 2000 (1000 per
group), representing small, medium, or large sample sizes.
These settings are identical to those adopted in Jung & Yoon
(2016).

Model size The number of items per group was varied at two
levels: six items (a smaller model) per group and 12 items per
group (a larger model), referring to previous research on miss-
ing data and specification search problems in the framework
of MF-CFA (Enders & Gottschall, 2011; Yoon & Millsap,
2007)

Number of categories per item We varied this factor at two
levels: three or five. As mentioned above, past research has
recommended using rFIML for ordinal data with ≥ 5 catego-
ries; however, it would still be interesting to see how rFIML
would perform in relative to WLSMV_PD for ordinal data
with less than five categories.

Distribution of thresholds The distribution of thresholds is
varied to be either symmetric or asymmetric. For five-point
indicators, (– 1.30, – 0.47, 0.47, 1.30) and (–0.253, 0.385,
0.842, 1.282) are used to represent symmetric and asymmetric
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thresholds, respectively, following Sass et al. (2014). For
three-point indicators, (– 0.83, 0.83) and (– 0.50, 0.76) are
used to represent symmetric and asymmetric thresholds, re-
spectively, following Rhemtulla et al. (2012).

Location of non-invariance Non-invariance was placed on ei-
ther the loadings or thresholds of non-invariant items (i.e.,
items 2 and 4 for the smaller model and items 2, 4, 8, and
10 for the larger model). For convenience, we refer to the two
types of conditions as loading and threshold non-invariant
conditions, respectively.

Pattern of non-invariance In the non-invariant conditions, the
loadings or thresholds of non-invariant items were subtracted
by certain values (depending on the pattern of non-invari-
ance). We created four patterns of non-invariance: uniform
(small, large, and mixed) and non-uniform (Jung & Yoon,
2016; Meade & Bauer, 2007). For uniform patterns, the direc-
tions of non-invariance were consistent across non-invariant
items. Specifically, the loadings or thresholds of non-invariant
items in group B were subtracted by (0.2, 0.2), (0.4, 0.4), or
(0.3, 0.5) in conditions for the smaller model and by (0.2, 0.2,
0.2, 0.2), (0.4, 0.4, 0.4, 0.4), or (0.3, 0.5, 0.3, 0.5) in conditions
for the larger model to create small, large, or mixed non-
invariant conditions (see also Jung & Yoon, 2016).

For non-uniform non-invariance, the directions of non-
invariance were different across the items. Specifically, the
loadings or thresholds of non-invariant items in group B were
subtracted by (0.2, – 0.2) in conditions for the smaller model
and by (0.2, – 0.2, 0.2, – 0.2) in conditions for the larger
model. Model parameters for these patterns of non-
invariance for five-point indicators are presented in Table 1.
Those for three-point indicators can be found in the

supplementary material. We also quantified the magnitude
(i.e., effect size) of non-invariance for each of these patterns
using the dmacs statistics proposed by Nye & Drasgow (2011).
Given the space limit, these effect sizes along with their inter-
pretation guidelines provided by Nye, Bradburn, Olenick,
Bialko &Drasgow (2019) can be also found in supplementary
materials.

Missing data proportion We imposed MAR missing data on
non-invariant items in group B. We varied the MAR data rate
at three levels: 0% (no missing data), 30% MAR (medium)
and 50%MAR (large). Similar to Wu, Jia and Enders (2015),
the missingness on these items was determined by the auxil-
iary variable (see Fig. 1), such as that participants with higher
scores on the auxiliary variable in focal group were more
likely to have missing data. Specifically, three steps are in-
volved. First, auxiliary variable values in focal group were
rank ordered. Second, the probabilities of having missing data
on items 2 and 4 for the smaller model and on items 2, 4, 8,
and 10 for the larger model for each individual were then
calculated as 1 − ranki/nb. Here ranki is the rank order of the
auxiliary variable score for individual i andnbis the sample
size of group B. Third, for each participant and incomplete
item, a random number u was generated from a uniform dis-
tribution. If u was less than the probability, then the data point
was missing. This procedure was repeated for non-invariant
items until the desired MAR data rate (30% or 50%) was
reached for each item. As mentioned above, in addition to
the MAR data, we added 5% MCAR data to all items in both
groups in the missing data conditions.

In sum, there are 240 between-replication conditions in
total. Among them, there are 192 non-invariant conditions:
sample sizes (3) × model sizes (2) × number of categories

58

Group A

LVA

VA1 VA2 VA4 VA6VA5

0.7 0.7 . … .. .          0.7 0.7 0.7

AUXA

0.5

●  ●  ●

1       1 ……                    …      1             1                 1 

Group B

LVB

VB1 VB2 VB4 VB6VB5

0.7 B2 … B4 0.7 0.7

AUXB

0.5

1       1  …….. 1  1 1

●  ●  ●

Note: Aux:  auxiliary variable. VA: observed indicators ingroup 

A. VB: observed indicators ingroup A

εA1 εA2 εA4 εA5 εA6 εB1 εB2 εB4 εB5 εB6

Fig. 1. The population model with six indicators. Note: Aux: auxiliary variable. VA: observed indicators ingroup. A. VB: observed indicators ingroup A
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per item (2) × distribution of thresholds (2) × locations of non-
invariance (2) × patterns of the non-invariance (4). There are
48 invariant conditions: sample size (3) × model sizes (2) ×
number of categories per item (2) × distribution of thresholds
(2) × loading or threshold invariance (2). Note that the terms
“loading” or “thresholds” in the invariant conditions only rep-
resent the target parameters of the search. All parameters
(loadings and thresholds) are invariant in the invariant condi-
tions. There are 500 replications for each condition. All
datasets were generated using R 3.3.1 (R core team, 2016).

Implementation of the methods

For each replication, we conducted SBSS_LMFI using rFIML
andWLSMV_PD (Muthén &Muthén, 1998–2017). The aux-
iliary variable was included in both groups using the saturated
correlation model proposed by Graham (2003). In
SBSS_LMFI, we used 3.841 as the cutoff for a significant
MFI. Following Yoon & Kim (2014), the search procedure
continues until there is no significant MFI in the model on
target parameters or until the global χ2 test became non-

Table 1. Model parameters of different patterns of non-invariance with five-point indicators

Group B

Parameter
loadings

Group A Baseline (item 1,3,5,6
in group B)

Small difference Large difference Mixed-size
difference

Non-uniform
difference

Loading in item
1&7a

.7 .7 .7 .7 .7 .7

Loading in item
2&8

.7 .7 .5 .3 .4 .5

Loading in item
3&9

.7 .7 .7 .7 .7 .7

Loading in item
4&10

.7 .7 .5 .3 .2 .9

Loading in item
5&11

.7 .7 .7 .7 .7 .7

Loading in item
6&12

.7 .7 .7 .7 .7 .7

Symmetric threshold

item 1 & 7 (– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

item 2 & 8 (– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.5, – 0.67, 0.27,
1.1)

(– 1.7, – 0.87, 0.07,
0.9)

(– 1.6, – 0.77, 0.17,
1.0)

(– 1.6, – 0.77, 0.17,
1.0)

item 3& 9 (– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

item 4 & 10 (– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.5, – 0.67, 0.27,
1.1)

(– 1.7, – 0.87, 0.07,
0.9)

(– 1.8, – 0.97, – .03,
0.8)

(– 1, – 0.17, 0.77,
1.60)

item 5 & 11 (– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

item 6 & 12 (– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

(– 1.3, – 0.47, 0.47,
1.3)

Asymmetric threshold

item 1 & 7 (– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385, 0.842,
1.282)

(– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385,
0.842, 1.282)

item 2 & 8 (– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385, 0.842,
1.282)

(– 0.453, 0.185,
0.642, 1.082)

(– 0.653, – 0.015,
0.442, 0.882)

(– 0.553, 0.085,
0.542, 0.982)

(– 0.453, 0.185,
0.642, 1.082)

item 3& 9 (– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385, 0.842,
1.282)

(– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385,
0.842, 1.282)

item 4 & 10 (– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385, 0.842,
1.282)

(– 0.453, 0.185,
0.642, 1.082)

(– 0.653, – 0.015,
0.442, 0.882)

(– 0.753, – 0.115,
0.342, 0.782)

(– 0.053, 0.585,
1.042, 1.482)

item 5 & 11 (– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385, 0.842,
1.282)

(– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385,
0.842, 1.282)

(– 0.253, 0.385,
0.842, 1.282)

item 6 & 12 (–0.253, 0.385,
0.842, 1.282)

(–0.253, 0.385, 0.842,
1.282)

(–0.253, 0.385,
0.842, 1.282)

(–0.253, 0.385,
0.842, 1.282)

(–0.253, 0.385,
0.842, 1.282)

(–0.253, 0.385,
0.842, 1.282)

Note: a the parameter settings for item 7 – item 12 only apply to conditions with the larger model. Non-invariance occurred either on loadings or
thresholds in items 2 and 4 in group B. The residual variance of each item is equal to 1- squared loading.
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significant (p > 0.05). We used the loading and intercept (first
threshold) of item 1 as the anchor parameters; they were al-
ways constrained to be equal across groups thus were not
included in the search. ForWLSMV_PD, the model was spec-
ified using delta parameterization. Details about this parame-
terization can be found in Muthén and Asparouhov (2002).
Given that WLSMV_PD estimates thresholds and there are
multiple thresholds in an ordinal indicator, the specification
search of WLSMV_PD involves more steps than rFIML n the

thresholds non-invariant conditions (note: rFIML only search
one intercept per item in the threshold non-invariant
conditions).

Outcomes

We evaluated the two methods using three outcome variables
that have been considered in past research (Jung & Yoon,
2016; Yoon & Kim, 2014; Yoon & Millsap, 2007): model

Table 2 Model level type I error rates in invariance conditions with five-point indicators

Symmetric thresholds Asymmetric thresholds

Model Size DIF model Sample size MAR rates rFIML WLSMV_PD rFIML WLSMV_PD

6Items Metric 500 0% 0.026 0.060 0.030 0.034

30% 0.014 0.048 0.032 0.048

50% 0.018 0.082 0.032 0.145

1000 0% 0.028 0.048 0.020 0.034

30% 0.022 0.074 0.022 0.056

50% 0.032 0.188 0.024 0.347

2000 0% 0.018 0.064 0.016 0.030

30% 0.026 0.094 0.028 0.146

50% 0.036 0.406 0.020 0.692

Scalar 500 0% 0.028 0.062 0.036 0.056

30% 0.028 0.106 0.030 0.104

50% 0.038 0.316 0.016 0.226

1000 0% 0.024 0.056 0.032 0.054

30% 0.036 0.148 0.024 0.124

50% 0.020 0.610 0.026 0.498

2000 0% 0.016 0.040 0.022 0.058

30% 0.020 0.304 0.024 0.272

50% 0.020 0.940 0.014 0.856

12 items Metric 500 0% 0.046 0.038 0.022 0.028

30% 0.042 0.054 0.036 0.058

50% 0.046 0.114 0.050 0.126

1000 0% 0.026 0.042 0.020 0.030

30% 0.034 0.052 0.020 0.070

50% 0.030 0.240 0.030 0.358

2000 0% 0.016 0.050 0.032 0.050

30% 0.034 0.096 0.024 0.140

50% 0.032 0.540 0.034 0.756

Scalar 500 0% 0.058 0.048 0.044 0.060

30% 0.064 0.104 0.048 0.092

50% 0.056 0.322 0.054 0.276

1000 0% 0.028 0.038 0.028 0.038

30% 0.032 0.112 0.016 0.144

50% 0.038 0.674 0.032 0.586

2000 0% 0.032 0.054 0.018 0.056

30% 0.032 0.286 0.024 0.292

50% 0.022 0.984 0.026 0.948

Note: the type I error rates above 0.1 are highlighted in bold
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level type I and type II error rates, and perfect recovery rates.
The model level type I error rate is the probability of
misidentifying any invariant parameters as non-invariant
across all replications of a condition; the model level type II
error rate is the probability of misidentifying any non-
invariant parameters as invariant across all replications of a
condition. The perfect recovery rate is defined as the proba-
bility of correctly identifying all non-invariant and invariant
parameters in all items across all replications of a condition.

Note that with the definitions, model level type I
errors and type II errors could appear in a partial in-
variance model in non-invariance conditions simulta-
neously. In contrast, the perfect recovery rate is consid-
ered as a criterion that is similar to but more rigorous
than power (Jung & Yoon, 2016), as it is a function of
both type I and type II error rates. A perfect recovery
can be achieved only when neither type I nor type II
errors occurred. For invariant conditions, only model
level type I errors could occur and the perfect recovery
rates would be equal to 1 – model level type I error

rates. Thus, we only calculated and reported model level
type I errors for invariant conditions.

Results

All specification searches conducted using rFIML converged.
About 0.3% of the replications had convergence problems
withWLSMV_PD.Most of these non-convergent replications
occurred with the larger models, especially in loading non-
invariance conditions where at least one loading in the model
was lower than 0.4 with small sample sizes. These replications
were excluded from the rest of the analyses.

Because five-point Likert scales are much more popular
than three-point Likert scales, we present the results for five-
point indicators first and then show how the results for three-
point indicators were similar or different. In addition, given
relative performances between methods are similar and con-
sistent between conditions with six item per group model and

Fig. 2 Perfect recovery rates of the methods in loading non-invariance conditions with five-point symmetric indicators
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the conditions with the 12 item per group models, we thus
focused on describing the results for the smaller model.

The results for five-point indicators

Model level type I error rates and perfect recovery rates for
invariant conditions The result for the model level type I error
rates is shown in Table 2. The type I error rates above 0.1 are
highlighted. When data were complete, both methods main-
tained the type I error rate around or below the nominal level
(0.05). However, when data were missing, rFIML substantial-
ly outperformed the WLSMV_PD in controlling type I error
rates. The type I error rates from rFIML were below or around
.05 across all missing data conditions. In contrast,
WLSMV_PD yielded inflated type I error rates, particularly
in the conditions with large sample sizes and high missing
data rates. For example, in the conditions where the sample
size was 2000 and the missing data rate was 50%, the type I
error rates from WLSMV_PD were inflated up to 0.40 and
0.98 for the metric and scalar invariance models, respectively.
As mentioned above, for non-invariant conditions, perfect

recovery rates are equal to 1 minus type I error rates, thus
lower type I error rates can be directly translated to higher
perfect recovery rates.

Perfect recovery rates for non-invariant conditions The per-
fect recovery rates of conditions with five-point indicators are
presented in Figs. 2, 3, 4, and 5. As shown in these figures, the
results from both methods shared the following patterns: (a)
As sample size increased, the perfect recovery rate also in-
creased; (b) As missing data rate increased, the perfect recov-
ery rate decreased in most conditions; (c) As model size in-
creased, the perfect recovery rate decreased; (d) Neither of the
methods had sufficient perfect recovery rates (> 0.8) when
sample size was smaller than 1000, regardless of the patterns
of non-invariance. In addition, as the thresholds changed from
symmetric to asymmetric, the perfect recovery rate tended to
slightly decrease. The detailed values of the perfect recovery
rates in the conditions can be found in supplementary
materials.

The perfect recovery rates were more comparable between
rFIML and WLSMV_PD under complete data conditions.

Fig. 3 Perfect recovery rates of the methods in thresholds non-invariance conditions with five-point symmetric indicators
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The performance of the two methods diverged with the pres-
ence of missing data. Specifically, perfect recovery rates of
rFIML were more consistent across design factors and tended
to decrease as missing data rates increased across conditions.
Factors such as patterns of non-invariance appeared to have
more profound and complex impacts on WLSMV_PD when
missing data present. In most conditions with uniform non-
invariance (i.e., the non-invariance of items followed the same
direction), the perfect recovery rates from WLSMV_PD only
slightly decreased as the missing data rate increased and in
general were higher than those from rFIML. In contrast, for
non-uniform non-invariance conditions, the perfect recovery
rates from WLSMV_PD substantively decreased as the miss-
ing data rate increased and were lower than those from rFIML.

In addition to the pattern of non-invariance, the relative
performance between rFIML and WLSMV_PD was also af-
fected by the location of non-invariance and threshold asym-
metry. Specifically, when non-invariance occurred in loadings
of indicators with asymmetric thresholds (see Fig. 4), rFIML
outperformed WLSMV_PD in perfect recovery rate even un-
der uniform non-invariance conditions.

Model level type I and type II error rates for non-invariant
conditions The type I error rates for the loading non-
invariant conditions for the smaller model are shown
in Table 3. As shown in the table, rFIML provided a
good control of the type I error rate across all condi-
tions. In contrast, WLSMV_PD yielded inflated model
level type I error rates and the type I error rates in-
creased as the missing data rate increased.

Tables 4 and 5 display the type II error rates for the
smaller model . The type II error rates higher than 0.2
are highlighted in these tables. The type II error rates of
rFIML generally increased as the missing data rate in-
creased with only a few exceptions. Both methods had
type II error rates lower than 0.2 when thresholds were
symmetric, magnitude of non-invariance and sample size
were large.

Comparing the two methods, rFIML tended to have lower
model level type II error rates than WLSMV_PD under non-
uniform non-invariance conditions, particularly with the pres-
ence of missing data. In contrast, for uniform non-invariance,
WLSMV_PD outperformed rFIML, except when non-

Fig. 4 Perfect recovery rates of the methods in loading non-invariance conditions with five-point asymmetric indicators
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invariance occurred in loadings and thresholds were
asymmetric.

The results for three-point indicators

The results from the three-point indicators were mostly con-
sistent with those from the five-point indicators. For instance,
rFIML continued outperforming WLSMV_PD in controlling
the model level type I error rates (see Table 6). For perfect
recovery rates, similar patterns were observed between the
results for the three-point and five-point indicators (see Fig.
6), although the perfect recovery rates of rFIML under the
three-point indicators were lower than those from the five-
point indicators by comparing Fig. 6 to Fig. 2. In general,
rFIML outperformed WLSMV_PD under non-uniform non-
invariance or when non-invariance occurred in loadings and
thresholds were asymmetric.WLMSV_PD, on the other hand,
outperformed rFIML under uniform non-invariance.

There is one difference, however, between the two types of
indicators. This difference is shown in the upper panel of Fig.
7. It appeared that with three-point indicators, WLSMV_PD

could outperform rFIML under non-uniform non-invariance
when the non-invariance occurred in the thresholds and there
was a larger number of asymmetric items (i.e., 12 items per
group) in the model.

Conclusions and discussion

Specification search is an important follow-up procedure in
ME/I when full invariance models cannot be achieved
(Putnick, & Bornstein, 2016). Focusing on backward specifi-
cation search, we evaluated the performance of two common-
ly used methods, rFIML and WLSMV_PD, by examining
their model-level type I rates, type II error rates, and perfect
recovery rates in the current study. The major findings are
summarized and discussed below.

Major findings

First, in both invariant and non-invariant conditions, we con-
sistently found that rFIML provided a better control of model-

Fig. 5 Perfect recovery rates of the methods in thresholds non-invariance conditions with five-point asymmetric indicators
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level type I error rates than WLSMV_PD across all the con-
ditions when missing data present, including those with three-
point indicators. This suggests that the advantage of
WLSMV_ PD in dealing with the ordinal nature of the data
is comprised by its use of PD. At least two aspects of
WLSMV_PD could contribute to the inflated type I error
rates. First, it treats the sample thresholds and polychoric cor-
relations as if they were obtained from complete data, thus

fails to account for the uncertainty due to missing data in
estimating these parameters. Second, depending on missing
data patterns, the thresholds and polychoric correlations are
likely calculated using different sample sizes, which could
distort the globalχ2 statistics (Bollen, 1989). Since MFI is a
χ2 statistic, this could also bias MFI.

Second, in non-invariance conditions, we found that de-
crease in sample size, increase in missing data rate, and

Table 3 Model level type I error rates in loading non-invariance conditions with six five-point indicators per group

Symmetric thresholds Asymmetric thresholds

DIF type Sample size MAR rates rFIML WLSMV_PD rFIML WLSMV_PD

Small 500 0% 0.048 0.076 0.034 0.018

30% 0.046 0.112 0.034 0.030

50% 0.046 0.144 0.036 0.059

1000 0% 0.044 0.110 0.044 0.044

30% 0.042 0.142 0.058 0.070

50% 0.056 0.146 0.036 0.100

2000 0% 0.028 0.084 0.012 0.056

30% 0.020 0.098 0.018 0.076

50% 0.034 0.098 0.028 0.106

large 500 0% 0.024 0.131 0.026 0.030

30% 0.030 0.132 0.028 0.032

50% 0.054 0.174 0.040 0.047

1000 0% 0.012 0.046 0.012 0.044

30% 0.010 0.074 0.014 0.062

50% 0.012 0.074 0.016 0.067

2000 0% 0.022 0.050 0.006 0.042

30% 0.018 0.042 0.008 0.064

50% 0.022 0.052 0.012 0.052

Mixed 500 0% 0.020 0.088 0.026 0.030

30% 0.036 0.125 0.020 0.027

50% 0.036 0.149 0.030 0.079

1000 0% 0.010 0.034 0.008 0.034

30% 0.010 0.042 0.012 0.050

50% 0.024 0.058 0.018 0.077

2000 0% 0.010 0.028 0.006 0.034

30% 0.016 0.038 0.006 0.062

50% 0.012 0.030 0.008 0.074

Non-uniform 500 0% 0.026 0.052 0.036 0.014

30% 0.032 0.066 0.024 0.022

50% 0.034 0.064 0.038 0.040

1000 0% 0.032 0.068 0.014 0.038

30% 0.024 0.056 0.020 0.050

50% 0.040 0.066 0.012 0.097

2000 0% 0.012 0.066 0.018 0.018

30% 0.028 0.076 0.014 0.062

50% 0.018 0.048 0.008 0.140

Note: Model level type I error rates above 0.1 are highlighted in bold
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decrease in the amount of non-invariance were generally as-
sociated with lower perfect recovery rates for both methods.
When sample size was small, neither method produced > .8
perfect recovery rates in most conditions. In addition, increase
in model size and asymmetry of thresholds could also
decrease perfect recovery rates. These results are consistent
with the findings from previous research based on complete
data. For example, Yoon&Millsap (2007) found that increase

the model size decreased the perfect recovery rates of
SBSS_LMF. Sass et al. (2014) found that asymmetric thresh-
olds lowered the power of Δχ2 tests between invariance
models for robust maximum likelihood (ML) estimator in all
conditions and WLSMV in most conditions.

Third, WLSMV_PD produced higher perfect recovery
rates than rFIML in uniform non-invariance conditions.
However, this may be due to the fact that WLSMV_PD

Table 4 Model level type II error rates in loading non-invariance conditions with six five-point indicators per group

Symmetric thresholds Asymmetric thresholds

DIF type Sample size MAR rates rFIML WLSMV_PD rFIML WLSMV_PD

Small 500 0% 0.946 0.946 0.964 1.000

30% 0.964 0.966 0.978 0.996

50% 0.980 0.926 0.968 0.982

1000 0% 0.806 0.804 0.836 1.000

30% 0.874 0.822 0.912 0.980

50% 0.930 0.688 0.940 0.908

2000 0% 0.438 0.415 0.558 0.980

30% 0.620 0.422 0.694 0.908

50% 0.726 0.218 0.796 0.670

large 500 0% 0.496 0.457 0.568 0.980

30% 0.654 0.621 0.704 0.962

50% 0.766 0.619 0.760 0.955

1000 0% 0.056 0.036 0.110 0.896

30% 0.184 0.110 0.250 0.888

50% 0.382 0.151 0.428 0.859

2000 0% 0.000 0.000 0.002 0.648

30% 0.002 0.000 0.006 0.596

50% 0.030 0.000 0.048 0.462

Mixed 500 0% 0.628 0.578 0.684 0.976

30% 0.746 0.675 0.808 0.980

50% 0.822 0.641 0.836 0.967

1000 0% 0.254 0.182 0.366 0.918

30% 0.440 0.275 0.506 0.890

50% 0.556 0.238 0.630 0.829

2000 0% 0.006 0.004 0.020 0.744

30% 0.044 0.012 0.086 0.620

50% 0.140 0.014 0.166 0.448

Non-uniform 500 0% 0.928 0.964 0.930 0.998

30% 0.936 0.994 0.958 1.000

50% 0.964 0.998 0.968 0.992

1000 0% 0.728 0.848 0.804 0.996

30% 0.836 0.962 0.872 0.998

50% 0.884 0.990 0.914 0.950

2000 0% 0.338 0.492 0.438 0.990

30% 0.494 0.876 0.610 0.996

50% 0.660 0.994 0.708 0.798

Note: Model level type II error rates above 0.2 are highlighted in bold

2580 Behav Res (2020) 52:2567–2587



had inflated power to detect uniform non-invariance given
its inflated type I error rates. Thus, researchers need to be
cautious about using WLSMV_PD even under uniform
non-invariance. rFIML had lower power to detect uniform
non-invariance. One possible explanation is that continu-
ous estimators are in general less sensitive to item level
features of ordinal indicators (Oort, 1998). Therefore
rFIML requires a larger sample to precisely detect

differences between ordinal items. This could also explain
why the type I error rates from rFIML were conservative.
Similar findings have been reported in previous research
(e.g., Chen et al., 2019).

Fourth, rFIML showed higher perfect recovery rates and
power than WLSMV_PD in detecting non-uniform non-
invariance (i.e., directions of non-invariance are different
across non-invariant items) when missing data present.

Table 5 Model level type II error rates in threshold non-invariance conditions with six five-point indicators per group

Symmetric thresholds Asymmetric thresholds

DIF type Sample size MAR rates rFIML WLSMV_PD rFIML WLSMV_PD

Small 500 0% 0.926 0.914 0.932 0.892

30% 0.946 0.752 0.966 0.762

50% 0.962 0.490 0.976 0.516

1000 0% 0.726 0.616 0.778 0.580

30% 0.792 0.282 0.868 0.282

50% 0.892 0.046 0.930 0.070

2000 0% 0.202 0.074 0.330 0.106

30% 0.402 0.012 0.548 0.012

50% 0.644 0.000 0.758 0.002

Large 500 0% 0.234 0.128 0.366 0.156

30% 0.412 0.082 0.522 0.106

50% 0.638 0.036 0.734 0.064

1000 0% 0.002 0.000 0.022 0.004

30% 0.042 0.000 0.090 0.004

50% 0.208 0.000 0.322 0.004

2000 0% 0.000 0.000 0.000 0.000

30% 0.000 0.000 0.000 0.000

50% 0.002 0.000 0.012 0.000

Mixed 500 0% 0.402 0.284 0.534 0.346

30% 0.550 0.186 0.660 0.216

50% 0.750 0.102 0.798 0.120

1000 0% 0.086 0.026 0.146 0.040

30% 0.208 0.006 0.316 0.014

50% 0.430 0.000 0.574 0.002

2000 0% 0.000 0.000 0.002 0.000

30% 0.006 0.000 0.016 0.000

50% 0.064 0.000 0.134 0.000

Non- uniform 500 0% 0.912 0.828 0.942 0.844

30% 0.948 0.896 0.960 0.930

50% 0.974 0.972 0.980 0.988

1000 0% 0.704 0.398 0.768 0.528

30% 0.818 0.838 0.872 0.848

50% 0.928 0.986 0.944 0.978

2000 0% 0.194 0.042 0.364 0.098

30% 0.442 0.654 0.572 0.692

50% 0.682 0.974 0.768 0.976

Note: Model level type II error rates above 0.2 are highlighted in bold
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Similar findings have been obtained in previous research
using complete continuous data. For example, Meade and
Lautenschlager (2004) and Whittaker and Khojasteh (2013)
found that the ML estimator for complete data had higher
power to detect non-uniform non-invariance than uniform
non-invariance. They believed that this had to do with com-
munalities of non-invariance items (Whittaker & Khojasteh,
2013). Given how non-invariance was simulated in those

studies (e.g., higher loadings), non-uniform non-invariance
may have created a scenario where the non-invariant item(s)
had a higher communality for the focal group, increasing the
influence of these non-invariant items and consequently the
power of rFIML. Higher power combined with lower type I
error rates resulted in higher perfect recovery rates of rFIML.

These non-invariant items with high communalities, how-
ever, did not benefit but actually harm the performance of

Table 6 Model level type I error rates in invariance conditions with three-point indicators

Symmetric thresholds Asymmetric thresholds

Model Size DIF model Sample size MAR rates rFIML WLSMV_PD rFIML WLSMV_PD

6 Items Metric 500 0% 0.080 0.140 0.016 0.030

30% 0.080 0.160 0.012 0.046

50% 0.060 0.160 0.026 0.140

1000 0% 0.020 0.020 0.026 0.032

30% 0.000 0.020 0.022 0.060

50% 0.000 0.260 0.030 0.284

2000 0% 0.020 0.040 0.022 0.038

30% 0.020 0.040 0.024 0.118

50% 0.020 0.480 0.026 0.656

Scalar 500 0% 0.020 0.040 0.024 0.048

30% 0.000 0.040 0.024 0.074

50% 0.020 0.240 0.022 0.226

1000 0% 0.040 0.060 0.018 0.044

30% 0.040 0.080 0.018 0.122

50% 0.020 0.420 0.024 0.466

2000 0% 0.040 0.120 0.016 0.032

30% 0.040 0.180 0.018 0.192

50% 0.040 0.760 0.016 0.816

12 Items Metric 500 0% 0.040 0.030 0.032 0.030

30% 0.050 0.040 0.030 0.044

50% 0.052 0.122 0.046 0.122

1000 0% 0.026 0.032 0.012 0.024

30% 0.030 0.064 0.020 0.064

50% 0.022 0.254 0.020 0.324

2000 0% 0.034 0.040 0.018 0.044

30% 0.042 0.118 0.020 0.118

50% 0.032 0.618 0.018 0.760

Scalar 500 0% 0.034 0.040 0.044 0.020

30% 0.062 0.060 0.064 0.064

50% 0.052 0.144 0.048 0.210

1000 0% 0.034 0.036 0.048 0.048

30% 0.042 0.074 0.036 0.094

50% 0.038 0.410 0.038 0.498

2000 0% 0.028 0.044 0.044 0.058

30% 0.034 0.140 0.032 0.178

50% 0.038 0.850 0.030 0.912

Note: the type I error rates that are above 0.1 are highlighted in bold
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WLSMV_PD, because impacts of missing data were magni-
fied by PD in this scenario. A similar result was reported in
Enders and Bandalos (2001) which showed that when missing
data in SEM were handled using PD, indicators with higher
communalities demonstrated more biased loading estimates.
This could explain why perfect recovery rates of
WLSMV_PD were much lower than rFIML under non-
uniform non-invariance.

Other findings and issues

In addition to the general patterns described above, we found
two interesting exceptions. First, in the threshold non-uniform
non-invariance conditions, rFIML produced lower perfect re-
covery rates when there were only three categories per indi-
cator, the model size was large, and thresholds were asymmet-
ric. This implies that even with non-uniform non-invariance,
there may be a tipping point where the advantage of rFIML in
dealing with missing data would be outweighed by its disad-
vantage of dealing with the discrete nature of the ordinal data
if the data are highly discrete and asymmetric.

Second, despite the general advantages of WLSMV_PD
over rFIML in uniform non-invariance conditions, we found
that if non-invariance appeared in loadings of items with
asymmetric thresholds, WLSMV_PD was inferior to rFIML
regardless of the non-invariance pattern. Similar findings were
reported in Yoon & Kim (2014). This implies that
WLSMV_PD may have more difficulty than rFIML in sepa-
rating the source of non-invariance from the asymmetry of
thresholds.

Practical recommendations

As we expected, neither of the methods is perfect. Thus, there
is no one-size-fits-all recommendations, and preference for a
method should be determined based on which criterion is
deemed most important as well as characteristics of the data
such as the pattern of non-invariance. Because type I errors are
generally viewed as more harmful than type II errors, it is
often more important to control type I error rates than mini-
mize type II error rates. Thus, if controlling type I error rates is
the priority, rFIML is generally preferred to WLSMV_PD.

Fig. 6 Perfect recovery rates of the methods in loading non-invariance conditions with six symmetric three-point indicators per group in the model
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Using rFIML will not only ensure a good control of model
level type I error rates but also provide higher power to detect
non-invariant items if the pattern of non-invariance is non-
uniform, unless there are less than five categories, the model
size is large, and thresholds are asymmetric. On the other
hand, if maximizing the perfect recovery rate is the goal, then
WLSMV_PD appears to be more favorable when non-
invariance is uniform. Otherwise, rFIML is still preferred.
One downside of using rFIML is that it will have lower power
to detect uniform non-invariant items than WLSMV_PD
when thresholds are symmetric. According to our study,
rFIML seemed to require at least 1000 and 2000 participants
to demonstrate sufficient perfect recovery rates in conditions
with five-point indicators and three-point indicators, respec-
tively. These sample sizes could be unrealistic for some
studies.

In addition to the above recommendations, we want to
emphasize the importance of theory when using MFI to build
partial invariance models. Many researchers have cautioned
that using MFI as a purely data-driven, post hoc model mod-
ification index could lead to misleading results (e.g.,

MacCallum, Roznowski, & Necowitz, 1992; Yoon &
Millsap, 2007). Thus, theoretical justification and cross-
validation for invariance model modifications are important
issues that should be considered during the search process
(Byrne et al., 1989; Yoon & Millsap, 2007).

Limitation and future directions

As in many simulation studies, we could not include all
conditions and methods of interest in the current study.
First, we assume that the anchor item is correctly
specified, which may not always be the case in practice.
Yoon & Millsap (2007) demonstrated that incorrect an-
chor variables could make invariance items appear to be
non-invariant. Johnson, Meade & DuVernet (2009) also
found that using wrong anchor items could substantively
affect item level ME/I tests and make group comparisons
unreliable. Although several methods to select anchor
items have been proposed (e.g., Jung & Yoon, 2017), they
have not been examined with missing data. Thus, this is a
potential avenue for future research.

Fig. 7 Perfect recovery rates of the methods in thresholds non-invariance conditions with 12 asymmetric three-point indicators per group in the model
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Second, as in most specification search research, we as-
sumed that the latent factors in both groups were normally
distributed. However, researchers have found that non-
normal latent variables could affect the performance of
WLSMV and the robust ML estimator for complete data
(Savalei & Folk, 2014; Suh, 2015). It would be interesting
to examine the joint effect of non-normal latent factors and
ordinal missing data on the performance of the two ap-
proaches considered in our study.

Third, we only examined one of the search processes,
SBSS_LMFI, because of its popularity in both methodologi-
cal and empirical literature. However, SBSS_LMFI has its
limitations. One main limitation is that it may not perform
well when the percentage of non-invariance items was high
(e.g., 2/3 of the items are non-invariant) (Yoon & Millsap,
2007). In this case, the restricted model used in the beginning
of a backward search process (e.g., full-scale invariance mod-
el) would be severely misspecified (i.e., too many inappropri-
ate equality constraints), leading to biased results (Yoon &
Millsap, 2007).

This problem can be mitigated by using forward specifica-
tion search methods because they start with a less restricted
invariance model. Recently, Jung and Yoon (2016) proposed
a forward specification search process that utilizes the CIs of
differences between corresponding parameters across groups
(e.g., loading differences of corresponding items in a
configural invariance model). Using complete continuous da-
ta, they demonstrated that their method was at least as good as
or even slightly better than SBSS_LMFI. We did not include
this approach in our study for two reasons: (1) this approach
has not been widely adopted by empirical researchers, and (2)
It had very similar performance to SBSS_LMFI in simulations
(see Jung & Yoon, 2016).

Several other advances in specification search would also
deserve researchers’ attention. There are specification methods
developed based on penalized ML estimators (e.g., Belzak, &
Bauer, 2020; Huang, 2018; Jacobucci, Grimm, & McArdle,
2016; Liang, & Jacobucci, 2019). Emerging evidence showed
that these methods could provide a better control on type I error
rates than traditional methods such as item response theory (e.g.,
Belzak, & Bauer, 2020). In addition, with some recently devel-
oped software, researchers could use two-stage FIML to handle
missing data problems with penalizedML estimators in a frame-
work of multiple group analyses (e.g., the lslx package in R ,
Huang, 2020). There are also specification search methods de-
veloped using Bayesian approaches. For instance, Shi, Song,
Liao, et al., (2017b) showed the possibility of using Bayesian
SEM to preform forward specification search with complete con-
tinuous data. Given that Bayesian estimators are capable of han-
dling ordinal missing data and advantageous in dealing with
small sample sizes (e.g., Muthén, et al., 2015; McNeish, 2016),
we believe that Bayesian SEM is a promising method to solve
the limitations shared by the frequentist approaches. These new

methods certainly warrant further research under ordinal missing
data.
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