
Does discrimination beat association in the IAT?
The discrimination-association model reconceived

Luca Stefanutti1 & Egidio Robusto1
& Michelangelo Vianello1

& Pasquale Anselmi1 & Anna Dalla Rosa1 & Yoav Bar-Anan2

# The Psychonomic Society, Inc. 2020

Abstract
The discrimination-association model (DAM; Stefanutti et al. 2013) disentangles two components underlying the responses to
the implicit association test (IAT), which pertain to stimuli discrimination (the strength of the association of the stimuli with their
own category) and automatic association (the strength of the association between targets and attributes). The assumption of the
DAM that these two components sum into a single process generates critical drawbacks. The present work provides a new
formulation of the model, called DAM-4C, in which stimuli discrimination and automatic association are separate, independent,
and competing processes. Results of theoretical and simulation studies suggest that the DAM-4C outperforms the DAM. The IAT
effect is found to vary with the association rates of the DAM-4C and not with those of the DAM. The parameters of the DAM-4C
fitted on data from a Coca-Pepsi IAT are found to account for variance in brand attractiveness, taste preference, and cola choice
that is not accounted for by theD score and the diffusion model. In addition, the association rates estimated on data from a Black-
White IAT are in line with expectations.
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This article presents a theoretical development of the
discrimination-association model (DAM; Stefanutti et al.,
2013) that is a formal model for decomposing the processes
underlying the responses to the implicit association test (IAT;
Greenwald et al., 1998), currently the most used and method-
ologically sound indirect measure of attitudes, stereotypes,
and self-concept. At the heart of the IAT, there are two pairs
of opposite categories, one consisting of target categories
(e.g., flowers and insects) and the other consisting of attribute
categories (e.g., good and bad), and a collection of stimuli
which are exemplars of each of the categories (e.g., the picture
of a tulip for the category flowers and the word “love” for the
category good). The categories are displayed at the top-left
and top-right screen corners, whereas the stimuli appear, one
at a time, in the center of the screen. Participants have to
categorize the stimuli into one of the categories by pressing,
as quickly and accurately as possible, one of two response

keys that are on the left and right sides of the keyboard. The
procedure consists of seven blocks. Three are practice blocks,
and involve the categorization of stimuli that represent either
the target or the attribute categories. The remaining four are
test blocks, and involve the categorization of stimuli
representing the four categories. There are two response map-
pings that differ for the categories that are displayed on the
same screen corner and, therefore, share the same response
key. In the IAT under consideration, there is a mapping in
which flowers shares the response key with good, and insects
with bad, and a mapping in which flowers shares the response
key with bad, and insectswith good. When category pairs that
are most strongly associated share the same response key
(e.g., flowers-good; insects-bad), the mapping is called
compatible. Otherwise, the mapping is called incompatible.
Compatible and incompatible mappings for a certain individ-
ual are usually inferred by looking at latencies and accuracies
of the responses (the compatible mapping is expected to be the
one leading to faster and more accurate responses; Greenwald
et al., 1998).

To date, the debate is open about the role and nature of the
specific psychological processes behind the responses to the
IAT. The closer we describe these psychological processes, the
more precisely we can interpret and predict the outcome of the
measure (Luce, 1996). A promising route in this direction is
formal modeling. In this line of research, Klauer et al. (2007)
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proposed a diffusionmodel (DM) analysis of the IAT, whereas
other authors proposed models specifically designed for the
IAT, namely the Quad model (Conrey et al., 2005), the ReAL
model (Meissner & Rothermund, 2013), and the aforemen-
tioned DAM (Stefanutti et al., 2013).

Based on the Poisson race model (PRM), the DAM deals
with both response time and accuracy, and disentangles two
process components pertaining to stimuli discrimination and
automatic association. These components have interesting in-
terpretations and provide substantive insights about the re-
sponse process. Stimuli discrimination is interpreted as the
strength of the association of the stimuli with their own cate-
gory. Automatic association is interpreted as the strength of
the association between targets and attributes. It is worth not-
ing that also the Quad model and the ReALmodel disentangle
stimuli discrimination (parameter D in the Quad model, pa-
rameter L in the ReAL model) and automatic association (pa-
rameter AC in the Quad model, parameter A in the ReAL
model). However, the two models analyze these components
at the level of the entire IAT, whereas the DAM provides a
more fine-grained analyses at the level of the different catego-
ries involved in the IAT. Being multinomial processing tree
models, the Quad model and the ReAL model only account
for response accuracy. Thus, they only use a very small part of
the information provided by the IAT. In the same way as the
DAM, the DM also accounts for both response time and ac-
curacy. Parameters of the DM are a, z, v, t0, η, sz, and st.
Parameter a is the respondent’s speed–accuracy trade-off set-
ting, with large values indicating slow and accurate responses.
Parameter z measures response bias toward one of the two
responses. Parameter v is the mean drift rate and quantifies
the direction (toward correct or incorrect response) and the
speed with which relevant information accumulates. Large
values of v indicate both fast and accurate responses.
Parameter t0 reflects the nondecision component (e.g.,
encoding stimuli, motor response) of the response process.
Parameters η, sz, and st respectively quantify the variability
of v, z, and t0 across trials. A look at the parameters of the
DM shows that this model does not provide any means of
disentangling stimuli discrimination and automatic
association.

In the DAM, the assumption was made that the stimuli
discrimination and automatic association are merged into a
single response process. We show that this assumption gener-
ates some drawbacks and provide a new formulation of the
DAM in which stimuli discrimination and automatic associa-
tion are separate and independent processes. Results of theo-
retical and empirical studies suggest that the new model out-
performs the previous one in shedding light on the responses
to the IAT.

The paper is organized as follows. After a brief overview of
the PRM in Section “The Poisson race model”, the DAM as
developed by Stefanutti et al. (2013) is described in

Section “The discrimination-associationmodel”. The new for-
mulation of the DAM is presented in Section “The
discrimination-association model reconceived”. A theoretical
comparison between the two models is the topic of
Section “Theoretical comparison between the two models”.
The goodness of recovery of the parameters of the new model
is investigated in Section “A goodness-of-recovery study”.
The predictive capabilities of the new formulation of the
DAM and of the DM are compared in an empirical study
presented in Section “Study 1: Comparison between DAM-
4C and DM”. An empirical validation of the parameters of the
new formulation of the DAM is presented in Section “Study 2:
Validation of DAM-4C parameters”. Practical implications of
the new model and suggestions for future research are ex-
plored and discussed in Section “Discussion”.

The Poisson race model

The PRM is a stochastic process model belonging to the fam-
ily of the so-called counting models, discussed in, for instance,
Townsend and Ashby (1983). Such models assume that stim-
ulus classification is an accumulation of “evidence” over time
for each of the stimulus alternatives. As soon as the evidence
for one of the alternatives exceeds a certain criterion, that
alternative is chosen as the response.

A counting model consists of two or more random process-
esNi = {Ni(t) : t ≥ 0}, for i ∈Q, named counters, each of which
accumulates evidence for one of the categories in the set Q.
This set usually contains two categories (e.g., flowers and
insects), but in certain cases it can contain more. The whole
classification process is a race among counters, so that the
stimulus is classified as that alternative associated with the
counter that accrues the required evidence in the shortest time.

A first standard assumption in counting models is that each
counter Ni has its own termination criterion Ki > 0. In the
discrete case (which is the one we assume here), criteria are
integer parameters: the count of Nimust exceed a prespecified
whole number Ki. A second standard assumption is that the
counters operate independently and in parallel. In particular,
independence means that increasing one counter does not af-
fect the other(s). This assumption distinguishes such types of
models from the so-called random-walk models, in which
increasing one counter leads to a simultaneous decrease in
each of the other counters.

The PRM arises as a consequence of the following specific
assumptions:

(1) the inter-arrival times (i.e., times between successive
counts in a counter Ni) are independent and identically
distributed;

(2) the distribution of the inter-arrival times in Ni is expo-
nential with rate λij depending on the counter Ni and on
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the presented simulus j. Thus the inter-arrival time den-
sity is

f tð Þ ¼ λije−λijt:

By these two additional assumptions, the classification pro-
cess turns out to be a race between two (or more) parallel and
independent Poisson processes, and the overall random pro-
cess M = {M(t) : t ≥ 0} is the minimum of the individual
Poisson processes:

M ¼ min Ni : i∈Qf g:

Townsend and Ashby (1983) show that, in the two-
category classification task Q = {a, b}, the joint density that,
upon presentation of a stimulus of category a, the response is
correct, and the time t is

f t; a; að Þ ¼ λaatð ÞKaλaae−λaat

Ka−1ð Þ! ∑
Kb−1

k¼0

λbatð Þke−λbat
k!

;

whereas the joint density that the response is incorrect and the
time is t is

f t; b; að Þ ¼ λbatð ÞKbλbae−λbat

Kb−1ð Þ! ∑
Ka−1

k¼0

λaatð Þke−λaat
k!

:

Interestingly, Poisson processes are a special type of
continuous-time Markov chains with discrete state space
(Ephraim & Mark, 2012). The states of the chain Ni are the
nonnegative integer numbers less or equal to Ki, so that the
state space of the chain is Si ¼ 0; 1;…;Kif g. Upon presen-
tation of stimulus j ∈ Q, counter Ni behaves as a continuous-
time Markov chain whose infinitesimal generator is the (Ki +
1) × (Ki + 1) square matrix

Gij ¼

−λij λij 0 ⋯ 0 0
0 −λij λij ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ −λij λij

0 0 0 ⋯ 0 0

0
BBBB@

1
CCCCA
:

The chain starts in state 0 (no information accrued) and
terminates in state Ki (all the required information has been
accrued).

Counters Ni, as Markov processes, have the special prop-
erty that the states from 0 to Ki − 1 of the chain are not
observable (they are latent). Only the final state Ki is observ-
able, as it may coincide with the emission of a response.
Markov chains of this type are also known as phase-type
distributions (Aldous & Shepp, 1987). It can be shown that,
upon presentation of stimulus i, the minimum min{Ni, Nj} of
the two phase-type distributed random variables Ni and Nj is
still a phase-type distributed random variable (Buchholz et al.,

2014). Defining S*
i ¼ Si∖ Kif g, the state space of the mini-

mum turns out to be the set

Smin ¼ S*
i � S*

j

� �
∪ i; jf g

that is the Cartesian product of the two state spaces, each
reduced by one, plus the two absorbing states i and j.

As an example, the directed graph of the state space of a
PRM with two counters Na and Nb having identical termina-
tion criteriaKa = Kb = 4 is represented in Fig. 1. Each state is a
pair (na, nb) where na represents the number of counts of
counter Na, whereas nb is the number of counts of counter
Nb. The process starts in state (0, 0) and evolves, one count
at the time in either of the two counters, until one of them
exceeds four counts. This happens when one of the two ab-
sorbing states a or b is entered.

Fig. 1 State space of the Poisson race model with two counters, when it is
seen as a finite state, continuous-time Markov chain. In this example, the
two countersNa andNb have equal termination criteria Ka = Kb = 4. Each

state of the Markov process is a pair (na, nb) where na is the number of
counts in counter Na and nb is the number of counts in Nb. White circles
represent transient states, whereas black circles represent absorbing states.
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The discrimination-association model

This section describes the DAM as developed by Stefanutti
et al. (2013). Applications of the model to empirical data have
been described in Anselmi et al. (2013) and in Stefanutti et al.
(2013). An user-friendly application for fitting the model to
IAT data has been developed by Stefanutti et al. (2014).

Let Q = {a, b, + , −} be the set of the four categories of the
IAT, with a and b being the target categories, and + and −
being the attribute categories. The stimuli are exemplars of
each of the four categories in Q.

The DAM assumes the existence of four counters Ni, one
for each of the four categories in Q. Once a stimulus is pre-
sented on the screen, each counter starts accumulating selec-
tive evidence about a specific characteristic of it. For example,
counterNa accumulates evidence about the membership of the
stimulus to category a. The four counters are assumed to be-
have as Poisson processes.

Model parameters are the rates at which evidence is accu-
mulated on each counter, and the termination criteria. There is
a rate for each pair that can be formed by taking one of the four
counters Na, Nb, N+, N− and one of the four categories a, b, +,
−. According to this formulation, for i, j ∈ {a, b, + , −}, the
parameter λij is the average amount of evidence that counter
Ni accumulates, in the time unit, when a stimulus of category j
is presented on the screen. For example, λaa and λ+a represent
the amount of evidence respectively accumulated by counters
Na and N+ when the presented stimulus belongs to category a.

Table 1 displays the 16 rates of the DAM. They can be
grouped into discrimination rates and association rates. The
discrimination rates regard the amount of evidence that target
(respectively, attribute) categories accumulate when target (re-
spectively, attribute) stimuli are presented. In particular, the
four rates λaa, λab, λba, λbb (upper left 2 × 2 submatrix of
the table) are involved in the discrimination between a and
b, whereas the four rates λ++, λ+−, λ−+, λ−− (lower right 2 × 2
submatrix) are involved in the discrimination between + and
−. A fundamental requirement of the IAT procedure is that the
stimuli are prototypical exemplars of their own category (Lane
et al., 2007; Nosek et al., 2007a). The discrimination rates
provide information about satisfaction of this requirement by

the selected stimuli. For instance, the rates λaa and λba are
respectively involved in the correct and incorrect discrimina-
tion of stimuli a. The former rate being much larger than the
latter suggests that the stimuli chosen to represent the category
a suit this purpose well.

The association rates concern the amount of evidence that
target (respectively, attribute) categories accumulate when at-
tribute (respectively, target) stimuli are presented. The four
rates λ+a, λ+b, λ−a, λ−b (lower left 2 × 2 submatrix) are the
rates at which evidence concerning membership to attribute
categories are accumulated when a target stimulus is presented
(target-driven associations). The four rates λa+, λa−, λb+, λb−
(upper right 2 × 2 submatrix) are the rates at which evidence
concerning membership to target categories are accumulated
when an attribute stimulus is presented (attribute-driven asso-
ciations). The association rates are very informative in practi-
cal applications of the model: The particular values taken by
these parameters might enable the identification of patterns of
automatic association between targets and attributes that differ
from one individual to another in both nature and meaning.
The D score (Greenwald et al., 2003) is an effect size measure
that quantifies the difference between the performance of the
respondent in the two types of test blocks. A positive D score
in a Flowers-Insects IAT, for instance, might indicate an im-
plicit preference for flowers over insects. However, no infor-
mation is provided on the meaning of this preference. The
investigation of the values of the association rates would serve
this purpose. For instance, they could reveal that the individ-
ual (a) likes flowers and is indifferent to insects, (b) dislikes
insects and is indifferent to flowers, (c) likes flowers and dis-
likes insects, (d) likes flowers more than insects, or (e) dislikes
insects more than flowers.

The termination criteria vary across block types. Thus,
there are three termination criteria, one for the practice blocks
KP, one for the compatible blocks KC, and one for the incom-
patible blocks KI (P, C, and I stand for practice, compatible,
and incompatible, respectively). These parameters can be
interpreted as either task difficulty or individual cautiousness.
Since the test blocks (compatible and incompatible) are a dou-
ble classification task, they are expected to be more difficult
than the practice blocks. Moreover, when all termination
criteria are taken into account, the following inequalities are
expected:

KP < KC < KI :

We now describe which counters and model parameters are
involved in the emission of the observable responses in the
different block types of the IAT. In the practice blocks involv-
ing targets, a race takes place between the two Poisson pro-
cesses Na = {Na(t) : t ≥ 0} and Nb = {Nb(t) : t ≥ 0}, with
termination criterionKP. Supposing that a stimulus of category
a is presented on the screen, the rate ofNa is λaa and the rate of

Table 1 Discrimination rates (upper left and lower right 2 × 2matrices)
and association rates (lower left and upper right 2 × 2 matrices)

Stimulus categories

Counters a b + –

Na λaa λab λa+ λa−
Nb λba λbb λb+ λb−
N+ λ+a λ+b λ++ λ+−
N− λ−a λ−b λ−+ λ−−
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Nb is λba. The random process is the minimum between Na

and Nb (i.e., min{Na, Nb}). In the practice blocks involving
attributes, the race is between N+ = {N+(t) : t ≥ 0} and N− =
{N−(t) : t ≥ 0}, and the random process is min{N+, N−}.

In the test blocks, target and attribute categories share the
response key. Suppose that the compatible blocksmap a and +
to the left key, and b and − to the right key. Concerning the
relationship between each of the four processes and each of
the two observable responses, it can be seen that processes Na

and N+ both produce the response left, whereas processes Nb

andN− both produce the response right. A basic assumption of
the DAM is that evidence units that contribute to the same
observable response are accumulated by the same compound
process. According to a well-known property of Poisson pro-
cesses, merging two independent Poisson processes results in
another Poisson process with rate equal to the sum of the
individual rates. In the case under consideration, the race is
between the two compound processes Na + N+ and Nb + N−,
with termination criterion KC. Assuming that a stimulus of
category a is presented on the screen, the rate of Na + N+ is
λaa + λ+a whereas the rate of Nb + N− is λba + λ+a. Thus, the
overall random process is min{(Na + N+), (Nb + N−)}.

Assume now that the incompatible blocks map b and + to
one key, and a and − to the other key. In these blocks, the race
is between the two compound processes Nb + N+ and Na + N−,
with termination criterion KI. Supposing that a stimulus of
category a is presented, the rate of Nb + N+ is λba + λ+a,
whereas the rate of Na + N− is λaa + λ−a. Then, the overall
random process is min{(Nb + N+), (Na + N−)}. Thus, regard-
less of the particular type of blocks, the model under consid-
eration assumes that the race is always between two Poisson
processes.

The discrimination-association model
reconceived

Suppose that a target stimulus of category a has just appeared
on the screen in one of the two test blocks of the IAT. A
decision mechanism is modeled, consisting of two separate
processes: a discrimination process D = {D(t) : t ≥ 0} and an
association process A = {A(t) : t ≥ 0}. Upon stimulus presen-
tation, the two processes operate in parallel, and a simplifying
assumption is that they are also independent.

The task ofD is to discriminate the stimulus presented on
the screen as belonging to either category a or category b.
This is a two-choice decision task and there are, essentially,
two classes of models of accuracy and response times for
this type of tasks: the counting models (e.g., the PRM) and
the random walk models (e.g., the diffusion model; see,
e.g., Townsend & Ashby, 1983). In this work, the process
D is modeled as a race between two Poisson processes Da =
{Da(t) : t ≥ 0} and Db = {Db(t) : t ≥ 0} with rates varying

with both counter type (a or b) and stimulus category (a or
b). A single termination criterion KD, equal across counters
and stimuli, is assumed. It should be observed that when-
ever higher complexity is needed, it is always possible to
drop the assumption of a single criterion. Valid alternatives
could be that the termination criterion varies with the coun-
ters, or with the stimuli or both. Such alternatives are not
considered here. Then we have D = min{Da, Db}. The pa-
rameters of this process are the four discrimination rates
λaa, λab, λba, λbb, and the termination criterion KD (it
should be observed that in the notation λij, i is the counter
and j is the stimulus). The two parameters λaa, λbb are
named the correct discrimination rates, whereas λab,
λbaare named the incorrect discrimination rates. The pa-
rameter KD is named the criterion of the discrimination
process.

The association process A associates the stimulus presented
on the screen to one of two opposed evaluative attributes
(usually good and bad). This is also a two-choice decision
task, though the “decision” is regarded here as the outcome
of an automatic process. The process A is also modeled as a
race between two Poisson processes with rates varying with
both stimulus category (a or b) and counter type (“+” for good
and “−” for bad). A single termination criterion KA, equal
across counters and stimuli, is assumed (but the considerations
here are similar to those already done for the discrimination
process). Let A+ = {A+(t) : t ≥ 0} be the Poisson process
representing the counter for category +, and A− = {A−(t) : t ≥
0} be the Poisson process representing the counter for catego-
ry −. Then, A is the minimum between A+ and A−, that is A =
min {A+, A−}. The parameters of this process are the four
association rates λ+a, λ+b, λ−a, λ−b, and the termination crite-
rion KA.

The overall random process M = {M(t) : t ≥ 0} is a race
between the discrimination processD and the association pro-
cess A, meaning thatM = min{D, A}. It follows at once thatM
= min{Da, Db, A+, A−} is a race among four Poisson process-
es, two of which are discrimination processes, whereas the
other two are association processes. Therefore, the overall
model turns out to be a Poisson race model with four parallel
counters. This is the discrimination-association model with
four counters (DAM-4C). Upon presentation of a stimulus
on the screen, the counter that first exceeds its criterion gen-
erates the response (either left or right) which is associated
with it. In particular, once a counter has terminated, the corre-
sponding response is selected according to a deterministic
mapping that depends on how the four categories a, b, + and
− are mapped to the left and right keys.

If a stimulus of category i ∈ {a, b} appears on the screen,
the probability density that the process Di finishes first at time
t > 0 is

gi tð Þ ¼ f i tð ÞF j tð ÞFþ tð ÞF− tð Þ
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where

f i tð Þ ¼
λi λitð ÞKD−1e−λi t

KD−1ð Þ!
is the density of counterDi exceeding its criterionKD at time t,
whereas

F j tð Þ ¼ ∑
KD−1

k¼0

λ jt
� �ke−λ jt

k!
;

Fþ tð Þ ¼ ∑
KA−1

k¼0

λþtð Þke−λþt

k!
;

F− tð Þ ¼ ∑
KA−1

k¼0

λ−tð Þke−λ−t

k!
:

Similarly, the probability density for process A+ finishing
first at time t > 0 is

gþ tð Þ ¼ f þ tð ÞF− tð ÞFi tð ÞF j tð Þ:

Suppose that, in the ongoing experimental block, both i and
+ are mapped on the same key, and the stimulus i is presented
on the screen. Then, the probability density of a correct (1)
response at time t is

g1 tð Þ ¼ gi tð Þ þ gþ tð Þ
¼ f i tð ÞFþ tð Þ þ f þ tð ÞFi tð Þ

� �
F j tð ÞF− tð Þ;

whereas the density of an incorrect (0) answer at time t is

g0 tð Þ ¼ g j tð Þ þ g− tð Þ
¼ f j tð ÞF− tð Þ þ f − tð ÞF j tð Þ

� �
Fi tð ÞFþ tð Þ:

As already observed with the Poisson race model, even in
the DAM-4C, the overall process M can be regarded as a
continuous-time Markov chain whose state space is

SM ¼ S*
i � S*

j � S*
þ � S*

−

� �
∪ a; b;þ;−f g:

Application of the DAM-4C to the IAT

In the application of the DAM-4C to the IAT, additional con-
straints need be considered. The IAT is roughly divided into
three types of blocks: the practice blocks, the compatible
blocks, and the incompatible blocks. Since the practice blocks
are a single classification task, it seems reasonable to assume
that the association process A is quiescent all along these
blocks, and that only the discrimination process D is active.
Hence, in the practice blocks, the DAM-4C behaves as a stan-
dard two-counter PRMwith a single termination criterionKDP

(DP stands for discrimination in practice blocks), assumed to
be equal across stimulus categories and counters.

In the compatible and incompatible test blocks, both pro-
cesses D and A are active. Since in these blocks the task is a
double classification, its difficulty increases in comparison
with the practice blocks. Because of the increased difficulty,
it would be unrealistic to expect that the parameters governing
the discrimination in the test blocks are the same as those in
the practice blocks. It is assumed that the correct and incorrect
discrimination rates are not affected by task difficulty. Thus,
the only parameter of the process D that is affected by an
increase in task difficulty is the termination criterion. Thus,
the model has two separate discrimination criteria: a criterion
KDP in the practice blocks, and a (possibly) different criterion
KDT in the test blocks (DT stands for discrimination in test
blocks). In all other respects, the parameters of the process D
are exactly the same across the compatible and incompatible
blocks, so that any systematic differences in latency or accu-
racy between the two types of test blocks cannot be ascribed to
the discrimination process.

The four rates of the association process A are also assumed
to be invariant across test blocks. In principle, these four pa-
rameters should provide a measure of how fast the association
process is, regardless of the test blocks in which it operates.
Given these constraints, the only parameter that can vary
across test blocks is the criterion of A. We assume two differ-
ent criteria for this process: a criterion KAC in the compatible
blocks, and a different criterionKAI in the incompatible blocks
(AC and AI stand for association in compatible blocks and
association in incompatible blocks, respectively).

We do not incorporate into the model any inequality con-
straints concerning the discrimination rates, association rates,
or termination criteria. However, some inequalities can be
postulated, which could then be verified empirically. In the
first place, the double classification of the test blocks should
increase the task difficulty relative to the single classification
task of the practice blocks. If this is true, one should expect
KDP < KDT.

Furthermore, whenever it is clear which one of the two
types of test blocks is the compatible one (e.g., in a Flowers-
Insects IAT, the compatible blocks are expected to be those in
which pictures of flowers and positive attributes are mapped
to the same key), some hypotheses concerning the direction of
the inequality between the two association criteria KAC and
KAI can be formulated. Consider a Flowers-Insects IAT and
suppose first that the two criteria are equal. In the incompati-
ble blocks, flower images and positive attributes are mapped
to different keys. If the process A+ is fast enough with flower
stimuli (due to a strong association), it can win the race rather
often, leading to frequent inaccuracies. Hence, elevating the
criterion in the incompatible task can be seen as a way of
counteracting inaccuracy due to a high association rate. On
the contrary, in the compatible task the two stimuli are mapped
to the same key, and the fast responses of A+ increase, rather
than reduce, accuracy. Hence, in these blocks, a smaller
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criterion works well. These considerations lead us to formu-
late the hypothesis that KAC < KAI.

Theoretical comparison between the two
models

As a consequence of the different number of counters, the two
models differ in structure, and make markedly different pre-
dictions of latency and accuracy in the IAT. The DAM can be
regarded as the minimum of the sum of Poisson processes. Its
form varies depending on the test blocks. Assuming that a
target stimulus is presented on the screen, in one type of test
block it takes on the form

minf Da þ Aþð Þ; Db þ A−ð Þg;
whereas in the other type of test block it becomes

minf Db þ Aþð Þ; Da þ A−ð Þg:

Because of the sum, there is no real separation between the
discrimination and the association processes in the DAM.
Instead, they are collapsed into the same Poisson process,
sum of the two. A consequence of this fact is that discrimina-
tion and association will always share the same termination
criterion, irrespective of the blocks in which they operate.

Another rather important point concerning the DAM is that
the two processes A+ and Di, as well as A− and Dj, are not
independent, indeed. More precisely, given a certain termina-
tion criterion K, the probability of having k > 0 counts in A− is
not independent of the number of counts inDi. For instance, if
at time t > 0, Di(t) < K − 1, then there is a positive probability
thatA+(t) = 2. However, ifDi(t) =K − 1, then the probability of
A+(t) = 2 must be zero, for otherwise one would have Di(t) +
A+(t) > K.

The form of the DAM-4C does not depend on the block, as
it is simply the minimum of the four processes in both types of
test blocks:

minfDi;Dj;Aþ;A−g:

There is independence among processes in this model.
Moreover, A and D are really separate processes operating
independently and in parallel. As such, they can have different
termination criteria.

Numerical example

A numerical example can help in better appreciating the dif-
ferent behaviors of the two models under equivalent condi-
tions. We examine how the mean latency and accuracy pre-
dicted by each of the two models vary as functions of certain
model parameters. With Q = {a, b, + , −}, suppose that the

compatible task maps a and + to the same key, and that a
stimulus of class a has appeared on the screen. We first exam-
ine how the predicted mean latencies and response probabili-
ties vary as the association rate λ+a varies, keeping constant all
the other parameters. In particular, for the DAM, let λaa = 1.0,
λba = 0.4, λ−a = 0.01, KC = 5, and KI = 8. The latency curves
for this choice of model’s parameters are given in Fig. 2.

The figure consists of three panels. The upper left panel
shows the latency curves for the correct answer, incorrect
answer, and average in the compatible blocks; the upper right
panel shows the same three curves, but for the incompatible
blocks; finally, in the bottom panel, each curve is obtained as
the difference of a mean latency curve in the incompatible task
minus the corresponding mean latency curve in the compati-
ble task. This difference is the “delay” that one observes when
comparing reaction times in the incompatible blocks with
those in the compatible blocks. It can be regarded as an IAT
effect. The bottom panel is also the most instructive one. It
shows the following rather odd behavior of the DAM: when
λ+a is zero, the delay is about 150 milliseconds. This delay
increases slightly until λ+a reaches the value of about 0.4, and
then it starts decreasing monotonically: the higher the associ-
ation rate, the smaller the IAT effect. This goes against the
expectation that a positive relationship exists between the as-
sociation rate and the IAT effect.

The reason for this behavior is that, as λ+a increases, both
the mean latency in the incompatible task (upper right panel of
Fig. 2) and the accuracy in the same task (Fig. 3) decrease.
What the model essentially predicts is that a higher association
rate makes the respondent faster and less accurate in the in-
compatible blocks.

Figure 4 shows what happens with the DAM-4C. The pa-
rameters of the model were λaa = 1.0, λba = 0.4, λ−a = .01,KDT

= KAC = 5, and KAI = 8. The bottom panel of the figure shows
the delay curves. Unlike the DAM, when the association rate
is zero, the IAT effect is also zero. Then the curve monotoni-
cally increases up to a maximum for a λ+a of about 1.8, after
which it starts decreasing at a slower rate. In the DAM-4C, as
the association rate increases, even the IAT effect increases.
However, when the association rate becomes high, the IAT
effect goes down again. The reason is given by the top right
panel of Fig. 5. There we see that accuracy markedly de-
creases for values of λ+a greater than 1. Again, as already seen
with the DAM, the model says that a too high association rate
makes the respondent faster and more inaccurate. The differ-
ence with the DAM is that, in this model, this happens only
when the association rate is too high relative to the criterion
KAI used.

We now examine how the predicted mean latencies vary
with the termination criterion KI, keeping constant all the other
parameters. For the DAM, let λaa = .30, λba = .15, λ+a = .50,
λ−a = .01, and KC = 5, and let KI vary from 5 to 25. The latency
curves for this choice of the model parameters are displayed in
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Fig. 6. As expected, the variation ofKI does not affect the mean
latency in the compatible task (upper left panel of Fig. 6),
whereas it influences the mean latency in the incompatible task
(upper right panel of Fig. 6) that linearly increases with the
value of KI. Interestingly, there is a positive linear relationship
between the delay that one observes when comparing reaction
times in the incompatible blocks with those in the compatible
blocks and the difference between the two termination criteria
KI and KC. It should be observed that such a linear dependence
is of a deterministic nature, and hence the two quantities at issue
are perfectly correlated in the model. Stated differently, up to a
linear transformation, the difference KI − KC and the difference
between expected reaction times in the two blocks are essen-
tially the same thing for the DAM. Given this, if the model fits
the data well, then it is likely to have small to negligible resid-
uals between the observed mean reaction times and those ex-
pected by the model. In such cases, KI − KC would account for
the greatest part of the variance of the observed mean response
time difference, leaving little to the remaining parameters of the
model. With a perfect fit, KI − KC would be the only predictor
of the observed mean response time difference.
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Fig. 2 Mean latency as a function of the λ+a parameter in the DAM
model. Dashed curves: correct answer; dash-dotted curves: incorrect an-
swer; solid curves: average. Upper left panel: compatible task; upper right

panel: incompatible task; lower panel: delay measured as difference be-
tween the mean latency in the incompatible task minus the mean latency
in the compatible task.
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Fig. 3 Accuracy as a function of the λ+a parameter in the DAM model.
Dashed curve: compatible task; solid curve: incompatible task.
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This result, together with that related to the variation of the
association rate λ+a, explains the results found by Stefanutti
et al. (2013) in an empirical application of the model to the
data of a Coca-Pepsi IAT. A total of nine contrast measures
were computed for each respondent to the IAT, four based on
the estimates of the discrimination rates, four based on the
estimates of the associations rates, and one based on the esti-
mates of the two termination criteria KC and KI. The nine
measures were the independent variables of a regression anal-
ysis in which the D score (Greenwald et al., 2003), which is a
very common measure of the IAT effect, was the dependent
variable. The difference KI − KC was, by far, the strongest
predictor of the D score, whereas the four contrast measures
based on the association rates were significant yet much less
strong.

Figure 7 shows what happens with the DAM-4C when the
parameters are: λaa = .30, λba = .15, λ+a = .50, λ−a = .01, and
KDT = KAC = 5, and KAI varies from 5 to 25. The delay is 0
milliseconds when KAI = KAC = 5. It increases until KAI

reaches about 20, and then it remains constant. Thus, unlike
the DAM, in this model the relation betweenKAI and the delay
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Fig. 5 Accuracy as a function of the λ+a parameter in the DAM-4C
model. Dashed curve: compatible task; solid curve: incompatible task.
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in reaction times is not linear, and for large values of KAI, the
delay approaches a constant value.

A goodness-of-recovery study

This section aims to investigate the recovery of DAM-4C
parameters in IATs of typical length (200 trials; Nosek et al.,
2007a). Two conditions are simulated that differ for the con-
tribution of the discrimination and association processes to the
IATeffect. Suppose that the compatible task maps “a” and “+”
to one response key, and “b” and “−” to the other response
key. In Condition A, the parameters used for simulating laten-
cies and accuracies of the responses were λaa = λbb = λ++ = λ−
− = 4.00, λba = λab = λ−+ = λ+− = 0.50, λ+a = λa+ = λ−b = λb− =
4.00, λ−a = λa− = λ+b = λb+ = .05, KDP = 20.00, KDT = KAC =
25.00, and KAI = 30.00. Thus, Condition A represents a situ-
ation in which:

(a) the λ parameters pertaining to the correct discrimination
of each stimulus category are eight times larger than
those pertaining to the incorrect discrimination;

(b) the λ parameters pertaining to the associations of “a”
with “+” and “b” with “−” are eight times larger than
those pertaining to the associations of “a” with “−” and
“b” with “+”;

(c) The probability of the responses in the compatible blocks
is equally influenced by the discrimination and associa-
tion processes (the correct discrimination rates are equal
to the association rates involved in the compatible
blocks, and the termination criterion of the discrimina-
tion process in the test blocks KDT is equal to that of the
association process in the compatible blocks KAC).

Condition B differs from Condition A for only the param-
eters λ+a, λa+, λ−b, and λb− which are all set to be equal to
1.00. Thus, in Condition B, the observable response is more
often determined by the discrimination process (which termi-
nates earlier) than by the association process (which termi-
nates later): The termination criterion of the discrimination
process in the test blocks KDTwas equal to that of the associ-
ation process in the compatible blocks KAC (25.00), but the
correct discrimination rates were larger (4.00) than the associ-
ation rates involved in the compatible blocks (1.00).
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Fig. 6 Mean latency as a function of theKI parameter in the DAMmodel.
Dashed curves: correct answer; dash-dotted curves: incorrect answer;
solid curves: average. Upper left panel: compatible task; upper right

panel: incompatible task; lower panel: delay measured as difference be-
tween the mean latency in the incompatible task minus the mean latency
in the compatible task.
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The responses to 100 IATs were simulated for each of the
two conditions, and the DAM-4C was estimated on each of
them. Table 2 shows medians, means, and standard deviations
of the parameter estimates. In Condition A, the estimates of all
the parameters are close to the corresponding true values and
rather consistent across the 100 simulated IATs. In Condition
B, the estimates of the rates and the termination criteria in-
volved in the association process are far from the true values
and largely variant across the simulated IATs, whereas those
of the other parameters are consistent and close to the true
values. This result suggests that, when the association process
contributes little to the responses to the IAT, the 200 trials of
the typical IAT procedure may not be sufficient to provide
reliable estimates of the parameters involved in this process.

Study 1: Comparison between DAM-4C
and DM

The present study aims to compare the predictive capabilities
of DAM-4C andDM. These twomodels were estimated based
on the responses of 199 psychology students (Mage = 23.66,

SD = 2.55; 122 females) at the University of Padua to a Coca-
Pepsi IAT. This data set was already analyzed by Stefanutti
et al. (2013) via the DAM.

Participants were tested individually in a laboratory. They
were first presented with the Coca-Pepsi IAT according to the
structure in Table 3. Ten color brand pictures were used to
represent the target categories Coca Cola and Pepsi Cola,
and 16 words were used to represent the attribute categories
good (glory, good, happiness, joy, laughing, love, peace, plea-
sure) and bad (annoying, bad, evil, failure, hate, horrible, pain,
terrible). The stimuli were presented in the center of the com-
puter screen in an alternating fashion, and participants were
asked to categorize them by pressing, as quickly and accurate-
ly as possible, the response key “Q” or “P”. A red “X” ap-
peared in case of a mistake, and it disappeared after the correct
response was given.

Participants were then presented with two dichotomous
questions asking them which was, in their opinion, the
better-tasting cola and more attractive brand between Coca
Cola and Pepsi Cola. At the end, participants were invited to
choose between a free can of Coca Cola or Pepsi Cola, which
was offered to them as a reward for their participation in the
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Fig. 7 Mean latency as a function of the KAI parameter in the DAM-4C
model. Dashed curves: correct answer; dash-dotted curves: incorrect an-
swer; solid curves: average. Upper left panel: compatible task; upper right
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study. The two cans were disposed on a table, at the same
distance from the participants. The experimenter registered
the choice of the participants after they had left the laboratory.

The DAM-4C and the DM were estimated based on the
data of each participant. Typically, the latency of the incorrect
responses is increased by the time that is required to correct
them (see, e.g., Greenwald et al., 2003). We used the latency
of the incorrect responses, and discarded the time needed to
correct them. TheDAM-4Cwas estimated on the data from all
seven IAT blocks using MATLAB functions written by the
first author (available upon request). These functions compute
maximum-likelihood estimates of the parameters of the
DAM-4C. Since the maximum-likelihood estimation is sensi-
tive to outliers and contaminants in the distributions of

response times (Ratcliff & Tuerlinckx, 2002), Tukey’s criteri-
on (see, e.g., Hoaglin et al., 1983) was used for discarding the
trials with outlying latencies. This led to the deletion of 6.84%
of all the responses (from 1.63% to 14.67% per participant).
Following Studies 2 and 3 (Klauer et al., 2007), two DMs
were estimated for each participant, one on the data from the
two blocks Pepsi-bad/Coca-good and the other on the data
from the two blocks Coca-bad/Pepsi-good. Parameter z was
set equal to a/2, that is, equal to the position corresponding to
the absence of response bias (Klauer et al., 2007). Maximum-
likelihood estimates of the parameters of the DM were com-
puted using the software Fast-DM (Voss & Voss, 2007, 2008).

The DAM-4C adequately fit the data of 191 participants
out of 199 (95.98%; Bonferroni-Holm method with type-I
error α = .10). A first insight into the contribution of associa-
tions to IAT responses can be obtained in a straightforward
way by comparing the DAM-4C with a pure discrimination
model. Such a model is obtained from the DAM-4C by
constraining the eight association rates to be 0. Conversely,
the two termination criteria pertaining to the association pro-
cess can be left free to assume any possible value within their
interval of existence. These parameters would not be interpret-
able because they are meaningless in a pure discrimination
model. The pure discrimination model adequately fit the data
of 182 participants (91.46%; Bonferroni-Holm method with
type-I error α = .10), nine less than the DAM-4C. The Akaike

Table 2 Goodness of recovery of DAM-4C parameters

Condition A Condition B

Parameter True Median Mean SD True Median Mean SD

λaa 4.00 4.13 4.21 0.57 4.00 4.03 4.09 0.44

λbb 4.00 4.12 4.24 0.59 4.00 4.05 4.10 0.44

λ++ 4.00 4.20 4.25 0.57 4.00 4.02 4.08 0.48

λ−− 4.00 4.12 4.25 0.60 4.00 4.08 4.10 0.44

λba 0.50 0.29 0.41 0.46 0.50 0.23 0.31 0.27

λab 0.50 0.30 0.42 0.43 0.50 0.32 0.34 0.25

λ−+ 0.50 0.41 0.50 0.48 0.50 0.31 0.34 0.26

λ+− 0.50 0.34 0.41 0.40 0.50 0.30 0.34 0.29

λ+a 4.00 4.48 4.96 2.14 1.00 213.68 1.09 × 105 2.62 × 105

λ−b 4.00 4.68 5.05 2.12 1.00 10.26 5.76 × 104 1.35 × 105

λ−a 0.50 0.34 0.83 1.44 0.50 151.81 9.74 × 104 2.38 × 105

λ+b 0.50 0.25 0.66 1.10 0.50 48.92 8.76 × 104 1.81 × 105

λa+ 4.00 4.56 5.09 2.22 1.00 58.94 9 × 104 2.32 × 105

λb− 4.00 4.60 5.15 2.22 1.00 74.15 9.46 × 104 2.73 × 105

λb+ 0.50 0.38 0.87 1.35 0.50 247.56 1.00 × 105 2.08 × 105

λa− 0.50 0.33 0.65 0.90 0.50 30.92 1.01 × 105 2.43 × 105

KDP 20.00 20.77 21.07 2.76 20.00 20.39 20.48 2.21

KDT 25.00 25.76 26.36 3.54 25.00 25.64 25.70 2.80

KAC 25.00 28.49 35.45 20.08 25.00 1.31 × 105 2.33 × 106 3.90 × 106

KAI 30.00 34.28 38.66 14.16 30.00 1.31 × 105 2.06 × 106 3.18 × 106

Table 3 Structure of the Coca-Pepsi IAT

Block type No. of trials Left labels Right labels

1 (Practice) 32 Coca Cola Pepsi Cola

2 (Practice) 20 bad good

3 (Test) 20 Coca Cola-bad Pepsi Cola-good

4 (Test) 36 Coca Cola-bad Pepsi Cola-good

5 (Practice) 20 Pepsi Cola Coca Cola

6 (Test) 20 Pepsi Cola-bad Coca Cola-good

7 (Test) 36 Pepsi Cola-bad Coca Cola-good
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information criterion (AIC) was used to compare the DAM-
4C and the pure discrimination model. For 171 participants
(85.93%), the AIC of the DAM-4C was lower than that of the
pure discrimination model, this suggesting that automatic as-
sociations could have played some role in determining the
responses of these individuals.

A total of 45 participants made no error in either the blocks
Pepsi-bad/Coca-good or the blocks Coca-bad/Pepsi-good.
Since the DM requires both correct and incorrect responses,
it has not been estimated on the data of these participants. The
comparison between the DAM-4C and the DM required us to
estimate, for each participant, a third DM on the data of the
practice blocks. There were 134 participants for whom all
three DMswere estimable (i.e., who gave at least one incorrect
response in each of the three block types). For 133 of these
134 participants, the AIC of the DAM-4C was larger than that
obtained by combining the AICs of the three DMs. The fol-
lowing analyses were performed on the 131 participants for
whom the AIC of the DAM-4Cwas lower than that of the pure
discrimination model, and for whom the DAM-4C showed
satisfactory fit.

Descriptive statistics of the estimates of DAM-4C param-
eters suggested the presence of aberrant estimates for the rates
and the termination criteria involved in the association pro-
cess. For the association rates, the mean was 21,589 to 54,209
times larger than the median. For the termination criteria KAC

(associations in test blocks Pepsi-bad/Coca-good) and KAI

(associations in test blocks Coca-bad/Pepsi-good), the mean
was, respectively, 41,371 and 35,746 times larger than the
median. For the correct discrimination rates and the termina-
tion criteria involved in the discrimination process, the mean
was of the same order of magnitude as the median. For two
incorrect discrimination rates (i.e., λ+− and a−+), it was twice
the median (it is worth noting that there are usually only a few
incorrect responses in an IAT, so that there might not be
enough information to compute reliable estimates of these
parameters). A total of 16.51% of the estimates of the associ-
ation rates and 20.61% of the estimates of the termination
criteria KAC and KAI were identified by Tukey’s criterion as
outliers and were discarded.

In line with Stefanutti et al. (2013), nine contrast measures
were computed, based on the estimates of the DAM-4C. Let c,
p, +, and − denote Coca Cola, Pepsi Cola, good, and bad,
respectively. ADISCwas computed for each stimulus catego-
ry as the difference between the rates concerning the correct
and incorrect discrimination of the category (e.g.,DISCc = λcc
− λpc). Positive values of the DISCs indicate that, on average,
the stimuli provide more evidence, in the time unit, about their
own category than about the opposite category. An ASSOwas
computed for each stimulus category as the difference be-
tween the two association rates of the stimulus category.
Positive values ofASSOc = λ+c − λ−c indicate that, on average,
theCoca Cola stimuli provide more evidence, in the time unit,

about the category good than about the category bad. This
means that Coca Cola is more strongly associated with good
than with bad. Similarly, positive values of ASSO+ = λc+ − λp+
indicate that good is more strongly associated withCoca Cola
than with Pepsi Cola. Interpretation of ASSOp and ASSO− is
opposite to that of ASSOc and ASSO+. Positive values of
ASSOp = λ−p − λ+p indicate that Pepsi Cola is more strongly
associated with bad than with good, and positive values of
ASSO− = λp− − λc− indicate that bad is more strongly associ-
ated with Pepsi Cola than with Coca Cola. Finally, a DIFF
measure was also computed by contrasting the two termina-
tion criteria which pertain to the test blocks, that isDIFF =KAI

−KAC. A positive value of this measure indicates that a smaller
amount of evidence needs to be accumulated in the compati-
ble blocks than in the incompatible blocks.

In line with Klauer et al. (2007), three contrast measures
were computed as the difference between parameters of the
two DMswhich were estimated on the compatible and incom-
patible blocks. Let t0C, aC, and vC be respectively the estimates
of the nondecision component, speed-accuracy, andmean drift
rate obtained on the compatible blocks, and t0I, aI, and vI be
the estimates of the same parameters obtained on the incom-
patible blocks. The three contrast measures were computed as
IATt =t0I − t0C, IATa =aI − aC, and IATv =vC − vI. Positive
values of IATt indicate that nondecision components require
more time in the incompatible blocks than in the compatible
blocks. Positive values of IATa indicate that speed-accuracy is
more conservative in the incompatible blocks than in the com-
patible blocks. Finally, positive values of IATv indicate that the
categorization task is less difficult in the compatible blocks
than in the incompatible blocks.

To investigate the predictive validity of theD score, DAM-
4C, and DM, a total of six saturated structural equationmodels
for observed variables have been estimated. In these models,
the dependent variables (brand attractiveness, taste preference,
and choice of cola) were entered simultaneously, and their
residuals were allowed to correlate. In models with two or
more predictors, correlations between all of them were esti-
mated. In Model 1, we established the ability of the D score
algorithm to predict the three criteria. The total variance

accounted for by the D score is R2
attractiveness ¼ :04,

R2
taste ¼ :07, and R2

choice ¼ :08. In Model 2, we entered as pre-
dictors the three contrasts computed on the DM parameter
estimates. The total variance accounted for by the DM is

R2
attractiveness ¼ :05, R2

taste ¼ :10, R2
choice ¼ :08. In Model 3,

we entered as predictors the nine contrasts computed on the
DAM-4C parameter estimates. The total variance accounted
for by the DAM-4C is higher than that accounted for by alter-

native scoring methods: R2
attractiveness ¼ :06, R2

taste ¼ :10,

R2
choice ¼ :12. Table 4 presents parameter estimates of these

three models. In this dataset, the DAM-4C allowed us to ob-
serve that the associations that more strongly predict cola
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choice are ASSOp and ASSO−. Controlling for the D score
algorithm, the incremental validity of the DM (Model 4) isΔ
R2
attractiveness ¼ :04 (p = .84), ΔR2

taste ¼ :03 (p = .86), ΔR2
choice

¼ :03 (p = .86), whereas the incremental validity of the DAM-

4C over the D score (Model 5) is ΔR2
attractiveness ¼ :06 (p =

.81), ΔR2
taste ¼ :07 (p = .79), ΔR2

choice ¼ :09 (p = .76).
Controlling for bothD score and DM, the incremental validity

of the DAM-4C (Model 6) isΔR2
attractiveness ¼ :04 (p = .84),Δ

R2
taste ¼ :07 (p = .79), ΔR2

choice ¼ :08 (p = .77).

Study 2: Validation of DAM-4C parameters

The present study aims at validating the parameters of the
DAM-4C. A known-groups method is used to compare param-
eter estimates obtained on white and black respondents to a
Black-White IAT. Such an IAT measures the implicit prefer-
ence for white individuals over black individuals.

In general, we expect to find implicit ingroup favoritism
(Tajfel & Turner, 1979) in both cultural groups. Let w, b, +,
and − denote White People, Black People, good, and bad,
respectively. Operatively, we expect that λ+w, λw+, λ−b, and
λb− will be higher in white people and that λ+b, λb+, λ−w, and
λw− will be higher in black people. Previous research
(Anselmi et al., 2011) found evidence that the contribution
of positive associations to the overall IAT effect is stronger
than that of negative associations. Hence, we expect white
people to show higher average estimates of λw+ and λ+w

compared with λb− and λ−b and black people to show higher
average estimates of λb+ and λ+b compared with λ−w and λw−.
Also, we expect to replicate previous research that observed
(1) higher ingroup favoritism in white people than in black
people (Greenwald et al., 1998; Jost et al., 2004; Nosek et al.,
2002; Nosek et al., 2007b) and (2) outgroup favoritism in
black people when bad word stimuli are made more salient
in the IAT procedure than good words (Axt et al., 2018).
Previous results showing lower ingroup favoritism in black
people compared with white people have been interpreted in
light of system justification theory (Jost & Banaji, 1994), ac-
cording to which people with lower social status, in order to
meet their need to view the world as fair and preserve the
status quo, may implicitly retain certain cultural values and
stereotypes that associates black people with bad. Hence, we
expect that:

1. the differences between (a) λw+ and λw−, (b) λ+w and λ−w,
(c) λb+ and λb−, and (d) λ−b and λ+bwill be larger in white
people than in black people;

2. λb− and λ−b in black people will be higher than λw− and
λ−w in white people.

Lastly, we expect to find no differences in correct and in-
correct discrimination rates across groups, nor in the termina-
tion criteria.

The data consist of the responses to the Black-White IAT
available at

Table 4 Parameter estimates of three saturated structural equation models for observed variables, assessing the predictive validity ofD score, DM, and
DAM-4C in scoring the IAT

Criterion

Brand attractiveness Taste preference Cola choice

Model B SE β p R2 B SE β p R2 β SE β p R2

Model 1 - D score 0.198 0.084 2.360 0.018 0.04 0.268 0.088 3.043 0.002 0.07 0.327 0.101 3.247 0.001 0.08

Model 2 - DM 0.05 0.1 0.08

IATv −0.016 0.021 −0.093 0.459 −0.064 0.025 −0.312 0.011 −0.055 0.027 −0.252 0.041

IATa −0.099 0.092 −0.136 0.284 −0.017 0.109 −0.019 0.877 −0.082 0.117 −0.087 0.484

IATt −0.513 0.517 −0.122 0.322 0.233 0.614 0.046 0.704 −0.024 0.659 −0.004 0.971

Model 3 - DAM-4C 0.06 0.1 0.12

DISCc 0.015 0.023 0.082 0.501 −0.056 0.024 −0.285 0.017 0.015 0.027 0.067 0.572

DISCp 0.039 0.024 0.181 0.109 0.048 0.026 0.207 0.061 0.012 0.029 0.047 0.667

DISC+ −0.022 0.023 −0.112 0.337 0.007 0.024 0.033 0.772 −0.027 0.027 −0.112 0.325

DISC− −0.023 0.024 −0.113 0.323 0.002 0.025 0.008 0.942 −0.006 0.028 −0.026 0.817

ASSOc 0.011 0.033 0.033 0.738 0.015 0.034 0.043 0.656 −0.065 0.039 −0.160 0.092

ASSOp −0.001 0.025 −0.004 0.965 0.024 0.026 0.085 0.364 0.063 0.030 0.198 0.034

ASSO+ 0.021 0.040 0.054 0.592 0.024 0.041 0.058 0.558 0.127 0.047 0.267 0.007

ASSO− 0.020 0.028 0.073 0.460 0.012 0.029 0.039 0.683 0.004 0.033 0.011 0.905

DIFF −0.002 0.001 −0.171 0.115 −0.001 0.002 −0.098 0.360 −0.003 0.002 −0.169 0.110

Note. Significant (p < 0.05) parameter estimates are in bold. Marginally significant (p < 0.10) parameter estimates are in italics
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https://implicit.harvard.edu/implicit. Of the participants
who completed the IAT from 30 July 2018 to 8 August
2018, 355 self-declared aswhite (214 females) and 36 as black
(27 females).

Participants were presented with the Black-White IAT ac-
cording to the structure in Table 5. A total of 24 pictures were
used for representing the target categories White People and
Black People, and 16 words were used for representing the
attribute categories good (glorious, happy, joy, laughter, love,
peace, pleasure, wonderful) and bad (agony, awful, evil, fail-
ure, horrible, hurt, nasty, terrible). The stimuli were presented
in the center of the computer screen in an alternating fashion,
and participants were asked to categorize them by pressing, as
quickly and accurately as possible, the response key “E” or
“I”. A red “X” appeared in case of a mistake, and it disap-
peared after the correct response was given.

The DAM-4C fit the data of 342 participants (87.47%;
Bonferroni-Holm method with type-I error α = .10).
Conversely, the pure discrimination model (see Sect. 6) fit
the data of 284 participants (72.63%), 58 less than the
DAM-4C. For 346 participants (88.49%), the AIC of the
DAM-4C was lower than that of the pure discrimination mod-
el. This result suggests that there could be non-negligible as-
sociations in the responses of these individuals. The following
analyses were performed on the 298 participants (272 whites,
26 blacks) for whom the AIC of the DAM-4C was lower than
that of the pure discrimination model, and for whom the
DAM-4C showed satisfactory fit.

Descriptive statistics of the estimates of DAM-4C param-
eters suggested the presence of aberrant estimates for the rates
and the termination criteria involved in the association pro-
cess. For the association rates, the mean was 13,467 to 83,677
times larger than the median. For the termination criteria KAC

(associations in test blocks Black-bad/White-good) and KAI

(associations in test blocks White-bad/Black-good), the mean
was, respectively, 39,669 and 17,994 times larger than the
median. For the correct discrimination rates and the termina-
tion criteria involved in the discrimination process, the mean
was of the same order of magnitude as the median, whereas
for the incorrect discrimination rates it was from two to three
times the median (it is worth noting that, typically, there are

only a few incorrect responses in an IAT). A total of 15.65% of
the estimates of the association rates, and 19.30% of the esti-
mates of termination criteria KAC and KAI were identified by
Tukey’s criterion as outliers and discarded.

Figure 8 displays mean parameter estimates (and 95% con-
fidence intervals) for white (white bars) and black (gray bars)
respondents. In the figure, w, b, +, and − in the λ parameters
denote White People, Black People, good, and bad, respec-
tively. KAC and KAI denote the termination criteria of the as-
sociations involved in test blocks Black-bad/White-good and
White-bad/Black-good, respectively.

Between-group differences in correct discrimination
rates are small or negligible (average Cohen’s d = − .16).
Black people showed higher incorrect discrimination rates
(average Cohen’s d = − .36), especially when they were
asked to categorize faces of black people (Cohen’s d = −
.64). We do not have an interpretation for this unexpected
result, and we think that it would be premature to reach any
kind of conclusion. Yet, a possible interpretation is that
black people perceive less of a difference between faces
of white and black people.

With regard to association rates, estimates of λw+, λ−b, and
λb− are higher in white people (Cohen’s ds =.15, .36, and .27
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Fig. 8 Mean DAM-4C parameter estimates (and 95% confidence inter-
vals) for white (white bars) and black (gray bars) respondents.

Table 5 Structure of the Black-White IAT

Block type No. of trials Left labels Right labels

1 (Practice) 20 Black People White People

2 (Practice) 20 bad good

3 (Test) 20 Black People-bad White People-good

4 (Test) 52 Black People-bad White People-good

5 (Practice) 28 White People Black People

6 (Test) 20 White People-bad Black People-good

7 (Test) 52 White People-bad Black People-good
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for λw+, λ−b, and λb−, respectively) and λ+b, λb+, and λ−w are
higher in black people (Cohen’s ds = − .27, − .84, and −.33 for
λ+b, λb+, and λ−w, respectively), as we expected. We interpret
these results as supporting the validity of these parameters.
Contrary to our expectations, λ+w and λw− are approximately
equal across groups (average Cohen’s d = − .05). Further
research is needed to interpret this result, but it is evident that,
at least in this sample, these two components do not influence
the overall IAT effect, and might not be critical in determining
differences across black and white people in the phenomenon
of ingroup favoritism.

With regard to our expectation that the association param-
eters of the DAM-4C would have detected the positive asso-
ciation primacy effect, we observed that (a) white people did
not show higher average estimates of λw+ and λ+w compared
with λb− and λ−b (Cohen’s ds =.16, . 10 for λw+ vs. λb− and λ+
w vs. λ−b, respectively), and (b) black people did not show
higher average estimates of λ+b compared with λ−w

(Cohen’s d = .13) and λw− (Cohen’s d = − .19). In black
people, the estimates of λb+ are higher than those of λw−
(Cohen’s d = .37) and λ−w (Cohen’s d = .26). This result
was expected and replicates previous research showing that
a positive evaluation of the ingroup, rather than a negative
evaluation of the outgroup, is at the basis of ingroup favorit-
ism. This result suggests that the positive association primacy
effect may be due only to a single component of the overall
IAT effect, which is the association between good stimuli and
black labels.

The differences between (a) λw+ and λw−, (b) λ+w and λ−w,
(c) λb+ and λb−, and (d) λ−b and λ+b are larger in white people
than in black people (Cohen’s ds =.27, .08, − .70, and .49,
respectively). Differences across groups are especially large
for λb+ and λb− and for λ−b and λ+b, supporting our predic-
tions and adding some nuances to the interpretation of the
known effect that implicit ingroup favoritism is larger in white
people than in black people (Greenwald et al., 1998; Jost et al.,
2004; Nosek et al., 2002; Nosek et al., 2007b). With regard to
the outgroup favoritism observed in black people when bad
words are made more salient than good words stimuli in the
IAT procedure (Axt et al., 2018), we found that λb− and λ−b in
black people were higher than λw− and da−w in white people
(Cohen’s d = .37 for λb− in blacks vs. λw− in whites, and .53
for λ−b in blacks vs. λ−w in whites).

Turning to termination criteria, we observed no differences
across groups in the termination criteria pertaining to discrim-
ination. For both white and black respondents, the double
categorization blocks were more difficult than the single cat-
egorization blocks. For white respondents, the amount of ev-
idence to be collected in their incompatible block (White-bad/
Black-good) was larger than the amount of evidence to be
collected in their compatible block (White-good/Black-bad
condition). In black respondents, both critical tasks were
equally difficult.

Discussion

A new formulation of the DAM has been presented in which
the processes involved in stimuli discrimination and automatic
association remain separate and independent instead of being
collapsed into a single process. Results of theoretical and sim-
ulation studies suggest that the DAM-4C outperforms the
DAM. The IAT effect is found to vary with the association
rates of the DAM-4C and not with those of the DAM. The
DAM-4C allowed us to observe that the choice of Coca Cola
over Pepsi Cola is mostly due to two specific associations: (a)
Pepsi Cola is judged as more negative than positive, and (b)
negative attributes are associated more strongly with Pepsi
Cola than with Coca Cola. In addition, the association rates
estimated on data from a Black-White IAT are in line with
expectations. Providing information about an association
mechanism is a peculiar feature of the DAM-4C, which en-
ables a fine-grained decomposition of the IAT effect.

Compared with the DAM, the DAM-4C leaves some de-
grees of freedom in the way of modeling the evidence accu-
mulation process. In the present work, the assumption was
made that the two categories involved in the same process
(which could be either the discrimination process D or the
association process A) accumulate evidence in parallel. The
choice of considering the PRM is consistent with such an
assumption. Alternatively, the assumption could have been
made that the two categories accumulate evidence serially.
In this case, the diffusion model (Ratcliff, 1978; Ratcliff &
Rouder, 1998) would have been an option for modeling evi-
dence accumulation. It is worth noting that, regardless of the
assumption of parallel or serial processing, in the DAM-4C,
discrimination D and association A remain two parallel and
independent processes. Conversely, because of the sum be-
tween the two processes associated to the same response
key, in the DAM there is no separation between discrimination
and association. Moreover, whereas the sum of two Poisson
processes results in another Poisson process, this is not the
case for the sum of two diffusion processes. This prevents us
from modeling evidence accumulation in the DAM via a dif-
fusion model.

A limit of the present study is that the number of trials in
the two IATs was not sufficient for obtaining reliable estimates
of all parameters of the DAM-4C. For some participants, large
values were observed for the rates and termination criteria
involved in the association process. The goodness-of-
recovery study suggests that the responses given by these
participants might have been more often determined by a dis-
crimination process than by an association process. A very
simple way to test whether associations are negligible requires
one to compare the DAM-4Cwith a pure discrimination mod-
el. This was done in the present study. However, it is worth
noting that the DAM-4C and the pure discrimination model
represent two extremes of a continuum. Between these two
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extremes, several variants of the DAM-4C can be specified
that differ in the number and type of associations involved in
the responses to the IAT. These models can provide useful
information about the specific associations of the individuals.

Open Practices Statement The codes for estimating and test-
ing the DAM-4C, as well as the data, are available at: https://
osf.io/fg8ht/
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