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Abstract

Existing event detection algorithms for eye-movement data almost exclusively rely on thresholding one or more hand-crafted
signal features, each computed from the stream of raw gaze data. Moreover, this thresholding is largely left for the end user.
Here we present and develop gazeNet, a new framework for creating event detectors that do not require hand-crafted signal
features or signal thresholding. It employs an end-to-end deep learning approach, which takes raw eye-tracking data as input
and classifies it into fixations, saccades and post-saccadic oscillations. Our method thereby challenges an established tacit
assumption that hand-crafted features are necessary in the design of event detection algorithms. The downside of the deep
learning approach is that a large amount of training data is required. We therefore first develop a method to augment hand-
coded data, so that we can strongly enlarge the data set used for training, minimizing the time spent on manual coding.
Using this extended hand-coded data, we train a neural network that produces eye-movement event classification from raw
eye-movement data without requiring any predefined feature extraction or post-processing steps. The resulting classification
performance is at the level of expert human coders. Moreover, an evaluation of gazeNet on two other datasets showed
that gazeNet generalized to data from different eye trackers and consistently outperformed several other event detection
algorithms that we tested.
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Introduction Salvucci and Goldberg (2000), but the principle can be

traced back to algorithms by Boyce from the 1960s (Boyce,

In eye-movement research, the goal of event detection is
to robustly extract events, such as fixations and saccades,
from the stream of raw data samples provided by an eye-
tracker. For a long time, two broad classes of algorithms
were used: First, the velocity-based algorithms that detect
the high-velocity saccades and often assume the rest of
the data to be fixations. The most well-known is the I-VT
algorithm of Bahill, Brockenbrough, and Troost (1981), and
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1967). The dispersion-based algorithms instead detect
fixations by defining a spatial box that the raw data must
not exit for a certain minimum time, and usually assume the
rest to be saccades. The best known is the I-DT algorithm of
Salvucci and Goldberg (2000).

Velocity and spatial boxes are examples of hand-crafted
features, i.e., transformations of the eye-tracking data
that are designed beforehand by algorithm developers in
order to provide different descriptions of the data that the
specific algorithm uses. The last decade has seen several
improved event-detection algorithms, as researchers have
gained access to new descriptions of the eye-movement
signal by hand-crafting new features and developed bespoke
algorithms to exploit these features for event detection.

For instance, Engbert and Kliegl (2003), Nystrém and
Holmgvist (2010), and Mould, Foster, Amano, and Oakley
(2012) use adaptive thresholds to free the researcher from
having to set different thresholds per trial when the noise
level varies between trials. Nonetheless, these algorithms
still only work over a limited range of noise levels
(Hessels, Niehorster, Kemner, & Hooge, 2017). Another
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recent development is the work by Larsson, Nystrom,
and Stridh (2013) and Larsson, Nystrom, Andersson, and
Stridh (2015). These authors developed new features that
have enabled the automatic detection of smooth pursuit
and post-saccadic oscillations in clean data recorded at
a high sampling frequency that contain these events
intermixed with fixations and saccades. Furthermore,
Hessels, Niehorster, Kemner, and Hooge (2017) have
presented a novel largely noise-resilient algorithm that can
successfully detect fixations in data with varying noise
levels, ranging from clean data to the very noisy data
typical of infant research. These algorithms are designed
to solve a specific problem—smooth pursuit detection,
or noise resilience—using algorithmic rules and user-
settable thresholds specifically designed for that problem.
However, these novel algorithms still rely on increasingly
complex features that may be computationally expensive
to calculate and often come with an increasing number
of either tunable or hard-coded parameters, which in turn
may require experience and insight from the end user. On
the positive side, the thresholds and exploited features are
often possible to interpret and implement. For extensive
overviews of event detection algorithms and detection
methods they use, see Andersson, Larsson, Holmgqvist,
Stridh, and Nystrom (2017), Hein and Zangemeister (2017),
and Holmgqvist and Andersson (2017).

A new development is the appearance of event detection
methods based on machine learning techniques. Up till
now, these detectors have still made use of the same hand-
crafted features as the above classes of algorithms, but
the thresholding and classification are learned from the
data and performed automatically by the event detector.
Zemblys (2016) compared ten machine learning algorithms
for event detection while other examples include work
using support vector machines Anantrasirichai, Gilchrist,
and Bull, (2016), convolutional neural networks (Hoppe &
Bulling, 2016) and random forests (Zemblys, Niehorster,
Komogortsev, & Holmqvist, 2018). Hoppe and Bulling
(2016) show that a simple one-layer convolutional neural
network (CNN), followed by max pooling and a fully
connected layer outperforms (agrees more closely to human
experts) algorithms based on simple dispersion and velocity
and PCA-based dispersion thresholding. Zemblys et al.
(2018) has shown that IRF, a random forest-based event
detector, which uses features adopted from existing event
detection algorithms, outperforms previous state-of-the-art
algorithms. In fact, in clean SMI HiSpeed eye-tracking
data (sampled at 500 Hz with average noise level 0.042
degrees RMS), performance almost reached that of a human
expert. Detection performance of Zemblys et al. (2018) was
furthermore stable down to 200Hz, with the algorithm still
performing quite well at even lower sampling frequencies.
Moreover, classification performance as evaluated by

human experts was largely robust to the increasing noise—
only when the average noise level exceeded 0.5 degrees
RMS, the performance started to degrade noticeably.

IRF by Zemblys et al. (2018) and these other machine
learning methods still use hand-crafted features, but they
do not require any thresholds to be set by the user and
once trained, they are computationally very fast. Although
their paper’s title suggests differently, the algorithm by
Hoppe and Bulling (2016) is still not entirely end-to-end
as it uses a hand-crafted feature. Specifically, they use a
Fast Fourier transform to extract a number of frequency
components (features) first and then use these as input to
their algorithm. However, as the authors write: “it would
be conceptually appealing to eliminate this step as well”
(Hoppe & Bulling, 2016, p. 12). In addition, neither Hoppe
and Bulling (2016) nor Zemblys et al. (2018) directly take
into account long-term temporal dependencies of samples—
their event detector models are not aware of what event label
they assigned to previous samples and cannot learn temporal
dependencies such as, e.g., that a post-saccadic oscillation
(PSO) can only occur after a saccade. Here we propose to
use an entirely end-to-end deep learning-based approach,
which takes raw eye-tracking data as input and classifies it
into fixations, saccades and PSOs. In contrast to the above-
mentioned machine learning-based algorithms, the deep
learning approach we present in this paper automatically
learns all features and appropriate thresholds from the data.
It furthermore learns how the short- and long-term context
of each raw data sample affects what the current sample
can be classified as, thereby ensuring that event codes are
produced in sensible sequences without the need for post-
processing, as a human expert would produce them. It
should be noted that this paper aims to present a proof of
concept in the form of a framework for developing end-to-
end event detectors by means of deep learning techniques.
The reader is encouraged to use this framework to build their
own event detector which is ideally suited to the data they
have, and tuned to detect the events they are interested in.

Using supervised deep learning to develop an event
detector for eye-movement data comes with an important
bottleneck: many hours of eye-movement data must be
hand-coded to serve as training data for the algorithm.
Having too little hand coded training data would not lead
to a good event detector when training a deep network,
because it would simply overfit the data and would not be
useful on unseen trials. Preparing training data therefore
requires experts in eye-movement research to invest the time
to look through substantial stretches of data carefully. This
is very expensive and does not guarantee the same labeling
quality in the beginning and the end of the coding. It is very
possible that the coder becomes tired after long stretches
of coding and makes mistakes (see Fig. 11 in Appendix
B). Moreover, Hooge, Niehorster, Nystrom, Andersson, &
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Hessels (2017) report that not all coders are consistent
during the entire coding session and instead change their
criteria when labeling onsets and offsets of the fixations.

In this paper, we present a completely end-to-end eye-
movement event detection algorithm, gazeNet. We use
a supervised learning approach, i.e., we take manually
annotated eye-tracking data as input and train an end-to-end
deep learning-based event detector. Furthermore, we solve
the problem of not having enough training data by extending
a relatively small dataset consisting of the annotated eye-
tracking recordings by first training a generative neural
network, gazeGenNet, to produce synthetic labeled eye-
tracking data. We then use this synthetic data as input to
a deep learning network that trains an event detector to
take raw eye-movement data as input and produce a eye-
movement event classification similar to that of an expert,
without any need for calculating hand-crafted features and
post-processing steps, and without the need for the user to
set any parameters. The resulting event detector furthermore
operates in a fundamentally different way than the vast
majority of the previous event detectors, which use an
hierarchical approach, where they first detect events of one
target type such as fixations and then in a later step process
the remaining data. In contrast, gazeNet detects all events
simultaneously, considering all event types at once and
deciding which is the most likely for each sample while also
taking into account its context. Finally we test the resulting
event detector on another set of gaze data that was manually
annotated by human experts and compare its performance
to two threshold-based and two machine learning-based
eye-movement event detection algorithms.

Method
Data

The data we are using in this study are manually annotated
eye-tracker data from the Humanities Lab, Lund University
(hereafter called the Lund2013 dataset!). It consists of
monocular eye-movement data of participants viewing
images, videos, and moving dots. The eye-movements of
all participants were recorded with the SMI Hi-Speed
1250 eye-tracker, running at a sampling frequency of
500 Hz. Two domain experts then manually segmented
data into fixations, saccades, post-saccadic oscillations
(PSO), smooth pursuit, blinks and undefined events. A
comprehensive description of the Lund2013 dataset and the
coding process can be found in Larsson et al. (2013).

! Available for download at http://www.humlab.lu.se/en/person/Marcus
Nystrom/ or https:/github.com/richardandersson/EyeMovementDetector
Evaluation
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In this study, we did not use the video and moving dot
trials from the Lund2013 dataset to avoid trials that contain
pursuit, which is out of the scope of this paper. We only used
20 unique image-viewing trials, which presumably contain
only fixations, saccades, PSOs and unlabeled events. We
will hereafter refer to this subset as the Lund2013-image
dataset or just dataset. The Lund2013-image dataset consist
of recordings of four subjects looking at four different
images; some of the subjects looked at the same images
multiple times, yielding a total of 20 trials. Trials were
4 or 10 s long. Most of the Lund2013-image dataset—14
of the 20 trials were independently coded by two eye-
tracking experts - coders MN and RA. The remaining six
trials were only coded by coder RA. We will use these
six trials as training data (trainSet) to train the generative
neural network used for manufacturing more labeled eye-
tracking data. Further, we randomly selected three trials
which were coded by both of the coders and used them for
validation (valSet) when training gazeNet. The remaining 11
trials, coded by both of the coders were used for testing the
performance of the resulting event detector (testSet). For a
full list of files and their assignments to the different sets see
Table 9 in Appendix A. We also found an obvious labeling
mistake in one of the validation trials, that we have fixed
by reassigning 75 samples from the saccade to the fixation
class (see Fig. 11 in Appendix B).

Any eye-movement recording will yield highly unbal-
anced data in the sense that the vast majority of samples
belongs to fixations, because of their longer duration com-
pared to saccades and PSOs. For example, Zemblys et al.
(2018) report that nearly 89% of samples belong to fixations
in their dataset from a fixate-saccade experiment, compared
to on the one hand (Tinker, 1928) reporting an average of
94% and on the other Hooge et al. (2017) reporting only
71.1% (o = 2.7%) in image-viewing data, manually anno-
tated by 12 expert coders. The relatively low percentage of
fixation samples in Hooge et al. (2017) is most likely a result
of their use of infant eye-tracking data. In the subset of the
Lund2013 dataset we use, the percentage of fixation sam-
ples, according to the human coders, is 77.8%, somewhat
higher than reported by Hooge et al. (2017) (see Table 1).
After we exclude samples coded as smooth pursuit (the
coders blindly coded the trials and it was thus possible they
indicated pursuit in trials that couldn’t have contain pursuit)
and other categories that we do not include in this study,
the remaining samples were coded as around 85% fixation,
almost 10% saccades, and 5% PSOs. Note that we only
use those excerpts of the trials where both coders identified
samples being either fixation, saccade or PSO.

Machine learning algorithms tend to work poorly when
facing unbalanced datasets, i.e., with datasets where one
or more classes are underrepresented. To alleviate this
problem, we have designed a heuristic data augmentation
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Table 1 Distributions of samples among event classes in our dataset. RA and MN are abbreviations for human coders, who coded the data

Dataset Fixation Saccade PSO Smooth pursuit  Blink  Undefined Number of samples  Duration in seconds
Lund2013-image 77.78%  8.93% 4.96% 3.13% 5.03% 0.17% 151639 303.28
Lund2013-image* 84.84%  9.75% 5.41% 136078 272.16
trainSet (6 trials)

RA 7842%  9.75% 3.68% 6.90% 0.90% 0.35% 23941 47.88
RA* 8557% 10.45%  3.98% 21888 43.78
valSet (6 trials in total)

RA 82.76% 10.69% 5.84% 0.31% 0.40% 0.00% 11973 23.95
RA* 83.35% 10.77%  5.88% 11888 23.78
MN 83.79% 10.57% 5.26% 0.00% 0.38% 0.00% 11973 23.95
MN* 84.06% 10.64%  5.30% 11888 23.78
testSet (22 trials in total)

RA 74.09%  8.57% 501% 4.83% 742%  0.08% 51876 103.75
RA* 84.72%  9.63% 5.65% 45207 90.41
MN 78.63%  8.14% 524% 1.05% 6.70% 0.24% 51876 103.75
MN* 8520%  9.03% 5.76% 45207 90.41

* After leaving only the samples, where both coders identified them being either fixation, saccade or PSO. These are the data that we use in this

study

procedure to enable gazeGenNet to see more samples of
the underrepresented classes during training (see section
“Architecture and training protocol”). Furthermore,
gazeNet uses a weighted cross-entropy loss function to deal
with the majority class bias (see section “Training gazeNet
— an end-to-end eye-movement event detector’).

Performance evaluation

How to best evaluate the performance of event detection
algorithms has been extensively debated in recent years. A
common assumption is that human experts can and should
serve as a gold standard. If so, the output of any event
detection algorithm should be compared to human coders.
However, Komogortsev, Gobert, Jayarathna, Koh, and
Gowda (2010, p. 2643) write that “this type of classification
technique [manual coding] is susceptible to human error
and can be open for biased interpretation with limited
generalizability”. Andersson et al. (2017, p. 619) also voice
concerns, saying that “a Human-Algorithm comparison,
however, often assumes that humans behave perfectly
rationally and that, consequently, any deviation from perfect
agreement is due to the mistakes of the algorithm. Thus,
a question highly related to this approach is how reliable
the human coders are.” This question was answered for
fixations by Hooge et al. (2017), who found that the
majority of their twelve human coders code fixation onsets
and offsets almost the same. The coders’ settings differed
with respect to each other by up to 20 ms on average when
coding fixation onsets and up 15 ms when coding offsets.

However most of the coders were much more similar than
that (see Fig. 9 in Hooge et al. 2017). Some human coders
ignored small saccades, while others code for them. It
is very likely that PSOs would also be coded differently
by different people, which was not investigated by Hooge
et al. (2017). Nevertheless, Hooge et al. showed that among
twelve expert coders, RA and MN (the same experts as who
coded the Lund2013 dataset) are both close to a median
expert coder of fixations in almost all respects. For this
reason, we were comfortable with using the two human
coders RA and MN as a baseline in this study. All mentions
of “accuracy” and “performance” in this paper thus refer to
how similar the output of the event detector in question is to
the hand-coded labels provided by these two expert human
coders.

In order to evaluate the performance of our algorithm,
we employ several different metrics from the literature and
propose a novel event-matching procedure for event level
classification evaluation which generalizes the event-based
Fl-score procedure from Hooge et al. (2017) to handle
more than two event classes. These metrics allow us to
check whether our algorithm is able to find all the events
indicated by the human coders, and also how accurate the
algorithm is in labeling the onset and the offset of these
events. All evaluations in this paper are performed on the
whole-dataset level, calculating a single score based on all
events in all trials. To ensure a fair comparison between
gazeNet and the two human coders (section ‘“Results”),
exactly the same samples were used for all evaluations.
Specifically, we only evaluated data excerpts that were
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coded as fixations, saccades or PSOs by both of the coders.
We also exclude the first sample in each excerpt because
gazeNet takes differentiated data as input, and this operation
reduces the number of samples by one. Last, all excerpts
shorter than 101 samples were removed from the dataset
because gazeNet was not trained on excerpts shorter than
100 samples of differentiated data. In section “Comparison
to other algorithms and datasets”, gazeNet was evaluated
together with 4 other event detection algorithms on the
Lund2013-image-test dataset, genSet and 2 other eye-
movement datasets. For this evaluation, none of the data are
removed from the evaluation to evaluate the algorithms in
a more naturalistic setting and assess how artifacts in the
algorithms’ output affect their overall performance.

Accuracy paradox In the case of unbalanced data, all
accuracy based measures, including very common ones—
precision, recall, F1-score—are sensitive to the proportions
of samples in each class and suffer from the Accuracy
Paradox. Tt implies that a predictive model with a high
accuracy might in fact have a low predictive power. For
example, the event detection algorithm could predict all
the samples to belong to the majority class, in our case—
fixations. The sample-to-sample accuracy of such event
detector, if measured by any accuracy based measure, will
be high and would reflect the sizes of the classes of events
rather that the predictive power of an algorithm. It is obvious
that such an algorithm would not be useful, despite that the
evaluation measure gives it a high score.

A common metric that accounts for the proportions
of samples in different classes is Cohen’s kappa (Cohen,
1960). Cohen’s kappa measures inter-rater agreement and
is a number between —1 and 1, where 1 means perfect
agreement and 0 means no agreement between the raters,
other than what would be expected by chance. In other
words, it compares an observed classification accuracy with
an expected accuracy (random chance).

For an illustration of the advantage of using the kappa
statistic for the evaluation of the performance of event
detection algorithm, consider a simple case of the ground
truth data, where 80% of the samples are labeled as fixations
(F), and the rest 20% are saccades (S), say—FFFFFFFFSS.
Now assume the algorithm labels data as FFFFFFFSSS,
i.e., mislabels 10% of the samples. The Fl-score for such
a prediction is 0.93 for the fixations and 0.8 for saccades.
That is, the fixation score is punished less because it is
the majority class. Either way the Fl-scores are still high,
despite of 12.5% of fixation samples labeled incorrectly, and
the output containing 33% more saccade samples. Cohen’s
kappa in this case is 0.74. Consider another case, where the
algorithm labels data as FFFFFFFFFS, i.e. does not detect
50% of the saccade samples. In this case, the Fl-score is
0.94 for the fixations and 0.67 for the saccades, while kappa
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is 0.62. In conclusion, Cohen’s kappa reflects better what
damage was done when mislabeling a few samples and suits
better for the evaluation of unbalanced data. While in turn
the F1-score makes the algorithm look better than it really
is. Note that when evaluating the detector’s performance at
the event level instead of the sample level, the distribution
of data across the classes is less unbalanced. Nevertheless,
Cohen’s kappa is also a robust measure to use in this case,
and will thus be used throughout the paper.

Sample-to-sample vs. event-level Cohen'’s kappa

Following Andersson et al. (2017), Zemblys et al. (2018)
and others, we perform sample-to-sample comparison using
Cohen’s kappa («5). Sample level «, indicates the accuracy
of the detection of onset and offset of events, but «; does
not tell the whole story. For example, a single sample
in the middle of one fixation misclassified as a saccade
would have a minimal impact on the k; score, but frequent
misclassifications of this nature would have a huge impact
on higher level analyses that are usually performed on eye-
tracking data. Breaking large fixations into small ones, or
missing small saccades and thus merging short fixations into
a large one would dramatically change the distributions of
fixation duration, mean saccade amplitude and duration, and
other eye-tracking measures that eye-movement researches
employ in their studies. Therefore we also calculate an event
level Cohen’s kappa—k,.

Novel event-level evaluation

Evaluating the algorithm’s performance on the event level is
a difficult task because it is unclear how to map the sequence
of events predicted by an algorithm to the ground truth
events labeled by human experts. Hoppe and Bulling (2016)
used a majority vote approach and calculated the F1-score.
For each of the ground truth events, Hoppe & Bulling looked
at which of the classes comprise the majority of the samples
in the algorithm’s output for the samples spanned by the
ground truth event. Such an approach does not guarantee
a reasonable evaluation of event level classification in eye-
tracking data. Consider a case where the algorithm splits a
long ground truth fixation into three fixations by detecting
small saccades in between (see Fig. 1, left). The majority
of the samples in such a segment will be fixation samples
and therefore the whole segment will be marked as a
fixation. Consequently, Fl-score or any other metric will
show a perfect performance, despite of the algorithm’s
output being three small fixations and two saccades in
between—considerably different from the ground truth.
Hooge et al. (2017) developed another event level
F1-score and used it to compare human coders for assessing
fixation coding performance. Hooge et al. looked for
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Fig. 1 Examples of the proposed event-matching procedure. Blue, red, and green patches are fixations, saccades and PSOs, respectively. Blue and
red lines are horizontal and vertical gaze data, respectively. Gray lines show matched events. Ticks on the horizontal axis denote 200-ms intervals

overlapping test-events occurring earliest in time and
labeled them as hits. The remaining unmatched ground
truth fixations were labeled as misses, while the remaining
unmatched test fixations were labeled as false alarms.
This works when there is a single event class, but when
there is more than one event type to match, the Hooge
et al. approach does not work well. Consider a case
where the ground truth segmentation consists of a saccade,
followed by a fixation, while the algorithm finds a PSO
after that saccade (see the second saccade in Fig. 1, right
panel). The Hooge et al. event-matching procedure would
match the ground truth fixation with the algorithm’s PSO,
because these are the events that overlap earliest in time.
A modification to this approach could be to first look for
matching fixations, then for saccades and so on. However
this way we would unfairly assist the algorithm to appear
better in the evaluation by asking the question “whether the
algorithm detected the ground truth event” rather than “how
well the algorithm classifies data”. Consider the case where
a segment of eye-tracking data is labeled as a fixation. Then
at the beginning of that segment the algorithm labels a few
samples to be a fixation, and the rest of the segment to be
a saccade. Both, the original (Hooge et al., 2017) approach,
and the hypothetical modified one, where we would first
match fixations, then saccades, etc. would mark a hit and a
false alarm. While in fact the algorithm’s prediction is that
the considered segment is a saccade, i.e., the algorithm does
not only fail to detect the fixation, but also mislabels data as
a completely different event.

In order to overcome the issues with the event-matching
procedure by Hoppe and Bulling (2016) and generalize
the method of Hooge et al. (2017), we propose using a
combination of both. Instead of looking for overlapping
test-events occurring earliest in time, for each ground truth
event, we look for the algorithm event that has the largest
overlap, and then match the events in the two streams. If the
matched events are of different classes, the match is marked
as a false positive or a false negative (depending on which

event is evaluated), and if the events are of the same class,
as a true positive (hit). The remaining unmatched events are
then labeled as false positives or false negatives, depending
on whether they, respectively, occur in the ground truth
or the algorithm event stream. Using our approach in the
example where the ground truth segmentation consists of a
saccade, followed by a fixation, and the algorithm finding
a PSO after that saccade (second saccade in the right panel
of Fig. 1), the ground truth and algorithm’s fixations get
matched because they overlap more, while the algorithm’s
PSO is left unmatched and appears as a false positive in a
subsequent calculation of the event level performance score.

Using our proposed approach for matching the longest
overlapping events penalizes inaccurate performance at both
the sample level and the event level classification. For
example, let us say that the human expert labels a short
saccade and a longer PSO after that saccade, while the event
detection algorithm labels all these samples to be a saccade
(see first saccade in the right panel of Fig. 1). Our event-
matching procedure will match the experts PSO with the
saccade of the algorithm, because these two events will have
the longest overlap. As a result, the algorithm is penalized
for two errors, 1) not detecting a PSO after the saccade
and 2) mislabeling the PSO as a saccade. Technically our
procedure treats this situation as if the algorithm did not
detect a saccade. Although this is simply is not true, the
algorithm just missed a PSO and mislabeled those samples
as part of the saccade, we did not want to include more
heuristic decisions to our matching procedure and help the
algorithm to appear better. Another example where the event
level performance score is heavily penalized is when the
event detection algorithm splits or merges a fixation (see left
and middle panels in Fig. 1). If, for example, the algorithm
splits a ground truth fixation into two separate fixations by
detecting a false saccade in the middle, our event-matching
procedure will match the ground truth fixation with the
longest fixation in the algorithm’s output. As a result, the
other fixation will be treated as a false positive, and together
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with a false-positive saccade will degrade the algorithm’s
performance score. Similarly, if the algorithm would merge
two ground truth fixations by not detecting a saccade
between them, the performance score will be penalized by
adding two (or three, if there is a PSO after the saccade in
the ground truth) false negatives. Python code implementing
the event-matching procedure and computation of the event
level Cohen’s kappa (k.) is available from https://github.
com/r-zemblys/ETeval.

Sample and event error rates

Cohen’s kappa can be hard to interpret, and therefore we
propose to use two more natural measures, that allow
to compare sequences of different length: Sample Error
Rate (SER) and Event Error Rate (EER). These two
measures are inspired by the Character and Word Error
Rates in Automatic Speech Recognition systems. They
are calculated as the Levenshtein (edit) distance® between
two sequences, normalized for length. If both compared
sequences have equal length, SER and EER both report
the percentage of misclassified items, or in other words—
classification accuracy. This is always the case for SER,
as it performs sample-to-sample comparison. For EER, the
length of compared sequences can differ, and therefore EER
reports the number of edits needed to match human coders
to the event sequence from the algorithm.

The advantage of using SER and EER is that they are
easy to interpret and in contrast to k., no hard decisions,
such as whether to match largest or first overlap, are
needed in its implementation. The disadvantage of both SER
and EER, is that they suffer from the accuracy paradox
(see discussion on page 5). We however report SER and
EER together with the sample and event level Cohen’s
kappa for the quantitative evaluation of our proposed
algorithm, as these measures together allow us to avoid the
accuracy paradox that may bias the evaluation of our highly
unbalanced testing dataset, and at the same time, present the
accuracy of the algorithm in an easily interpretable way.

Event-timing evaluation

Hooge et al. (2017) proposed using relative timing offset
(RTO) and relative timing deviation (RTD) measures, which
capture the systematic relative difference and variance of
that difference between settings of two coders. Hooge
et al. present RTO and RTD as the missing links between
agreement measures such as the F1-score or Cohen’s kappa

2See here https:/nlp.stanford.edu/IR-book/html/htmledition/edit-distan
ce-1.html for a thorough description on calculating Levenshtein
distance.
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and the eye movement parameters. The advantage of RTO
and RTD is that they show that two classifiers may produce
similar events (high agreement), but differ in the detailed
timing of their settings. RTO is calculated as the temporal
difference between onset or offset of two matched events
(hits), while RTD is the standard deviation of the RTO
measurements.

We include these measures in our paper for a complete
picture of gazeNet’s performance, however we should note
that because of the event-matching procedure we use in
this paper, RTO and RTD measures can result in worse
overall figures, compared to using the original approach
of Hooge et al.. Take for example an extreme case,
where the event detection algorithm splits a ground truth
fixation into 3 parts, with the middle one being the longest
(see right of Fig. 1). Our event-matching procedure will
match the ground truth fixation with the second fixation
in the algorithm’s output. As a result, the relative timing
offset of both the onset and the offset of that fixation
will be very high. Similarly, the RTD measure will also
increase, as it measures the spread of RTO across the
whole dataset. (Hooge, Holmgqvist, & Nystrom, 2017) used
a different matching procedure when calculating RTO for
onset and offset of the events—for the onset they matched
fixations overlapping earliest in time, while for the offset
RTO calculations matching of fixations was done in the
opposite order instead matching the last overlapping event.
We, however, wanted to have the same event-matching
procedure for all the calculations to avoid assisting the
algorithm to appear better.

Generating synthetic eye-tracking data

The Lund2013-image dataset is much too small for training
a deep learning model. Even a small network would
overfit the training data and that will not be useful when
detecting events in new data. Hoppe and Bulling (2016)
used a manually annotated dataset consisting of 1626
fixations, 2647 saccades and 1089 pursuit movements
(around 22 minutes of eye-tracking data) to train a single-
layer convolutional neural network with max pooling and
a classification layer on top to predict the event class for
every sample (75% of this dataset was used for training). In
comparison, the Lund2013-image dataset only consists of
around 5 min of eye-tracking data with 951 fixations, 911
saccades and 719 PSOs when counting the coding by the
two coders on the same trials separately (see Tables 1 and
3), and the network we aim to train is much deeper.

Getting enough data to train neural networks has been
a challenge in many other areas. While data for tasks like
image classification or speech recognition can be relatively


https://github.com/r-zemblys/ETeval
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easy acquired through crowd-sourcing, reliably coding long
sequences of eye-tracking data requires experts in eye-
movement research, is very expensive, and yet, as discussed
above, does not guarantee the perfect outcome.

Methods to synthesize eye-movements already exist,
but they are almost exclusively developed for use in
graphics applications, where animation of the eyes in a
virtual character is desired (e.g. Lee, Badler, & Badler,
2002; Ma & Deng, 2009; Yeo, Lesmana, Neog, & Pai,
2012). Only one study mentions the possibility to use
the synthetic data for testing event detectors (Duchowski,
Jorg, Allen, Giannopoulos, and Krejtz, 2016). Also, all
these synthesizers are algorithmic models of eye movements
built using features borrowed from eye-movement research.
Hence, the produced data do abide to the selected research,
but do not necessarily have the same signal properties as
authentic eye-movement recordings, which is what we want
to use for training. In addition, there are advanced models
that generate eye rotations (e.g. Enderle & Zhou, 2010)
based on the knowledge of the oculomotor system in the
brain. In contrast, a pupil-CR eye-tracker produces a signal
that is the difference in position of the P-CR feature pair,
which in a non-linear manner relates to eye orientation.
This signal also contains PSOs as a result of movement of
the lens inside the eye ball, amplified by the interplay of
the pupil and CR signals (Hooge, Holmqvist, & Nystrom,
2016). In other words, models may generate correct eye-ball
movements but do not generate an authentic eye-tracking
signal as would be recorded from a real eye.

Our approach to generating artificial eye-tracking data
is to employ a recurrent neural network for extending the
Lund2013-image dataset by using it to train a generative
neural network that we call gazeGenNet. With this
approach, we aim to reproduce both the eye-movement
characteristics in the dataset, including PSOs, but also its
signal properties.

Recurrent neural networks

Recurrent neural networks (RNN) have been shown to be
able to generate realistic images pixel by pixel (Van Den
Oord, Kalchbrenner, & Kavukcuoglu, 2016), have shown
excellent performance in character-level language modeling
(Sutskever, Martens, & Hinton, 2011), handwritten text
generation (Graves, 2013) or sample level audio generation
(Mehri, Kumar, Gulrajani, Kumar, Jain, Sotelo, . . ., Bengio,
2016). Generating synthetic eye-movement sequences is
no different from such examples: It can be seen as a 2D
regression problem where we have an input vector g, which
consists of all historical pairs of gaze coordinates [x;, y;],
from which we want to predict a future vector g;11 of the
coordinates of next gaze position. We can then feed g;1
back to the network, predict the next vector g;,, feed

it back to the network, and iterate this forward-stepping
procedure ad infinitum.

A central advantage of such recurrent neural networks
is that every generated sample depends not only on the
one previous sample, but on all the previously generated
samples. This allows the network to model long-term
dependencies, such as learning to generate PSOs only
after saccades. Another great advantage of using RNNs
in generating eye-movement data is that these networks
do not use exact templates extracted from training data,
but rather their internal states to make predictions. That
is, RNNs reconstruct the training data in a complex way,
and rarely generate the same sequence twice but instead
generate data with a certain amount of variability, as would
be seen in authentic eye-tracking data recorded from human
participants.

Architecture and training protocol

Our synthetic eye-tracking data generation network is
inspired by the handwritten text generation network by
Graves (2013): a sequence-to-sequence LSTM (Hochreiter
& Schmidhuber, 1997) with a Mixture Density Network
(Bishop, 1994) as an output layer. A Mixture Density
Network is in fact nothing else than a Fully Connected
layer, but instead of directly using its outputs to make
predictions about the next gaze sample, the network
outputs a parameterized Mixture of Gaussians, consisting
of parameters for the probabilistic distribution of the
location of the next gaze sample. Intuitively, this Mixture
of Gaussians could be interpreted as the number of choices
the network has for the next raw data sample, given all the
inputs (samples) so far. We implemented gazeGenNet in
Tensorflow.> A more detailed architecture description can
be found in Table 2.

Although normalizing input data is not a necessary
requirement for training a neural network, normalized input
(and also normalized input for each internal layer) leads to a
faster convergence (Ioffe & Szegedy, 2015). To achieve that
and following (Graves, 2013), we use gaze offset (velocity
per sampling interval) instead of a position signal as an
input. In addition during the training we randomly either
swap or not horizontal and vertical channels, so our network
sees more variations of data.

Our training data are highly unbalanced, which poses a
great challenge for classification tasks because of the so-
called accuracy paradox (see on page 5). If that happens,
the model could predict all test samples to belong to the
majority class, in our case fixations. The whole generated
dataset might end up as a single fixation. To avoid this,

3We used the starter code from https://github.com/hardmaru/write-rnn-
tensorflow
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Table 2 Architecture and hyper parameters for gazeGenNet. T
- timesteps in the sequence, M - number of Gaussian Mixture
components, N - number of event classes

Architecture

RNN Type LSTM
Layers 3
Neurons 128
Bidirectional False
BatchNorm False
Dropout 0.25

FC Layers 1 (readout)
BatchNorm False
N 3
M 20

Hyper parameters
Optimizer RMSprop
Grad clip 10
Learning rate 0.001
Batch size 50
T 100
Training steps 2000

we perform heuristic data augmentation, which allows us
to generate realistic and more frequent saccades and PSOs
amongst the fixations. First, we split our training set into
short trials (each 102 samples long or 201 ms at the data’s
500 Hz sampling frequency), such that every trial includes a
saccade. Second, we perform saccade amplitude histogram
equalization, i.e we include large saccades—which occur
less often—multiple times in each training epoch, such
that each saccade amplitude occurs equally often. Such
a heuristic data augmentation ensures that during the
training, our generative network sees more saccade samples
(17.59% compared to 10.6% in the original training set),
and equal number of saccades for each amplitude, and no
sequences with only fixation samples. Note that the goal
is not to balance the dataset at a sample level, but rather
balance the number of saccades with different amplitudes.
Consequently, augmentation pushes gazeGenNet away from
generating long fixation sequences and helps it learn to
generate more larger amplitude saccades that it would do
otherwise if non augmented training data would be used.
Formally, the network input g; is a vector (dx, dy, e),
where dx, dy indicate the offset in gaze from the previous
sample and e (also referred to as (g)3 in the equations
below) is a binary input, that has value 1 at the offset
of an event (fixation, saccade or PSO) and 0 otherwise.*
This simple coding scheme is sufficient because the end of

“In the actual implementation we had an additional input value, that
was randomly selected to be O or 1. In case this extra input was 0, the
end of event flag in the sequence was set to 0.
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one event is the start of the next, as there are no holes of
non-events in the data.

The output of the network y; is a vector which consists
of the end of event probability e, along with a set of
means p/, standard deviations o/ (both vectors with two
elements), correlations p/ and mixture weights 7/ (both
scalars) for the M multivariate (2D) mixture components
and probabilities o' of the input sample belonging to one
of the N oculomotor events. Mathematically, this can be
represented as follows:

. : 5 i M [ N

The event type for each sample (fixation, saccade, or
PSO) is determined by picking the event with the highest
probability in o’ . The probability density Pr(g;41]y;) of the
next input g,41 given the output vector y, is defined by Eq. 2
Graves (2013). The next input sample g+ is then generated
by sampling from this probability density.

M
. i i | 1if e >1
Pr(gr+1ly) = Z”th(gf“ i oi' s o) { 0 othertwise

j=1
(2

Here 7 is a decision boundary—a threshold above which
the output value e; will signal that the ongoing event is to be
terminated. We choose this threshold to be 0.5.

We train gazeGenNet through backpropagation using the
RMSProp algorithm® (Graves, 2013). The sequence loss
function £ = L, + L. + L, that is optimized during the
training process is the sum of 3 separate loss functions,
which are defined as follows:

T

Lo(er.g) =Y —log | Y a/Ngiilul. o/ o)) | 3

t=1 J
a loge if (g3 =1
. _ t t+1)3 =
Le(g3) = ; { log(1 — ¢;) otherwise @

T

Lo(X, O):—%go,lnx,—{—(l—o,)ln(l—xt) )

In Egs. 3,4 and 5, T is time steps in the sequence, X
in Eq. 5, refers to the event labels provided by the human
coders, and O the predicted oculomotor event labels. Eg
(Eq. 3) optimizes the parameters of the Gaussian mixtures,
from which the next samples are drawn. L, (Eq. 4) is
responsible for terminating the ongoing event, while £,
(Eq. 5) is a cross-entropy loss function, which optimizes the

SRMSprop is an adaptive learning rate method first proposed
by Geoff Hinton in his course: http://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.eps
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predictions of the event class by comparing the generated
events to the hand-coded ones.

We train this network for 2000 steps (210 epochs), until
the loss value levels out. We do not use any validation
here and hence we are most likely overfitting. However,
the goal is not generalization. We wish to generate a large
amount of synthetic data which are very similar to the
training dataset, while still exhibiting considerable variation
in fixation durations, saccade and PSO amplitudes, shapes,
etc.

Results

After training the network, we generated 2000 synthetic
eye-movement trials, each 5000 samples (10 s) long. When
generating artificial samples, we restrict maximum fixation
duration to 500 ms by manually changing (g)3 (e;, see
Eq. 2) to 1 if fixation durations exceeds this threshold.
Further, we removed all fixations shorter than 36 ms, all
saccades shorter than 6ms (we obtained these thresholds
from our hand-coded validation set), all saccades larger than
30°, and PSOs that do not occur after the saccade. That
lead to removing of 10396 fixations (14% of all generated
fixations), 14548 short and 72 large saccades (21% in total),
and 5588 PSOs (14%; 4630 of these PSOs were originally
following fixations, while the rest of them were following
saccades that got removed because of not meeting the
above criteria). The majority (78%) of the removed fixations
had durations of four or less samples, while most of the
short saccades (73%) were only 1 sample long. The largest
saccade that got removed had an amplitude of 47 degrees,

while most of removed large saccades were in in the range
of 30—40 degrees. In addition, all sequences that are shorter
than 101 samples were also removed.

Although the number of removed events seems to be
quite large, this is not an indication of poor performance
of gazeGenNet, but rather a result of our choices of how
to interpret its output. First, our sampling process of the
synthetic data is probabilistic, i.e., we sample the position
(or rather the offset from the previous gaze sample) of the
next gaze sample from the mixture of Gaussians generated
by the network. It is then very possible that for example the
network’s intention is to start generating a fixation, therefore
it labels a sample as such. However when we sample the
position, it might be more similar to a saccade. When we
feed back such sampled offset to the network it might take
several steps until the network switches to another state and
starts labeling samples as saccade, thus resulting in a short
fixation before it. And second, the way we handle the end
of event flag (e; in Eq. 2) also affects the final output. We
set e; to 1 if it is higher than 0.5, signaling the network that
the ongoing event needs to end. If for example the network
was generating the fixation and we signal to terminate it, it
is not necessary that the network will do that. gazeGenNet
relies not only on the input, but also on its internal state,
therefore it might continue generating the fixation. Then
the next time we signal to terminate the ongoing event,
the network might start generating PSO, because it has
already seen two end of event flags. We conclude that deeper
investigation is needed to determine why the gazeGenNet
generates too short or too long events and the other issues
flagged above, and posit that this is a very worthwhile area

0.0 -

-2.5 -

-5.0 - -

-7.5 -

-10 -

Fig. 2 Examples of synthetic data with time on the x-axis and position (in degrees) on the y-axis. Ticks on time axis denote 50-ms intervals.
Horizontal gaze position - blue, vertical - red. Red blocks in the scarf plot underneath each panel indicate saccades, green - PSOs, and blue are

fixation samples as labeled by the gazeGenNet
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Table 3 Number of events in datasets. RA and MN are human expert
coders, who coded eye tracking data. genSet is the synthetic dataset
generated by gazeGenNet

Dataset Fixations Saccades PSOs
Lund2013-image 951 911 719
(Hoppe & Bulling, 2016) 1626 2647 —
trainSet RA 171 174 106
valSet RA 92 90 78
valSet MN 90 88 69
testSet RA 296 279 228
testSet MN 302 280 238
genSet 62055 56264 34342

of study to solve the problem of generating the large datasets
required for training deep learning-based event detectors.
However, a further exploration is out of the scope of this
paper. The sole purpose of gazeGenNet in our study is to
generate gargantuan amounts of artificial data in order to
deal with the overfitting problem when training gazeNet.
The performance of the resulting event detector trained
on this synthetic dataset underscores that the generated
artificial data were indeed good enough to create a well-
working event detector and this serves its purpose for the
current investigation.

Figure 2 shows examples of raw data generated by our
network. After having shown synthetic eye-tracking data
side-by-side with real data to more than 100 eye-movement
researchers at seminars, workshops and conferences and
having obtained chance-level discrimination performance
from this audience, we think it is safe to say that they look
very realistic. Indeed, in the generated data, one can easily
recognize saccades and PSOs, and also spot some drift
and noise in the fixations, and even noise during saccades.
Although not relevant for the event detection task, the
scanpaths of the synthetic data trials seem to be very typical
for an image viewing task (see Fig. 13 in Appendix D).
Considering that trials were generated sample by sample,
it confirms that the network was able to learn long-term
dependencies and is able to generate realistically looking
artificial eye-tracking data. To confirm this impression, in
the rest of this section we analyze the properties of this
synthetic eye-tracking data.

The above procedure resulted in a total of over 5 h of
high-quality labeled artificial eye-movement data at S00Hz
(hereafter genSet), which we will use to train gazeNet, the
end-to-end deep learning-based event detector. Despite our
use of data augmentation, the data generation network is
still more likely to output fixation samples: 89.61% of this
artificial data are labeled as fixations, 7.78% as saccades
and only 2.61% as PSO. Our genSet has 62055 fixation,
56264 saccade and 34342 PSO events (see Table 3). In
comparison to Hoppe and Bulling (2016) our genSet,
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Fig. 3 Fixation durations in the datasets. White squares denote
averages. Note that here we aggregate the data from both coders

totaling 326 min of eye-tracking data, has around 15 times
longer duration, has 40x more fixations and 20x more
saccades. Compared to our original hand-coded training
data, we extended it by a factor of 450x.

In Fig. 3 fixation durations in all datasets are presented.
Note that here we stack data from both coders. Average
fixation duration in genSet is a bit higher, compared to
that of training and validation sets—283 ms compared to
219 ms. However it covers a broader range of fixations
durations. The testSet is in between with an average fixation
duration of 257 ms. Around 15% of fixations in genSet have
durations longer than the 500-ms threshold we set when
generating the data. This means that gazeGenNet does not
always rely on only the end of event flag (e; in Eq. 2),
but also on its internal state to generate the next sample.
However the vast majority of these longer fixations are
in the range of 500-510 ms, while only 21 fixations were
longer than 510 ms.

Table 4 presents data quality measures of our datasets.
Besides the root mean square of the sample-to-sample
(RMS-S2S) and standard deviation (STD) measures, we
also report magnitude (v RM S% + ST D?) and % mea-
sures (Holmgqvist, Zemblys, & Beelders, 2017). We calcu-
lated these four measures using the procedure of Hooge
et al. (2017), i.e., we slide a 200-ms window along each
fixation (as indicated by the hand-coded or generated event
labels), calculate these measures for each window and take
the median. Note that this means that all fixations less than
200 ms are excluded from the precision evaluation. The val-
ues presented in Table 4 are averages of quality measures
from all fixations. Compared to the training and validation

Table 4 Eye-tracking data quality measures

Dataset RMS (°) STD (°) RS Magnitude (°)
trainSet  0.027 0.121 0.221 0.124
valSet 0.026 0.138 0.190  0.140
testSet 0.038 0.150 0256  0.155
genSet 0.029 0.146 0200  0.149




Behav Res (2019) 51:840-864

851

100 -
g — trainSet
< 80 — valSet
o —— testSet
S 60 — genSet
=}
°
% 40
@
S 20
©
n

Saccade amplitude, deg

v

)]

(O]

ko]

= 800 —

©

S 600 _—

[}

>

é 400 —— trainSet

o - valSet

200 — —_—

_;% testzett
genSe

o 0

g T T T T

2 0 10 20 30

Saccade amplitude, deg

Fig. 4 Saccade amplitude—duration relationship (fop) and main
sequence relationship (bottom)

sets that were used to train gazeGenNet, genSet has slightly
higher average RMS, STD and therefore magnitude values.
However, the % value (0.2) is somewhere in between the
two datasets, which means that gazeGenNet was able to pro-
duce the same type of noise (termed trailing by Blignaut &
Beelders, 2012; Holmgqvist et al., 2017) as was present in
the original SMI Hi-Speed 1250 data.

Figure 4 shows the saccade amplitude-duration relation-
ship and main sequence fits for all datasets. Interestingly,
both the saccade amplitude-duration and the main sequence
fits of genSet deviate from the data that gazeGenNet was
trained on, but are very similar to fits of the validation and
testing sets.

Compared to the training and generated data sets, the
validation and testing sets have a larger number of saccades
that are followed by PSOs—83% compared to 61% in
training and synthetic sets (see Table 3). In addition to these
differences in data, the metadata for confidence and tagtime
per trial for the trainSet also differ from the validation
and testing sets. Clearly, RA tagged events in those trials
differently, more slowly, and indicated feeling less sure
about his coding, but we do not know why.

We judged our labeled synthetic data to to be similar
enough to the human eye-movement data that gazeGenNet
was trained on for it to be usable for training the event
detector. Note that, in the end, it is the performance of
the eventual gazeNet event detector that is the final judge.
gazeNet will be trained on these synthetic training data
but evaluated against real manually annotated data. That

Table 5 Architecture and hyper parameters for gazeNet. T - timesteps
in the sequence, N - number of event classes

Architecture

CNN Type “same”
Layers 2
Filters 8
Kernel 2x11
Stride (1, 1]
BatchNorm True
Dropout 0.25
Activation ReLU (clipped at 20)

RNN Type GRU
Layers 3
Neurons 64
Bidirectional True
BatchNorm True
Dropout 0.25

FC Layers 1 (readout)
BatchNorm False
Bias False
N 3

Hyper parameters
Optimizer RMSprop
Learning rate 0.001
Batch size 100
T 100

evaluation will tell us whether our gazeGenNet yields input
data of sufficient quality for training an event detector
through deep learning.

Training gazeNet—an end-to-end
eye-movement event detector

Our gazeNet architecture was inspired by Deep Speech 2,
an end-to-end speech recognition neural network (Amodei,
Anubhai, Battenberg, Case, Casper, Catanzaro, . . . , Zhu,
2015). gazeNet was implemented using the pyTorch® neural
network framework (version 0.2.0_4) and the starter code
from Sean Naren.’

Our network has two convolutional layers followed by
three bi-directional recurrent layers with a fully connected
layer on top. The convolutional layers use 2D filters with
a size of 2 x 11 and are meant to extract deep features
from raw input data, while the recurrent layers model event
sequences and are responsible for detecting onsets and
offsets of fixations, saccades and PSOs. Instead of the more

Shttps://pytorch.org/
7https://github.com/SeanNaren/deepspeech.pytorch
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Fig. 5 Smoothed training performance curves for gazeNet. Note that
when training gazeNet, the synthetic labeled data of genSet is used
as training data. Only a subset (5%) of genSet was used to draw this
training curve

conventional LSTM layers, we used gated recurrent unit
(GRU) layers (Cho, van Merrienboer, Giilgehre, Bougares,
Schwenk, & Bengio, 2014), because these usually exhibit
the same performance with fewer parameters. A more
detailed architecture description can be found in Table 5.

In the early stages of developing gazeNet, we assessed
other architectures involving deeper and shallower networks
with double and half the training parameters we used in
this study and with different hyper-parameters (optimizer,
learning rate, sequence length, etc.). As we did not perform
a systematic analysis of these different architectures later
on, and the aim of this paper was to provide a framework
for how to approach building a deep learning-based event
detector, the performance of gazeNet could likely be
tweaked further by varying these hyper-parameters.

During the training we ran a validation every 50 steps,
and used a L2-norm composed from all four sample and
event accuracy measures—S to determine the model’s
performance (see section ‘“Performance evaluation” and
Eq. 6).

S = I{xs, kes 1 = SER, 1 — EER}|l; (6)

-10 -

Gaze position, degrees

We selected the model (for subsequent testing on the
testSet) which had the highest validation score S. During
the training we randomly added white noise from a range of
[0, 0.5) degrees RMS to each of the sequences in the batch
to further augment the training data and enable the gazeNet
to work on noisier data. To deal with the majority class
bias, gazeNet was trained using a weighted cross-entropy
loss function, with the class weights calculated as 1 minus
the fraction of each sample class in the trainSet (RA* in
Table 1).

Smoothed training performance curves for the different
datasets are plotted in Fig. 5. Note that gazeNet is trained
using genSet as the training data, and not trainSet which
was only used to generate genSet. Training curves are
very typical for neural networks. Notice that the training
curve (Fig. 5, yellow curve) based on the genSet data
keeps increasing as training progresses, while the validation
curve increases only up to a certain point, and then
starts to decay: this is indicative that the network starts
to overfit the data. The best performance on valSet was
reached on the forth epoch after around 4k training steps.
Unsurprisingly, the curve of trainSet increases together with
genSet, because this was the data, based on which the
genSet was generated. The similar trends in these two curves
further speaks to the fidelity of our generated eye-movement
dataset.

Results

Figure 6 shows examples of gazeNet’s performance on the
testing set. The left part of Fig. 6 shows almost perfect
classification performance, compared to two human expert
coders. One can spot very minor disagreements in the onsets
and offset of the events, but all within a range of a few
samples (2-4 ms).

The right side of Fig. 6 demonstrates cases where
gazeNet does not agree with the human coders. The
predicted PSOs after saccades #1 and #2 have shorter

Fig.6 Examples of data from coder RA and MN, together with events
detected by gazeNet on the testing dataset. The left panel shows excel-
lent performance of gazeNet, while the right panel shows examples
of disagreement between gazeNet and the human coders. Ticks on the

gazeNet
Coder RA || ‘

Coder MN || ‘
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horizontal axis denote 200-ms intervals, the vertical axis shows posi-
tion in degrees, the blue line indicates the horizontal gaze position and
red line the vertical. The blue, red, and green patches in the scarfplot
are fixations, saccades, and PSOs, respectively



Behav Res (2019) 51:840-864

853

|
a1
1

Gaze position, degrees

Coder RA | | |

Coder MN | | |

Fig.7 gazeNet makes a mistake by misclassifying a few PSO samples
as fixation, resulting in a PSO that follows a fixation. Ticks on the
horizontal axis denote 50-ms intervals, the blue line indicates the
horizontal gaze position, and red line the vertical. The blue, red,
and green patches in the scarfplot are fixations, saccades and PSOs,
respectively

and longer durations compared to coders RA and MN.
Such disagreements will show up in the sample-based
performance metrics below, but not the event-based metrics.
Further, compared to human coders, gazeNet fails to detect
a PSO after the 3rd saccade and tags part of the fixation as
PSO after saccade #4. These disagreements will be counted
as False Positives or False Negatives in both the sample- and
the event-based performance metrics. And finally, gazeNet
splits a long fixation into halves by tagging what appears
to be noise as a small saccade, #5. Such a misclassification
also hurts both the sample- and the event-based performance
metrics.

It is worth noting however, that the human coders do not
fully agree on the duration of PSOs following saccades #1,
#2, and #3, and even on whether saccade #4 is followed
by a PSO or not. This suggests that there is uncertainty
about how to interpret these epochs in the data. Digging
deeper, the authors think that the PSO after saccade #3
is an unclear case even if both coders tag a PSO here,
because data after this saccade does not show an oscillating
pattern, which is a common descriptive feature of the PSO.
The authors have examined this case in a 2D plot (see
Fig. 12 in Appendix C), and concluded that it is indeed
very hard to tell whether what the experts coded as a PSO
is indeed a PSO, or for example, the oculomotor delay in
the vertical channel. As it impossible to tell who is right,
perfect agreement of the algorithm with either of the coders
is neither expected, nor should it be the goal. Especially for
PSO events, disagreement between the coders and between
the coders and gazeNet may be expected.

To enable gazeNet to learn temporal properties of the
events, we have employed a recurrent neural network. In
our case, the important temporal feature is that PSOs cannot
occur after a fixation. We have however found one case
in the testing data where gazeNet made a mistake and

misclassified a few PSO samples as fixation (Fig. 7). That
results in small fixation after a saccade, followed by a
PSO. When comparing to human coders, this particular
misclassification will degrade both sample and event level
scores. In the confusion matrix analysis we provide below,
this case will appear as a false-positive fixation. As any
machine-learning-based event detector can never guarantee
a certain situation will not occur in its output, such as a
PSO after a fixation, we therefore encourage users to always
check for such occurrences and deal with them as they see
fit. It is however encouraging to see that only one such
failure occurred in our output.

In Figs. 8 and 9, sample and event level confusion
analyses are presented. On the sample level (Fig. 8),
gazeNet’s performance is nip-and-tuck with that of human
coders for fixation classification. In saccade classification,
gazeNet achieves 93-95% accuracy (agreement with the
expert coders), compared to a mere 90% agreement between
the two human experts themselves. In comparison, Hoppe
and Bulling (2016) report 78% for fixations and 37% for
saccades.® Sample level PSO detection accuracy is lower,
but still at a human expert level—gazeNet scores 73% when
compared to coder MN, and almost 76% when compared to
coder RA, which is close to when the two expert coders are
compared against each other (79%).

The event level confusion analysis in Fig. 9 also shows
that the fixation and saccade detection performance of
gazeNet is just as good as that of human experts and, in
some cases, even better (in the sense that the algorithm’s
output agrees more with a human expert than the agreement
between the experts themselves). For example, when
compared to coder RA, coder MN misses two fixations
and two saccades, while gazeNet misses three saccades and
only one fixation. If coder MN is taken as a ground truth,
then coder RA misses six fixations and six saccades, while
gazeNet only misses three fixation and six saccades. The
main difference in detecting events however again lies in
PSO detection. Coders RA and MN tag 18 and 27 PSO
events in the testSet, respectively, that the other coder does
not code as PSO. gazeNet tags 37 false-positive PSOs
when compared to coder RA, and 28 false positives when
compared to coder MN. The number of false-negative PSOs
when gazeNet’s output is compared to both of the coders
is the same—24. The higher number of gazeNet’s false-
positive PSOs raises the question whether PSOs detected by
gazeNet are actually false positives, or whether the human
coders have trouble identifying these events in raw data and
have missed some PSO events that gazeNet identified. We
did not want to act as metacoders, adding an additional layer
of evaluation to this study; however, we provide example

8The Hoppe and Bulling (2016) data include smooth pursuit, therefore
these numbers cannot be directly compared.
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Fig.8 Sample level confusion matrices. Numbers are normalised per row and show the percentages of correctly and incorrectly classified samples

plots of ambiguous PSO cases in Appendix E that allow the
reader to form his/her own opinion.

In Table 6, sample-level Cohen’s kappa («;) and sample
error rate values are presented for the human coders and
gazeNet. Just like Figs. 8 and 9, these analyses show
that overall the performance of gazeNet on training and
validation sets is virtually the same as that of expert coders,
and that its performance on the testing set is just a bit
lower. On the testing set, gazeNet achieves a k; of 0.9 for
fixations, which is on the higher end of human expert coder
performance. In comparison, Hooge et al. (2017) reported
that the sample-level Cohen’s kappa when 12 experts coded
fixations was in the range of 0.74-0.92. The values in
Table 6 replicate the finding by Andersson et al. (2017)
and Zemblys et al. (2018), that, like the two human coders,
our algorithm performs best in classifying saccade and
fixation samples, while the performance of PSO detection
is considerably poorer. That again suggests that PSOs are
difficult events to classify and probably more research is
needed to define what a PSO is in eye-tracking data, and
how the PSO should be treated.

Overall on the sample level, gazeNet agrees slightly
more with coder RA, probably because it was trained using
coder RA’s data. At the event level (Table 7), however,
these differences disappear and gazeNet appears to agree
slightly more with coder MN instead. Event-level analyses
also show that gazeNet’s performance is at the level of
human experts—the overall event-level Cohen’s kappa (x.)

None
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Fig.9 Event-level confusion matrices
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for experts is 0.9, while gazeNet achieves «, of 0.86-0.87
for the testing set. In their comparison of 12 human coders,
Hooge et al. (2017) only report event level Fl-scores for
fixations, which are in the range of 0.88-0.97. To compare
gazeNet’s fixation detection performance on our testing sets
to Hooge et al.’s values, we also computed an event level F1-
score for fixations. gazeNet’s Fl-score was 0.98, which is
the same as the F1-score of the expert coders in this dataset.

We also examined the RTO and RTD of gazeNet’s event
detection results following (Hooge et al., 2017) and shown
in Fig. 10. Compared to the human coders RA and MN,
the onset of fixation of gazeNet is delayed on average
by just under 4 ms. Fixations as detected by gazeNet
on average terminate earlier and therefore saccades begin
earlier, however the difference is negligible. The saccade
offset and PSO onset of gazeNet is the same as for coder
RA, while coder MN tags longer saccades and longer PSOs.
Given that all these difference remain with 2 ms on average,
these are only small details. Overall, the timing differences
observed in the event detection output of gazeNet are well
within the differences seen in a group of 12 human experts
in Hooge et al. (2017) who coded fixations. They report
differences between human coders in RTO values of up
to 20 ms, which is five times larger than the maximum
difference of 4 ms between gazeNet and the human coders
for any of the events. The relative timing deviation values
for fixations are however at the higher end of the values
reported by Hooge et al.. The majority of the 12 coders
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1
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Table 6 Sample-level Cohen’s kappa and sample error rate (SER)
values for each event class. SER’ = SER*100

Fixations Saccades PSO All SER’
Experts
testSet 0.918 0.925 0.771 0.890 2.83
gazeNet vs:
trainSet 0.909 0.929 0.757 0.892 2.75
valSet 0.901 0.920 0.725 0.875 3.29
testSet RA 0.900 0914 0.743 0.873 3.26
testSet MN 0.890 0.904 0.718 0.860 3.54

had RTD around 20ms, which we also find here when
comparing the two human coders. gazeNet has a larger RTD
of approximately 30 ms, however this value is still within
the range of human coders—Hooge et al. report fixation
RTD values up to 37 ms.

Comparison to other algorithms and datasets

In Table 8 an evaluation of gazeNet’s generalizability to
other datasets is provided. The datasets we use for this
evaluation are GazeCom (Startsev, Agtzidis, & Dorr, 2016;
Startsev & Agtzidis, 2017) and humanFixationEvaluation
(Hessels, Hooge, & Kemner, 2017 containing data from
Hessels et al., 2016). We also compare gazeNet’s perfor-
mance to other event detection algorithms that are capable
of detecting fixations, saccades and PSOs—the adaptive
threshold-based algorithm by Nystrém and Holmqvist
(2010) (henceforth NH2010) and its recent modification by
Friedman, Rigas, Abdulin, & Komogortsev, (2018) (referred
to as MNH), and two versions of random forest based algo-
rithm by Zemblys et al. (2018) (referred to as IRF and IRF-
spec). In addition, we evaluate how these event detection
algorithms perform on our generated dataset (genSet).

Data

The GazeCom (Startsev et al., 2016; Startsev & Agtzidis,
2017) dataset provides over 4.5 h of manually annotated

Table 7 Event-level Cohen’s kappa and event error rate (EER) values
for each event class. EER’ = EER*100

Fixations Saccades PSO All EER’

Experts

testSet 0.966 0.983 0.844 0.894 5.98
gazeNet vs:

trainSet 0.972 0.978 0.654 0.840 10.2
valSet set 0.978 0.978 0.790 0.881 7.10
testSet RA 0.966 0.966 0.774 0.861 7.60
testSet MN 0.973 0.970 0.795 0.871 6.85
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Fig. 10 RTO and RTD analysis. Blue bars compare the two human
coders. Green and red bars compare gazeNet’s events to the events
coded by RA and MN, respectively

eye-tracking data that was recorded with an SR Research
EyeLink II at 250Hz. Manual annotations (fixations, sac-
cades, smooth pursuit, unknown and noise) were obtained
from 2 coders prior to pre-labeling data by a set of algo-
rithmic approaches and tie-breaking the disagreements (we
only use the final labels in our evaluation). The human-
FixationEvaluation dataset (Hessels et al., 2016; Hooge
et al., 2017) was collected with a Tobii TX300 (300Hz)
eye-tracker and derived from infant and adult participants.
The total of almost 6 minutes of data were then hand labeled
by 12 expert coders, who were asked to label only fixations.
Because of the relatively small size of the dataset, we used
the labels from all 12 coders in our evaluation.

Algorithms

Data from both datasets were resampled to 5S00Hz using
first-order spline interpolation. Further, for each of the
evaluated algorithms, all samples that were not coded as
fixations, saccades or PSOs were set to values that the
algorithm considers as a missing sample. In the case of
humanFixationEvaluation dataset, the samples that were
left uncoded were artificially set to saccade samples and
only originally missing samples were considered as missing
when evaluating the algorithms. Similarly, the output of
each of the algorithms for all of the datasets was modified
so any other event than fixation, saccade or PSO is labeled
as undefined. Except for changing the sampling frequency
parameter for the MNH algorithm, we did not modify any
other parameters for NH2010 and MNH algorithms. The
IRF algorithm we use in this study is an updated version of
the original IRF described in Zemblys et al. (2018). For this
updated version, we retrained IRF using hand labeled data

@ Springer



856

Behav Res (2019) 51:840-864

Table 8 Event and sample level Cohen’s kappa for three machine learning algorithms and two traditional algorithms using hand-crafted features
and thresholds, for three different eye-movement datasets and our genSet. The highest-scoring algorithm in each cell is printed in bold, while the

runner-up is underlined

Event level

Sample level

Dataset Algorithm
Fixations Saccades PSO Fixations Saccades PSO
lund2013-image-test gazeNet 0.959 0.947 0.776 0.923 0.904 0.727
IRF 0.780 0.848 0.616 0.760 0.796 0.533
IRF-spec 0.783 0.844 0.693 0.770 0.801 0.601
MNH 0.837 0.759 0.598 0.679 0.675 0.540
NH2010 0.639 0.798 0.350 0.498 0.655 0.310
GazeCom gazeNet 0915 0.845 — 0.932 0.782 —
IRF 0.844 0.779 — 0.811 0.704 —
IRF-spec 0.843 0.774 - 0.811 0.706 -
MNH 0.921 0.771 — 0.813 0.724 —
NH2010 0.647 0.745 — 0.480 0.650 —
humanFixationClassification gazeNet 0.700 - - 0.792 — -
IRF 0.707 — — 0.684 - —
IRF-spec 0.701 — — 0.670 - —
MNH 0.389 - - 0.292 - -
NH2010 0.477 — — 0.347 — —
genSet gazeNet 0.918 0.884 0.719 0.851 0.902 0.766
IRF 0.719 0.702 0.436 0.446 0.774 0.484
IRF-spec 0.720 0.701 0.465 0.453 0.778 0.529
MNH 0.792 0.606 0.340 0.509 0.673 0.396
NH2010 0.326 0.543 0.087 0.112 0.564 0.166

very similar to those originally used, covering the same wide
range of sampling frequencies (30Hz—1250Hz) and additive
noise levels as in Zemblys et al. (2018). Furthermore
we have updated the post-processing procedure, as it has
been reported”® that in certain scenarios, the original post-
processing code may behave differently than stated in the
paper. Just like in Zemblys et al. (2018), we have also
trained a specialist classifier (IRF-spec) using only high
quality 500-1000Hz data with an additive noise level up to
0.04 degrees RMS.

Results

In Table 8 we provide the average event and sample
level Cohen’s kappa values for each of the datasets and
algorithms, separately for fixations, saccades and PSOs.
gazeNet outperforms all other algorithms in all tested
datasets for all compared metrics, except for the event-level
score for fixations in the GazeCom dataset where MNH
scores marginally higher (0.921 compared to gazeNet’s

9See https://digital library.txstate.edu/handle/10877/6874
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0.915) and in the humanFixationClasification dataset where
IRF scores marginally higher (0.707 compared to gazeNet’s
0.700).

The other two machine learning algorithms—IRF and
IRF-spec—perform quite well and in almost all the cases
outperform both threshold-based algorithms. The main
exception is in the performance of MNH in detecting
fixations: at the event-level it outperforms IRF (but not
gazeNet) in the lund2013-image-test, while in the GazeCom
and genSet, MNH performs better than IRF at both the event
and sample levels. MNH also seems to be on par with IRF at
detecting saccades in the GazeCom dataset at both the event
and sample levels. The good overall performance of MNH
in the GazeCom dataset is likely due to the fact that MNH
was fine-tuned for Eyelink1000 data, which is very similar
to the GazeCom dataset. However, outside of its familiar
territory, MNH, and also NH2010, are outperformed by the
machine learning algorithms by quite a large margin. In
particular this is evident for the humanFixationEvaluation
dataset, where both the MNH and the NH2010 algorithms
perform approximately twice as bad than IRF and gazeNet.
Hooge et al. (2017) report that the average noise level in this
dataset is 0.32 - 0.36 degrees RMS, which means it has a 10x
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larger noise than in the lund2013-image-test (see Table 4).
Neither MNH nor NH2010 are able to cope with such noise,
while both machine learning approaches seem to perform
reasonably well (probably because they have seen data with
such noise levels during training). Another area where the
machine learning approaches are seen to excel is in PSO
detection. Both gazeNet and IRF score better at detecting
PSO events than the threshold-based MNH and NH2010.

We have also evaluated how the five algorithms perform
on our synthetic dataset (genSet) that we used to train
gazeNet. Compared to the lund2013-image-test scores,
results for genSet show that overall, all five algorithms
perform worse, which suggests that genSet differs from real
human eye-movement data. However when compared to the
results in other datasets, the obtained scores are still within
a reasonable range. The final performance of the gazeNet
algorithm on lund2013-image-test dataset is evidence that
training on the imperfect genSet still leads to excellent
detection performance for the final algorithm.

Discussion and conclusions

The main purpose of this work was to build the first fully
end-to-end event detector for eye-movement classification.
Our network takes raw differentiated eye-tracking data
(sample-to-sample offset) as input and classifies it into
fixations, saccades and post-saccadic oscillations without
any post-processing. It consists of 2 convolutional layers
followed by 3 bi-directional recurrent layers and a fully
connected layer on top. The convolutional layers are meant
to extract deep features from the raw input data, while the
recurrent layers model event sequences and are responsible
for detecting onsets and offsets of fixations, saccades and
PSOs. Finally, the fully connected layer outputs probabilities
of each sample being a fixation, saccade or PSO. Because
we use simple numerical differentiation without any
filtering, in contrast to Hoppe and Bulling (2016), our data
are still raw and therefore our approach is completely end-
to-end, i.e., no hand-crafted features with settings such as
the number of FFT components were required.

The job given to gazeNet was to replicate the hand-
coding produced by a human expert, and it came very close.
The output of the resulting event detector is on par with the
event classification of the two human expert coders at the
sample and event levels, as measured by Cohen’s kappa, the
SER and EER measures (based on Levenshtein distances),
and the RTO and RTD analyses proposed by Hooge et al.
(2017). We know from Andersson et al. (2017) and Hooge
et al. (2017) that hand-coded data represent neither the
gold standard, nor the objective truth on what fixations
and saccades are. Agreement between coders is nowhere
close to perfect, most likely because expert coders often

have different conceptions of what constitutes a fixation, a
saccade or another event in data. For instance, Hooge et al.
(2017) show that differences in onset and offset of fixations
can be up to 20 ms for different coders. Importantly, in all
discernible aspects, gazeNet is well within the variation of
classification performance of the 12 coders in Hooge et al.
(2017), and even similar to the variation in coding between
the two very similar coders RA and MN, who were both
medians in the data from Hooge et al. (2017).

A major challenge with deep learning and machine
learning in general is the unbalanced occurrence of the
sample classes. Figure 8 illustrates the accuracy paradox:
confusion matrices show that expert coders, as well as
gazeNet are best at labeling fixation samples. However, this
is because the majority of samples belong to fixations, and
therefore, a given number of misclassified fixation samples
have a lower effect on the final score, compared to the
same number of misclassified saccade or PSO samples.
This needs to be taken into account when training similar
event detectors. To alleviate the problem of the unbalanced
input, we first made sure that our generative network sees
more saccade and PSO samples than there originally were
in the training data. And second, we used a weighted
cross-entropy loss function when training gazeNet, and
evaluated the detector’s performance with measures that do
not suffer from the accuracy paradox— sample and event
level Cohen’s kappa.

Our algorithm importantly shows that hand-crafting
features is not necessary for event detection. It is
fully possible to build an event detector with excellent
performance without introducing any intricate calculations
or overt thresholding on the original signal, as was the
established practice from Boyce (1967) until the present
day. In contrast, the only thing required for the featureless
event detection paradigm we introduce here is labeled eye-
tracking data. As such, when trained properly using a wide
range of different data, a machine learning-based event
detector can generalize well to data of different sampling
frequencies and noise levels (Zemblys et al., 2018), still
without the need to pre- or post-process data or manually
set thresholds. The only bottleneck in achieving this is
the availability of training data, everything else required
is available: various machine learning algorithms and deep
network architectures each best suited to specific tasks, a
powerful hardware and software ecosystem (e.g., nVidia’s
CUDA, Google’s TensorFlow, PyTorch, etc.) and a fast-
growing machine learning community (Grace, Salvatier,
Dafoe, Zhang, & Evans, 2017).

Producing this new event detector would have been
almost prohibitively costly (in time) if we would have
had to hand-code all of the 5h26min data that were used
as input into the training phase. Needing only 44s of
hand-coded data made it practical. We showed that a
recurrent neural network can be trained to generate new
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labeled eye-movement data with very similar properties as
the original data that it learned from: Fixation and saccade
properties of the synthetic data are largely the same as in
the hand-coded data we started with, and even the nature
of the noise in the signal—the %MDS value (Holmgqvist
et al.,, 2017)—is almost identical to that of the original
data. Having the possibility to replicate hand-coded data
and radically magnify the training set will open up the
possibility to train many more event detection algorithms
using this paradigm.

Interestingly, despite being trained on coder RA’s data, at
the event-level gazeNet agrees somewhat more with coder
MN, especially in PSO detection (see Table 7). Figure 9
also shows how gazeNet agrees with human coders to the
same level as expert coders between each other for fixations
and saccades, but not PSO classification. The two expert
coders find 18 and 27 PSOs that are not present in other
coder’s data (false positives), while gazeNet identifies 37
and 28 false-positive PSOs when compared to expert coders.
This suggests that even human experts show considerable
disagreement when coding PSOs and underscores the point
that more work is needed to enable improved PSO detection.

Any coder uses his/her knowledge about eye-tracking
data (supplemented by whatever background this researcher
has) to label the fixations, saccades and other events in the
eye-tracking data. Their decision processes are likely to be
governed by some set of decision rules, possibly including
thresholds, that the coders apply. However, we cannot know
what goes on in the minds of coders, and even if they would
introspectively ask themselves what they are doing, and
come up with the answer that they employ certain thresh-
olds, why should we trust that introspection? Even if
internal thresholding rules are applied, how do we know
whether they apply them consistently? We can only
measure how similar each coder is to the output of the
algorithm. However, the machine-learning algorithm has
the advantage that during learning it sees a lot of instances
of an event and thereby likely generates a more average
and generalized representation of an event by removing
some of the idiosyncratic event-to-event variation found
in the human coding, but possibly also losing some of its
situation-adaptiveness. By directly learning the appear-
ance of an event according to the labeled training data,
machine learning algorithms are able to agree more closely
with human coders than conventional algorithms as shown
in Table 8. The results in this table further suggest that
although it is possible to tweak a conventional algorithm to
work well for certain data and event types, when it comes to
difficult cases such as PSO detection, machine learning
based algorithms markedly outperform the conventional
algorithms and are capable of better capturing the nature of
the event as specified by the human coders in the training
data.
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The results presented in this paper indeed support the
intriguing suggestion that during the training, gazeGenNet
and gazeNet developed a generalized representation of the
eye-movement events present in the training data. First, the
main sequence relationship for the saccades in the data
generated by gazeGenNet is closer to that of the validation
and testing sets, than to that of the training data (see
Fig. 4). This suggest that our training set (coded only
by coder RA) is somehow different from the validation
and testing sets (coded by both RA and MN) but that
these differences are overcome by gazeGenNet. Second, for
gazeNet, it was surprising to see that its coding output at
the event level agreed more with human coder MN than
with human coder RA on whose coding the algorithm
was trained (see Table 7). This suggests that gazeNet
learned something about the data that was not contained
in RA’s codings, but was present in MN’s. Moreover, the
evaluation of gazeNet on two other datasets, GazeCom
and humanFixationClasification, showed that gazeNet is not
only able to generalize to unseen data with other qualities,
but also agreed more with the hand-coding provided in these
dataset than the other event detection algorithms.

If there is some truth in the hypothesis that machine
learning algorithms are able to learn generalized event rep-
resentations that perhaps emphasize some basic underlying
properties of the data, then it opens the question how noisy
the hand-labeled training data can be, in order to still be
able to learn an event detector from it that is capable of
producing a good event classification. It is quite possible
that we do not need experts to code the data, but instead
any person with a few minutes of training can code eye-
movement data to a sufficient standard that it can be used
for training an event detector through deep learning or other
machine learning techniques. If so, we can make use of
crowd-sourcing platforms to get huge amounts of possi-
bly noisily coded data, but good enough to still train a
well performing event detector. Another option could then
be to use unsupervised approaches (e.g., Houpt, Frame,
& Blaha, 2017), or in fact any other, good enough event
detection algorithm, or an ensemble of algorithms, to pro-
duce pseudo-labels for training data. In either case, the
classifier trained on such data would need to be evalu-
ated by human experts to judge how well such classifier is
performing.

Future work

Besides fixations, saccades and PSOs, there are plenty of
other events in eye-movement data waiting to be detected
algorithmically. Nystagmus and smooth pursuit are classic
problems for feature-based algorithms, with only a few
specifically tailored algorithms existing that are able to
deal with these events (see for example Komogortsev &
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Karpov, 2013; Larsson et al., 2013, 2015) for pursuit
and Juhola (1988), Turuwhenua, Yu, Mazharullah, and
Thompson (2014) and Sangi, Thompson, and Turuwhenua,
(2015) for nystagmus detection). A major challenge to the
field is to produce an algorithm that codes events from
head-mounted eye trackers, or eye trackers integrated in
head-mounted display used for virtual reality, given that the
data recorded with such systems contains a rich mixture of
head and eye movements. Based on the recurring finding
that PSOs are already quite a difficult event to classify
consistently by a feature-based algorithms despite only
involving an eye-movement data stream, we think that
especially these situations involving further data streams
(e.g., accelerometer, eye video, etc.) become too complex to
write a hand-crafted algorithm for. We thus expect that the
machine learning approach we present here is the method to
pursue for producing an event detector that can deal with all
these events at once.

A second important direction for future work is to further
develop techniques suitable for generating labeled eye-
tracking data. The current work was only possible due to
gazeGenNet extending the length of the training set by
450 times, thereby solving the problem that deep learning-
based event detectors need a large amount of training data.
As this problem is expected to get only larger as more
complex event detectors involving more event classes and
data streams are developed, we expect that improvements of
gazeGenNet will prove to be an important area of research.
However, even when generating the training set, a common
challenge for both traditional and machine learning-based
methods that remains, is obtaining reliably coded eye-
tracking data, on which the data generator can be trained
and on which created algorithms can be tested. Given that
we see that even expert coders have trouble coding PSOs in
raw data, it would be not unlikely that coders will have even
more trouble labeling fixations or smooth pursuit mixed
with head movements, vergence, OKN, VOR and other
complex eye-movements.

Conclusions

In summary, we have shown that an event detector
constructed through deep learning based on only a few short
segments of hand-coded data and working autonomously
without the need of predefined feature extraction or post-
processing nor the need to set any thresholds can perform as
well as human expert coders in coding fixations, saccades
and PSOs. This shows that constructing event detectors
through machine learning is a promising approach for the
future, and can hopefully enable the creation of event
detectors that can deal with more types of eye movements
simultaneously than a hand-crafted algorithm ever could.

There is however a trade-off made when choosing the
machine learning approach over the traditional approach
of hand-crafting an event detector. Hand crafting provides
the researcher with insight into how the resulting events
are defined in terms of signal properties of the underlying
eye-movement data. This insight is lost with the machine
learning approach, which produces an event detector that
is essentially a black box. Yet, the aim of performing
event detection for the vast majority of researchers using
eye tracking is to get properly labeled fixations, saccades
and other events that they can then use as the basis of
their analyses. Therefore, outside of the small crowd of
researchers that may be somewhat unsatisfied with the
machine learning approach because of their interest in
event detection techniques and the signal properties of
eye-tracking data, for the vast majority of researchers the
machine learning approach is a valuable and, as we show
here, a very well performing method of event detection.

How to use this algorithm

This paper primarily presents the algorithm as a proof of concept,
and is not to be understood as an off-the-shelf algorithm
that can be employed instantly with no preparation and no
understanding of how it works. Readers who prefer to con-
trol thresholds and explore their effect on event detection
should use another algorithm or implement a post-processing
procedure that, for example, removes saccades with an
amplitude below a certain threshold or fixations below a
certain duration. That said, we do provide code for gazeNet
(https://github.com/r-zemblys/gazeNet) and
gazeGenNet (https://github.com/r-zemblys/gaze
GenNet), along with trained models, and the reader is free
to use it. We recommend carefully evaluating whether the
detector provides satisfactory results on the reader’s partic-
ular dataset. Be advised that this particular classifier only
labels eye-tracking data as fixations, saccades and PSOs,
therefore if the data contain other events, like smooth-
pursuit, blinks, etc., these need to be removed first, or
preferably, we encourage users to train their own classifiers
on their own data following the framework set out in this
paper. Our responsibility is to build the method and show
that it is a viable avenue for developing eye-movement
event detectors, and the responsibility of the user is to make
sure that their use of our framework, code or classifier is
appropriate for their data.

Acknowledgements We thank Richard Andersson and Marcus
Nystrom for making their manually labeled eye-tracking data publicly
available. We also express our gratitude to two anonymous reviewers
for providing useful comments and suggestions on earlier versions of
this manuscript.

@ Springer


https://github.com/r-zemblys/gazeNet
https://github.com/r-zemblys/gazeGenNet
https://github.com/r-zemblys/gazeGenNet

860

Behav Res (2019) 51:840-864

Appendix A: Training, validation and testing
data sets

Table 9 List of files in Lund2013-image dataset and their assignment
to the training, validation and testing sets

trainSet
TH38_img_Europe_labelled_RA
TH46_img_Rome_labelled_RA
TH50_img_vy_labelled_RA
TL44_img_konijntjes_labelled_RA
TL48_img_Europe_labelled_RA
TL48_img_Rome_labelled_RA

valSet RA
UH27_img_vy_labelled_RA
UH29_img_Europe_labelled_RA
UHA47_img_Europe_labelled_RA

valSet MN
UH27_img_vy_labelled_ MN
UH29_img_Europe_labelled_MN
UHA47_img_Europe_labelled_MN

testSet RA
TL28_img_konijntjes_labelled_RA
TH34_img_Europe_labelled_RA
TH34_img_vy_labelled_RA
TL20_img_konijntjes_labelled_RA
UH21_img_Rome_labelled_RA
UH33_img_vy_labelled_RA
UL23_img_Europe_labelled_RA
UL31_img_konijntjes_labelled_RA
UL39_img_konijntjes_labelled_RA
UL43_img_Rome_labelled_RA
ULA47_img _konijntjes_labelled_RA

testSet MN
TL28_img_konijntjes_labelled_MN
TH34_img_Europe_labelled_-MN
TH34_img_vy_labelled_-MN
TL20_img_konijntjes_labelled_MN
UH21_img_Rome_labelled_MN
UH33_img_vy_labelled_ MN
UL23_img_Europe_labelled_-MN
UL31_img_konijntjes_labelled_MN
UL39_img_konijntjes_labelled_MN
UL43_img_Rome_labelled_MN
ULA47_img _konijntjes_labelled_MN
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Appendix B: Labeling mistake correction

We found an obvious labeling mistake in the one of the
validation trials (file UH29_img_Europe_labelled_MN. We
fixed this error by reassigning 75 samples, [3197,3272)
(zero-based index), from the saccade to the fixation class.
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Gaze position, degrees
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rixed [N

Fig. 11 Data fix in UH29_img_Europe_labelled_MN file. Top scarf
plot - original classification by the expert, bottom scarf plot - fixed
classification. Blue, red, and green patches are fixations, saccades,
and PSOs, blue and red lines are horizontal and vertical gaze data,
respectively. Ticks on the horizontal axis denote 100-ms intervals

Appendix C: Unclear PSO case

Figure 12 shows an example of an unclear PSO case. The
expert classified the downward movement as a PSO, while
gazeNet does not tag a PSO here and classifies all high
velocity data as a saccade.
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Fig. 12 Example of an unclear PSO case. The red circle denotes the
saccade onset, as tagged both by expert RA and gazeNet. The green
star and magenta x identify the saccade and PSO offsets according to
the expert coder. The blue square shows saccade offset according to
gazeNet
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Appendix D: Synthetic data examples
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Fig. 13 Randomly selected examples of synthetic eye-tracking data. Horizontal (blue) and vertical (red) trials over time on the left, and a scanpath

on the right

Appendix E: Examples of PSO codings

Figures 14, 15, 16 and 17 show position over time and 2D
scanpath plots of example cases where gazeNet does not
agree with expert coders in PSO classification. In each of
the scarf plots, blue, red and green patches are fixations,
saccades and PSOs. Blue and red lines in the position over
time plots are horizontal and vertical gaze data, respectively.
Ticks on the horizontal time axis denote 20-ms intervals.

The red circles in the scanpath plots indicate the beginning
of the example trials (plotted in gray), while thick colored
lines connect onsets and offsets of PSOs as labeled by
gazeNet and two expert coders. These examples are meant
to illustrate how complex the eye-tracking data are and to
allow the reader to form their own opinion of whether they
agree more with how the human coders or how gazeNet
have tagged the PSOs. The mean was removed from both
channels of each segment for illustration purposes.
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