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Abstract
Researchers often focus on bivariate normal correlation (r) to evaluate bivariate relationships. However, these techniques assume
linearity and depend on parametric assumptions. We propose a new nonparametric statistical model that can be more intuitively
understood than the conventional r: probability of bivariate superiority (PBS). Our development of Bp, the estimator of a PBS
relationship, extends Dunlap’s (1994) common-language transformation of r (CLr) by providing a method to directly estimate
PBS—the probability that when x is above (or below) the mean of all X, its paired y score will also be above (or below) the mean
of all Y. Probability of superiority is an important form of bivariate relationship that until now could only be accurately estimated when
data met the parametric assumptions for r. We specify the copula that forms the theoretical basis for PBS, provide an algorithm for
estimating PBS from a sample, and describe the results of a Monte Carlo experiment that evaluated our algorithm across 448 data
conditions. The PBS estimate, Bp, is robust to violations of parametric assumptions and offers a useful method for evaluating the
significance of probability-of-superiority relationships in bivariate data. It is critical to note thatBp estimates a different form of bivariate
relationship than does r. Our working examples show that a PBS effect can be significant in the absence of a significant correlation, and
vice versa. In addition to utilizing the PBS model in future research, we suggest that this new statistical procedure be used to find
theoretically important but previously overlooked effects from past studies.
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The need for statistical literacy—described as Bthe ability to in-
terpret, critically evaluate, and communicate statistical informa-
tion and messages^ (Gal, 2002, p. 1)—is receiving growing
worldwide attention. The United Nations Economic
Commission for Europe (2009) published A Guide to
Improving Statistical Literacy, a manual aimed at promoting sta-
tistical literacy among researchers, educators, businesses, policy
makers, and the general public, and in 2010 the Royal Statistical
Society launched getstats, a 10-year statistical literacy campaign.

Despite calls for statistical literacy, most statistical models used
today (e.g., correlation and its generalized forms, such as regres-
sion) in health, business, education, and behavioral research are
difficult for many people to understand (e.g., Brooks, Dalal, &
Nolan, 2014; Dunlap, 1994). Lack of statistical literacy is partly
responsible. But the complexity of statistical models and the
statistical jargon used by researchers must also bear some of
the blame.

Correlational analysis is one of the most commonly used
statistical techniques, and it exemplifies the latter problem.
Although it is arguably among the least complex statistical
models used by researchers, correlation is not conducive to intu-
itive understanding. Consider, for example, a correlational anal-
ysis that shows a significant positive correlation between physi-
cal exercise and mortality, with a correlation estimate of r = .60.
The squared value, r2 = .36, can be interpreted to mean that 36%
of the variance in mortality can be explained by variance in
physical activity. This description does not facilitate an intuitive
mental picture of the important relationship between physical
activity and mortality. The underlying statistical jargon,
Bproportion of variance explained,^ is not easily understood by
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members of the public, policy makers, and public officials (May,
2004). Even some researchers in psychology may not be com-
fortable with this kind of statistical terminology (Brooks et al.,
2014).

In addition, correlational analysis is problematic under many
common conditions. Although the most commonly used method
for estimating correlation, Pearson’s r, is well-defined when the
means and variances of X and Y are well-defined (e.g., Hogg &
Craig, 1971), drawing a valid inference from the interpretation of
r becomes less probable when the conditions of linearity, bivar-
iate normality, and no outliers are violated (Onwuegbuzie &
Daniel, 2002). Such condition violations are common in many
research domains (e.g., engineering psychology: Bradley, 1982;
educational and clinical psychology: Micceri, 1989), making
correlational analysis, and parametric statistics in general, insuf-
ficient in many cases. Consequently, there have been increasing
calls for the use of nonparametric statistics (Leech &
Onwuegbuzie, 2002), going at least as far back as Siegal’s
(1956, p. vii) observation that Bnon parametric techniques of
hypothesis testing are uniquely suited to the data of the behav-
ioral sciences.^

Researchers recognize multiple ways in which two continu-
ous variables can be meaningfully related. Two general forms of
relation are commonly evaluated: linearity and monotonicity. By
definition, a monotonic relationship between X and Y indicates
that the direction of change in Y when X changes is preserved
across levels of X. Linear functions are monotonic. Other exam-
ples of monotonic functions are exponential function when the
exponent is odd [e.g., X = Y3, X = Y5, or X = ln(Y)]. It is generally
suggested (e.g., Howell, 2013; Wilcox, 2012) that researchers
use r for detecting linear relationships between X and Y and use
nonparametric correlations (e.g., Spearman’s rank correlation, rs;
Kendall & Gibbons, 1990) for detecting nonlinear monotonic
relationships.1

Perhaps less well-known are the nonparametric methods
available to estimate other forms of bivariate relationships.
Generally, methods for detecting nonlinear monotonic bivariate
relationships are even more complex and less understandable
than correlation. Researchers need statistical methods that will
allow them to make valid inferences from their data while still
enabling them to communicate their analysis in a manner con-
ducive to knowledge mobilization. What, then, is the solution?

We aim to contribute to such a solution by introducing a new
statistic that can be more easily understood than correlation and
is robust to common violations of parametric assumptions.
Probability of bivariate superiority (PBS) is a nonparametric
procedure for directly estimating the probability of superiority
in a bivariate relationship between two continuous variables.

The resulting effect size, Bp, is a common-language effect size
estimate of the probability that a respondent who scores high (or
low) onXwill also score high (or low) on Y. Common-language
effect sizes like Bp are interpreted using language that is more
familiar to and more intuitively understood by people without a
statistical background (Brooks et al., 2014).

Until now, nonparametric common-language effect sizes
(Vargha & Delaney, 2000) have been applied mostly to
between-group comparisons. McGraw and Wong (1992) in-
troduced a common-language effect size (CL), interpreted as
the probability that a score sampled at random from one group
will be larger than a score sampled at random from the other
group. Grissom (1994) coined the term probability of
superiority to appropriately describe the relationship estimat-
ed by CL, and Vargha and Delaney introduced the
nonparametric estimator A of this probability. Dunlap (1994)
derived the formula to convert r to a common-language effect
size (CLr) that describes the probability that when an x score is
above (or below) the mean of all X, its paired y score is above
(or below) the mean of all Y. With these developments, the
common-language probability-of-superiority approach has
started to gain traction in psychology and other disciplines
(e.g., biology: Ling & Nelson, 2014; education: Huberty, &
Lowman, 2000).

In this article we introduce Bp, a nonparametric extension
of CLr. It is important to note that Bp depends upon neither
linearity, as r does, nor monotonicity, as rank correlation does.
Probability of superiority in a bivariate relationship can exist
and can be appropriately interpreted independent of there be-
ing a linear or monotonic relationship between X and Y. Bp

does not rely on the parametric assumptions upon which r and
CLr depend and that are commonly violated in real-world
research. But likeCLr, it is an effect size that can be interpreted
as a likelihood, making it easier to understand (Brooks et al.,
2014).

Like correlation, PBS indicates correspondence between X
and Y scores but does not imply causation. PBS does, howev-
er, make a practically important relationship between X and Y
easier to interpret. For example, rather than trying to compre-
hend that 36% of the variance in mortality can be explained by
variance in physical activity, it is easier to understand that
there is a 70% likelihood that seniors who exercise more than
1 hour per day (national average) will live longer than 81 years
(national average). Not only is this likelihood description eas-
ier for most people to understand, it also communicates con-
crete guidelines for a recommended course of action (exercise
more than 1 hour daily) and why to do it (increased chance of
living longer than 81 years). Practically speaking, understand-
ing the nature of the relationship between lifestyle choices and
health may increase seniors’ willingness to make beneficial
lifestyle changes.

The probability of superiority in bivariate relationships has
received little attention, despite calls from researchers in other

1 Technically speaking, even if X = Y3, this does not indicate the absolute lack
of a linear relationship between X and Y. One could describe the relationship as
being approximately linear, although this would produce more error than using
a cubic relationship or a robust correlation (e.g., rank correlation).
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disciplines (e.g., Nelson, 2006). In the remainder of this arti-
cle, we begin to fill this gap. In the sections that follow, we (a)
discuss how linearity can be estimated by r, monotonicity
estimated by nonparametric correlations, and PBS estimated
by common-language effect sizes (CLESs); (b) review the
common-language effect sizes and Dunlap’s (1994) CLr; (c)
explain the copula for the probability of bivariate superiority
(γ) that is estimated by CLr when the assumptions for r are
met; (d) introduce our common-language effect size, Bp, for
estimating a PBS relationship; (e) describe the PBS algorithm
we have developed to directly compute Bp as a robust estima-
tor of γ; (f) describe our Monte Carlo experiment and the
resulting evidence of the robustness of Bp; and (g) demon-
strate the application of PBS using both a simulated dataset
and real data. Finally, we offer a general discussion of the
implications of PBS for past and future research in the behav-
ioral and social sciences.

Linearity measured by Pearson’s correlation
coefficient r

In 1895, Karl Pearson (1895) presented the algorithm for a
ground-breaking statistical concept, Pearson’s correlation co-
efficient r, which can be used to assess the degree and direc-
tion of linear association between two continuous variables.
Since its development, r and its generalized forms (e.g., mul-
tiple correlation, R in regression) have been widely employed
in behavioral and social sciences. According to Rodgers and
Nicewander (1988), r (and its related concepts) is undoubtedly
one of the most revolutionary mathematical and statistical
procedures in the 20th century. Many commonly used statis-
tical models have been developed on the basis of the concept
of r, including its generalized forms (e.g., multiple regression,
structural equation modeling), robust forms (e.g., Spearman’s
correlation, Kendall’s tau correlation), and its extended appli-
cations (e.g., mediation models, reliability assessment). In
equation, r is an estimator for the linear association between
X and Y, when X and Y are linearly related (Hogg & Craig,
1971), which can be expressed as

ρ ¼ E X−μXð Þ Y−μYð Þ½ �
σXσY

; ð1Þ

where ρ is the population correlation coefficient, E[(X
− μX)(Y − μY)] is the expected value of the multiplicative
scores of (X − μX) and (Y − μY), μX is the population mean
of X, μY is the population mean of Y, σX is the population SD
of X, and σY is the population SD of Y. In practice, the pop-
ulation values are replaced with the sample values in Eq. (1)
for estimating the sample correlation r. Possible values of r
range from – 1 to + 1 (i.e., perfect-negative to perfect-
positive linear correlation).

Linearity is the central property of the relationship that r
describes. Theoretically speaking, and as is implied in Eq. 1,
the correlation coefficient r is well-defined as long as the
means and variances of X and Y are well-defined, regardless
of their distributional characteristics. However, Hogg and
Craig (1971) stated that the correlation coefficient r proves
to be a useful estimator for linear relationship only for certain
kinds of distributions of two random variables. Figure 1 shows
scatterplots of 100 simulated X scores coming from normal,
uniform, positively skewed, and negatively skewed distribu-
tions, and of the 100 simulated Y scores conditional on the X
scores, based on the linear correlation value r = .80. Although
the correlation coefficient r can reliably describe and measure
how the X and Y scores concentrate in a line, in some scenarios
(e.g., positively skewedX) the locations of extreme X–Ypoints
on the X–Y plane may not be meaningful. This is because the
linear relationship may be overstated, given that the majority
of other points are relatively spread apart or unrelated, and
there is a line that connects these points with a few outlier
points on the X–Y plane. Hence, the correlation coefficient r
is more useful when X and Y are symmetrically distributed
(e.g., normal, uniform) than when X and Yare asymmetrically
distributed, despite the fact that Bthe formal definition of ρ
does not reveal this fact^ (Hogg & Craig, 1971, p. 74).

Furthermore, when the relationship between X and Y is not
linear (e.g., quadratic, cubic, quartic, or quintic), correlational
analysis can lead researchers to inaccurate inferences. Figure 2
shows 10,000 normal X and normal Y that perfectly follow
quadratic, cubic, quartic, and quintic bivariate relationships,
respectively. For the quadratic data, r = .009; for cubic, r =
.780; for quartic, r = .027; and for quintic, r = .512. If r is
found to be statistically significant, a researcher may incor-
rectly infer that a linear relationship does exist (see note 1
above). If r is found to be not statistically significant, a re-
searcher may incorrectly infer that there is no important rela-
tionship between the variables. This could explain why many
applied statisticians and methodologists suggest that r should
only be used to detect the direction (positive/negative) and
magnitude of a linear relationship between X and Y when X
and Y form a bivariate normal distribution (e.g., Howell,
2013).

Limited interpretability It took the publication of Cohen’s
(1988) highly influential text for meaningful interpretation of
r to be appreciated in the dissemination of research findings.
Cohen’s guidelines used the concepts of proportion of vari-
ance explained and coefficient of determination, and he sug-
gested rough categorical guidelines for the treatment of r as an
effect size. For example, consider the relationship between
academic achievement, measured using college GPA, and stu-
dents’motivation. A computed correlation between these two
variables, r = .30, can be interpreted by first computing its
squared value (r2 = .09). The r2 value can in turn be interpreted
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to mean that 9% of the variance in GPA can be explained by
variance in motivation. In this case, .09 is the coefficient of
determination. Despite Cohen’s efforts, r2 (or r) arguably re-
mains one of the most confusing statistical concepts in behav-
ioral and social research.

According to May (2004), three guidelines are essential for
better disseminating statistical information: understandability,
interpretability, and comparability. Understandability is en-
hanced when statistics are presented in plain language, with-
out statistical jargon and assumptions. Interpretability requires
the metric of a statistic to be familiar and easily understand-
able by the public. Comparability demands that a statistic be
compared directly, without any need for manipulation and
modification. Correlation meets this last requirement only,
but it is certainly deficient in terms of understandability and
interpretability.

In light of the difficulty with understanding and interpreting
r, Brooks et al. (2014) conducted two experiments in which
they recruited undergraduate students and asked them to rate
statistical information on the basis of the three criteria of un-
derstandability, usefulness, and effectiveness. The statistical
information was presented as (a) proportions of variance ex-
plained (or the coefficient of determination; r2), (b) probability-

based common-language effect sizes (CL), and (c) tabular bi-
nomial effect size displays (BESD). Participants perceived
both CL and BESD as significantly more understandable and
useful than r2. Referring back to May’s (2004) guidelines, it
easy to appreciate why the proportion of variance explained
was not preferred: It is difficult to understand because it is pure
statistical jargon that is challenging to interpret.

The interpretative challenge is especially problematic when
Cohen’s (1988) effect size guidelines are applied. For exam-
ple, r2 = .09, interpreted as 9% of variance explained, is con-
sidered a medium effect size. But a person not fully comfort-
able with statistical terminology may justifiably conceive of
9% as a very low proportion, making any reference to it as a
medium effect size confusing and perhaps even perceived to
be misleading. Using a metric with these weaknesses can
compromise attempts to disseminate findings. Despite the
aforementioned weaknesses, r remains a commonly used
measure of correspondence between X and Y scores.

When interpreted strictly as an indicator of directionality of
Y to X correspondence, r is less difficult to understand. It is
apparent from the sign of rwhether Y increases or decreases as
X increases. Unfortunately, such simplified interpretation has
distinct disadvantages. First, it ignores the magnitude of the

Fig. 1 Scatterplots for linear-based X–Y space with a normal, a uniform, a positively skewed, and a negatively skewed distribution, when the true
correlation coefficient is .80
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relationship, making it difficult to evaluate the importance of
the relationship. Second, inferences based on this simplified
interpretation remain subject to error when the true relation-
ship is not linear. For example, when X and Y are related by a
quadratic function the simplified interpretation of r can lead to
the incorrect inference that Y neither increases nor decreases as
X increases, when in fact it does both.

Monotonicity measured by nonparametric
correlations

Commonly used nonparametric alternatives to r are
Spearman’s rho, Kendall’s tau, and robust regression. These
alternatives depend onmonotonicity, but not linearity, and can
still be interpreted as estimates of correspondence. In the case
of Spearman’s rho, the coefficient of determination describes
the proportion of variance in ranks of Y scores explained by
variance in ranks of X scores. Kendall’s tau measures the
number of concordant X–Y pairs relative to the number of
discordant pairs. Robust regression provides a robust correla-
tion estimate derived from the slope estimated by fitting a
robust regressionmodel between X and Y. The correspondence
described by r is between scores of X and Y, whereas the
nonparametric alternatives describe correspondence of a dif-
ferent nature, complicating interpretation. Nevertheless, re-
searchers may be tempted to interpret the nonparametric sta-
tistics as describing a linear relationship, even if it is not

between the scores themselves, an error that could be just as
misleading as interpretation of r when a linear relationship
does not exist (Wilcox, 2012).

PBS measured by common-language effect
sizes (CLESs)

Parametric CLESWolfe and Hogg (1971, p. 30) observed that
probability estimates are statistics that Bfrequently make more
sense to the consumers of statistical studies than do the statis-
tics that are now reported in the literature.^ Their leading
example was the probability that an X score is greater than a
Y score. On the basis of this work, McGraw and Wong (1992)
proposed that this probability be formalized as a common-
language effect size (CL). Let {X i∼N μi;σ

2
i

� �
; i = 1, 2} be

jointly normally and independently distributed random vari-
ables that represent responses to two conditions (e.g., treat-
ment and control). McGraw and Wong’s CL is the sample
estimator for P(X1 > X2). In equation,

CL ¼ Φ X 1−X 2

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22

q� �
; ð2Þ

where X 1−X 2

� �
is the sample mean difference, s2i is the sam-

ple variance for Group i = 1, 2, and Φ is the standard normal
distribution function. Simply put, CL describes the estimated
probability that a score sampled at random from distribution 1

Fig. 2 Scatterplots and observed correlation coefficient rs for quadratic, cubic, quartic, and quintic bivariate X and Y
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will be larger than a score sampled at random from distribu-
tion 2. For example, there is a 70% likelihood that a randomly
selected treatment group participant performs better on a cog-
nitive ability test than a randomly selected control group par-
ticipant. A CL value of .5 indicates stochastic equivalence
between the two distributions. A value of 1 implies perfect
stochastic superiority of one distribution over another.
Grissom (1994) derived additional techniques to estimate
P(X1 > X2) under various conditions and adopted a fitting label
to describe this likelihood: probability of superiority.

Nonparametric CLES Vargha and Delaney (2000), expanding
on work pioneered by Cliff (1993), later developed a robust
estimator (A) of CL. This development enabled application of
the useful and understandable common-language probability-
of-superiority conceptualization to data that do not meet para-
metric assumptions:

A ¼ ∑n1
i¼1∑

n2
j¼1# y1 ið Þ > y2 jð Þ½ � þ :5# y1 ið Þ ¼ y2 jð Þ½ �

n o
=n1n2; ð3Þ

where # is the count function, y1(i) and y2(j) are the ith and jth
observations of Y in Groups 1 and 2, respectively, and ni is the
size for Group i = 1, 2.

CL and its derivatives are becomingmorewidely employed
(Brooks et al., 2014; Cliff, 1993; Li, 2015; Ruscio, 2008) in
behavioral and social sciences research situations involving
one nominal variable and one dependent variable. In particu-
lar, A has been identified as especially useful because it is
robust to violations of parametric conditions assumed in CL
(Ruscio, 2008) and it exhibits characteristics May (2004) has
identified as important for effective dissemination of statistical
information: understandability, interpretability, and
comparability.

A CLES for continuous bivariate data Recognizing that
understandability and interpretability were lacking in r,
Dunlap (1994) proposed an extension of the common-
language conceptualization of effect size to research scenarios
involving two linearly related bivariate normal variables (i.e.,
the case in r). Dunlap’s proposal utilized Sheppard’s theorem
(Kendall & Stuart, 1977) to convert r to a common-language
effect size estimate,

CLr ¼
h
sin−1 rð Þ=π

i
þ :5; ð4Þ

where sin−1 is the inverse sine function and π is a constant (≈
3.14159; for a mathematical proof, see the Appendix). For
example, instead of saying that 16% (r2 = .16) of variance of
sons’ heights is explained by variance in a fathers’ heights,
one can state that Ba father who is above average in height has
a 63% likelihood of having a son of above-average height^
(Dunlap, 1994, p. 510). Following Grissom’s (1994) lead, we
describe this likelihood as the probability of bivariate

superiority (PBS) and label the resulting parameter γ. We
can formalize Dunlap’s (1994) conception of CLr and of
PBS as

γ ¼ P Y > Y ∩X > X
� �

ð5Þ

where ∩ refers to the intersect function, meaning that both the

conditions of Y > Y and X > X should be met for the joint
probability of γ. In practice, researchers may not have a full
dataset from the entire population, and Bp is denoted as a
sample estimator for γ.

Understanding a bivariate relationship in terms of γ is
conceptually similar to Blomqvist’s (1950) q′ test of depen-
dence. Whereas γ is concerned with the distribution of XY
scores evaluated with reference to the mean values of X and
Y, Blomqvist’s procedure plots the bivariate data into four
quadrants according to the median values of X and Y. The
q′ test is based on the count of scores in each quadrant and
the resulting metric lies between – 1 and + 1, which brings
with it interpretive difficulties similar to r. When the condi-
tion of bivariate normality is met, the mean and median of X
are equal, and the mean and median of Y are equal. Under
these conditions CLr is mathematically equivalent to q’ (see
the Appendix) but is expressed as a likelihood for greater
interpretability.

It is apparent to us that Dunlap (1994) intended his exten-
sion of CL to CLr chiefly to improve understandability of
linear relationships by describing them in intuitive terms.
His work was a worthwhile undertaking and an impressive
innovation that opened the door to a new potential understand-
ing of bivariate relationships. CLr is a more understandable
way to describe the relationship between X and Y, as a proba-
bility of superiority, and it makes both the direction and the
magnitude of the relationship comprehensible. But CLr, like
q′, describes a different relationship than r, and does so in
terms that are unrelated to linear correspondence. In fact, read-
ing Dunlap’s description and looking at Eq. 5, it is apparent
that γ, and therefore CLr, describes a relationship that is not
necessarily linear. Nevertheless, Dunlap’s conversion formula
is based on the assumption that X and Y are linearly related,
and this limits its usefulness.

Equation 4 implies a dependence between the existence of
linearity and the existence of a probability-of-superiority ef-
fect. However, this implication may not hold. It is possible
for a probability-of-superiority relationship to exist between
X and Y in the absence of a linear relationship. Figure 3
depicts two idealized plots of the probability of bivariate
superiority. Plot 3.A.vii shows a perfect linear relationship
between X and Y (r = 1), which implies that a PBS relation-
ship exists, with Bp= CLr = 1. This example is congruent
with Dunlap’s (1994) assertion that linearity is sufficient
for a PBS relationship to exist. Plot 3.B.vii depicts a perfect
PBS relationship (Bp = 1) in which the underlying
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relationship between X and Y is not linear. This example
shows that a linear relationship is not a necessary condition
for a PBS relationship to exist.

Since Dunlap’s (1994) bold advance, there has been no
development of CLr as a measure of probability of supe-
riority in bivariate relationships independent from r. It is
worth speculating that Dunlap’s conversion formula could
be applied to nonparametric correlation coefficients when
the parametric assumptions for r are violated, but this
possibility has not previously been investigated. We tested
the usefulness of such an application in our Monte Carlo
experiment. Our central contribution is the introduction of
a method to directly estimate PBS in the absence of a
linear relationship.

Our proposed Bp: A nonparametric extension
of CLr

Taking inspiration from the work of Vargha and Delaney
(2000), who developed the robust estimator A for CL, we
have developed a robust estimator, Bp, of Dunlap’s (1994)
CLr. Bp estimates the magnitude of a PBS relationship be-
tween two variables, X and Y, without the restrictions of
bivariate normal correlation that are required for the conver-
sion in Eq. 4. Like CLr, Bp is conceptualized as the proba-
bility that when an X score is above (or below) the mean of
all X scores, its paired Y score is also above (or below) the
mean of all Y scores, as formalized in Eq. 5. When X and Y
follow a bivariate normal distribution and form a linear rela-
tionship, Bp directly estimates CLr without relying on a
transformation from r.

It is noteworthy that PBS is a special case under copula
theory. A copula is used to measure joint distributions of
two or more random variables (e.g., Botev, 2017; Jaworski,
Durante, Härdle, & Rychlik, 2010; Nelson, 2006). A review
of copula theory as it relates to bivariate relationships is be-
yond the scope of this article, so we refer the reader to Lai and
Balakrishnan (2009, chap. 2) for a review. In lay terms, a
copula is a statistical concept that explains how two variables
are related to each other. In the bivariate X–Y case, a copula
allows one to separate the joint X–Y distribution into two
sources: the marginal distributions of each variable, and the
copula that Bglues^ these variables into together. Linear asso-
ciation is only one example of many different types of
Bglues.^ As we noted above, limiting investigation of bivari-
ate relationships to the linear copula restricts the potential to
identify other bivariate relationship forms that may be practi-
cally and theoretically important. Researchers need accessible
methods to examine relationships described by a wide array of
copulas, including PBS.

Applying copula theory to Blomqvist’s (1950) Eq. 2, we
can define how the distribution of Y is glued to the

distribution of X. Replacing Blomqvist’s medians with
means in our division of quadrants, the copula determines
the probability that an XYpoint falls within a particular quad-
rant given a value of γ. Let Xi follow a probability distribu-
tion (e.g., normal, lognormal, uniform, etc.). There exists a
marginal probability distribution for Yi that is generated from
the following function:

Y i∼U μY ; cð Þ; if X i > μX andϱ ≤γ;
Y i∼U μY ; cð Þ; if X i > μX andϱ > γ;
Y i∼U −c;μYð Þ; if X i < μX andϱ≤γ;
Y i∼U −c;μYð Þ; if X i > μX andϱ > γ;
Y i ¼ μY ; if X i ¼ μX ;

ð6Þ

where c is the limit in a uniform distribution, μX is the pop-
ulation mean of X, μY is the population mean of Y, ϱ~U(0, 1)
follows a uniform distribution with min = 0 and max = 1, and
γ is the population PBS that relates X and Y. The generated ϱ
values control the likelihood that a simulated Y score is
above (or below) the mean of Y, when a simulated X score
is above (or below) the mean of X, so that Y is related to X for
a particular value of γ.

When the condition of bivariate normality is met, a cor-
relational estimate (r) can be translated into the more under-
standable PBS using Dunlap’s (1994) common-language
correlation transformation (CLr). To continue with the exam-
ple in our introduction above, if data for physical activity and
mortality meet the bivariate normality condition, then an
estimated r of .60 can be converted to the PBS estimate of
.705. Below we describe the algorithm by which this esti-
mate can be directly computed without reference to r. Use of
this algorithm makes it possible to directly compute the Bp

estimate and detect PBS-based relationships even when con-
version using CLr is also inappropriate, such as when bivar-
iate normality is violated. Thus, Bp provides a robust estima-
tor of the PBS-based relationship in the population, which
we label γ.

Figure 3 shows scatterplots for X and Y when (A) X and Y
are generated from the conventional condition of linearly
related X and Y that forms the bivariate normal correlation
(such that r can be mathematically linked to CLr in Eq. 4,
which estimates the probability in Eq. 5), and (B) X and Yare
directly generated from the PBS function (i.e., Eq. 6) without
the unnecessary condition of linearity. In other words, the
plots in column B show the relationship between X and Y is
based only on a level of γ, and the plots in column A dem-
onstrate the same type of PBS-based relationship between X
and Y when the condition of linearity is also met. Whereas
Dunlap’s (1994) CLr can accurately detect PBS if X and Yare
linearly related and follow bivariate normal distributions,
PBS-based relationships can exist when these conditions
are not met.
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As was noted by Reshef et al. (2011), a good statistic
for measuring dependence should possess two heuristic
properties—generality and equitability. Generality means
that a statistic should detect and measure a wide range
of possible associations between X and Y, not limited to
specific relationships (e.g., linear). Equitability means
that a statistic should give similar values Bto equally
noisy relationships of any types^ (p. 1518). In light of
these properties, we have developed a statistic (Bp; Eq.
7 below) for estimating the population PBS (γ) such
that it can detect and estimate PBS whether or not a
linear X–Y relationship exists.

First, we need an algorithm that can measure the
number of times that Y is above (or blow) the mean of Y
when the corresponding X score is above (or below) the mean
of X. The count function, # sign xi−�xð Þ⋅sign yi−�yð Þ > 0½ �,
serves this purpose. Second, there is a scaling algorithm,
0:5# sign xi−�xð Þ⋅sign yi−�yð Þ ¼ 0½ �; when xi−xð Þ and/or yi−yð Þ
equal to 0, then a .5 unit is assigned to the Bp calculation. The
purpose of this algorithm is to ensure that when there is zero
PBSrelationship for all theXandY scores, the summationof the
countwill become half of the sample size (n), and hence, theBp

score (Eq. 7) is scaled to become .50, as in the case of the
calculation for the A statistic in Eq. 3.

Given these considerations, we derived

BP ¼ ∑n
i¼1# sign xi−�xð Þ⋅sign yi−�yð Þ > 0½ � þ 0:5# sign xi−�xð Þ⋅sign yi−�yð Þ ¼ 0½ �

n
;

ð7Þ

where n is the size or number of paired observations, # is the
count function, xi and yi are the scores or observations from an
X–Y pair in a sample, x is the sample mean of X, and y is the
sample mean of Y.

We expect that BP can give similar PBS scores for both the
linear-based and PBS-based X–Y planes in Fig. 3, which meet
the scientific features of generality and equitability for a good
statistic (for details about the mathematical relationship
between Bp and CLr; please see the Appendix). We conducted
a Monte Carlo experiment to evaluate the behavior of BP and
compared performance of this new statistic to the performance
of Dunlap’s conversion formula applied to r and its nonpara-
metric counterparts.

It is noteworthy that, even though BP appears to be and
is positioned as a more general, interpretable, and robust
statistic for measuring PBS-based bivariate relationship, it
is not the most powerful statistic for detecting monotonic
or linear relationships. Nor is BP an alternative to correla-
tion coefficient r and nonparametric correlations (e.g., rank
correlation) when a linear or monotonic relationship is hy-
pothesized. In other words, the correlation coefficient r
works best when estimating the linear relationship, Y =

aX + b, and nonparametric correlations (e.g., rank correla-
tion) are expected to work well when estimating linearity
and monotonicity. In particular cases in which the under-
lying relationship between X and Y is monotonic, the non-
parametric correlations (e.g., rank correlation) will gener-
ally indicate a stronger relationship than BP because they
use more information about the data than just relationship
to the mean. However, the rank correlation may fail when
the relationship is no longer monotonic, as in the data fol-
lowing Eq. 6. Specifically, given that Eq. 6 sets up data to
minimize the relationship between X and Y beyond the PBS
relationship, X and Y are basically unrelated within a quad-
rant and particularly are not monotonically related within a
quadrant. In short, despite previous research findings about
the improved interpretability of PBS-related statistics, such
as CLr, researchers should consider the type of bivariate
relationships (i.e., linearity, monotonicity, and PBS) they
are focusing on, and choose the corresponding statistic
(e.g., r, rank correlation, or BP).

2

Design of the Monte Carlo experiment

Comparative estimates

Numerous robust estimators have been proposed for detecting
X–Y associations when the parametric assumptions for r have
been violated. Three common robust correlations, Spearman’s
rank correlation (rs; Kendall & Gibbons, 1990), Kendall’s tau
correlation (rt; Kendall, 1938), and robust regression correla-
tion (rr; Wilcox, 2012), can be converted to a CLr value using
Eq. 4. For comparative purposes this study examines the per-
formance of such conversion of these robust correlation esti-
mators, as well as the original Pearson-based CLr as defined
by Dunlap (1994), as estimators of γ.

Spearman-based estimation (CLS) Spearman’s correlation rs
converts X and Y scores into rank scores, then applies
Pearson’s product-moment correlation formula to calculate
the distance between these rank scores and summarize an
overall relationship between the ranks of X and Y scores.
The resulting value can be plugged into (Eq. 4) to obtain
an estimate of γ,

CLS ¼ sin−1 rsð Þ=π	 
þ :5

¼ sin−1 1−6∑n
i¼1d

2
i = n n2 þ 1

� �	 
� �
=π

� �þ :5; ð8Þ

2 We are grateful to an anonymous reviewer for reminding us of the important
implications for hypothesis testing of the differentiation between linearity,
monotonicity, and PBS.
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where d2i ¼ rank xið Þ−rank yið Þ½ � 2 is the squared difference
between the rank of a score in X and a score in Y.

Kendall-based estimation (CLT)Kendall’s tau (rt) measures the
strength of association between X and Y, which can be plugged
into Eq. 4 to obtain an estimate of γ,

CLT ¼ sin−1 rtð Þ=π	 
þ :5

¼ sin−1 nC−nDð Þ= 0:5⋅n n−1ð Þ½ �f g=π� �þ :5; ð9Þ

where nC refers to the number of concordant pairs for X and Y,
and nD refers to the number of discordant pairs for X and Y.

Regression-based estimation (CLL) To obtain a robust correla-
tion (rr), one can fit a regression line that regresses the stan-
dardized Y scores (ZY) on the standardized X scores (ZX) based
on a robust estimation procedure (e.g.,M-estimation; Wilcox,
2012)—that is,

ZY ¼ β0 þ β1ZX þ e; ð10Þ

where the standardized slope β1 denotes a robust correlation
between X and Y that can be plugged into (4) to obtain an
estimate of τ,

CLL ¼ sin−1 rrð Þ=piþ :5 ¼ sin−1 β1ð Þ=πþ :5: ð11Þ

We hereafter refer to the various estimates of γ as PBS =
(BP, CLr, CLS, CLT, and CLL) in general.

Bootstrap confidence intervals

In addition to the point estimate of γ, its confidence interval
(CI) is essential for quantifying the sampling error and mak-
ing statistical inferences. For example, if a 95% CI for Bp

does not span .50 it can be inferred that the PBS estimate is
statistically significant at the .05 level. Bootstrapping
(Efron & Tibishiri, 1993)—a nonparametric resampling
procedure often executed in a computerized statistical pack-
age—can often produce trustworthy CIs for statistical mea-
sures (Chan & Chan, 2004; Li, Chan, & Cui, 2011). There
are three major types of bootstrap CIs: bootstrap standard
interval (BSI), bootstrap percentile interval (BPI), and boot-
strap bias-corrected and accelerated percentile interval
(BCaI).

Assume one has a dataset with 100 X–Y paired observa-
tions. First, this dataset is resampled with replacement B times
(e.g., 1,000) to produce N bootstrap datasets that contains the
same sample size (i.e., 100) as the original dataset. Second, for
each of the N = 1,000 bootstrap datasets, the PBS point esti-
mates (denoted as PS in Equations 12 to 16) are computed

using a statistical package, thereby producing 1,000 bootstrap

PS* ¼ B*
P bð Þ, CL*r bð Þ, CL*S bð Þ, CL*T bð Þ, and CL*L bð Þ esti-

mates, where b = 1, 2, . . . ,N. Given these bootstrap estimates,
the statistical package can construct the 95% BSI,

BSI ¼ cPS � 1:96⋅s*PS; ð12Þ

where P̂S is an estimated BP, CLr, CLS, CLT, and CLL respec-
tively, from the original dataset, and s*PS refers to the standard
error for BP, CLr, CLS, CLT, and CLL respectively, on the basis
of the standard deviation of the 1,000 bootstrap samples.

A second method is known as the 95% BPI,

BPI ¼ PS* lð Þ;PS* uð Þ� �
; ð13Þ

where l is the 2.5 percentile rank and u is the 97.5 percentile

rank of the 1,000 bootstrap PS* ¼ B*
P bð Þ, CL*r bð Þ, CL*S bð Þ,

CL*T bð Þ, and CL*L bð Þ estimates, respectively.
A third type of bootstrap CI is the 95% BCaI that adjusts

for any skewness in the original dataset,

BCaI ¼ PS* l*
� �

;PS* u*
� �� �

; ð14Þ

where the l∗ and u∗ are lower and upper percentile ranks,
which are adjusted to be different from l = 2.5% and u =
97.5% in Eq. 14, depending on the skewed level of the orig-
inal dataset. Two correction factors, i, and j, are required to
estimate l∗ and u∗. The first factor i, is used to correct for the
overall bias of the bootstrap PS∗ estimates, which deviate from
the estimate obtained in the original dataset. That is,

i ¼ Φ−1 # PS* bð Þ < PS
	 


=N
� �

; ð15Þ

where Φ−1 is normal inverse cumulative function distribution,
and #[PS∗(b) < PS] is the count function that counts the num-
ber of the bootstrap PS∗ estimates smaller than PS in the orig-
inal dataset. The second factor (j) adjusts for the rate of change
of the error of PS with respect to its true parameter value,

j ¼ ∑K
k¼1 PS :ð Þ−PS kð Þ½ �3=6 ∑K

k¼1 PS :ð Þ−PS kð Þ2
h i3=2


 �
;

ð16Þ
where PS(k) is the jackknife value ofPS obtained by removing
the kth row of the original dataset, and PS(.) is the mean of the
n jackknife estimates. Consequently, l∗ =N ∙α1, where

α1 ¼ Φ iþ iþz1− α=2ð Þ
1− j iþz1− α=2ð Þ½ �


 �
, and u∗ = N ∙ α2, where α2 ¼ Φ

iþ i−z1− α=2ð Þ
1− j i−z1− α=2ð Þ½ �


 �
(for details, please see Canty & Ripley,

2016; Chan & Chan, 2004; Efron & Tibshirani, 1993; Li et
al., 2011)
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Simulation conditions

Our experiment investigated the performance of PBS estima-
tors under three bivariate relationship conditions—(1) linearly
related X and Y that follow bivariate normal correlation, (2)
linearly related X and Y that follow nonnormal correlations
(i.e., positively skewed, negatively skewed, and uniform),
and (3) PBS related X and Y that follow normal, uniform,
positively skewed, and negatively skewed distributions. For
each of these relationships, seven levels of true effect size (γ),
and four levels of sample size were evaluated.

Population effect size (seven levels) Seven effect size levels
were evaluated: γ = .50, .55, .60, .65, .70, .75, and .80. When
assumptions for r are met, these values can be converted using
Eq. 4 to the ρ values 0, .156, .309, .454, .588, .707, and .809,
providing a comprehensive span of effect sizes [zero, small
(.1), medium (.3), large (.5), and extremely large (.8); Cohen,
1988].

Sample size (four levels) Four levels, n = 20, 60, 100, and 300,
were evaluated to represent a range of common sample sizes
in behavioral and social science research.

Fig. 3 Sample scatterplots for bivariate normal correlations with ρ = .05,
.1, .3, .5, .7, .9, and 1 (left) (which, when transformed using Eq. 4,
provides CLr = .516, .532, .597, .667, .747, .856, and 1), as well as the

equivalent probability-of-bivariate-superiority relationships without the
requirement of a linear relationship, with the true PBS values γ = .516,
.532, .597, .667, .747, .856, and 1 (right)
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Bivariate Type 1 distributions (four levels) Type 1 is separated
into Type 1a (bivariate normal and linear) and 1b (bivariate
nonnormal and linear). Type 1a data meet both the PBS-based

condition for Bp plus the additional linear condition for r and
CLr. In other words, Type 1a meets the parametric assumptions
that satisfy both r and PBS. Type 1b data are uniform, positively

Fig. 3 (continued)
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skewed, or negatively skewed and meet the linear condition for
X and Y but do not necessarilymeet the PBS condition forX and
Y. The X scores were simulated to behave different from nor-
mality, and Y scores simulated conditional on the X scores for a
level of ρ. We expected that Bp and CLr would behave differ-
ently, because the necessary condition (bivariate normal corre-
lation) that links Bp to CLr was violated.

Bivariate Type 2 distributions (4 × 3 levels) The aforemen-
tioned distributions do not allow for a full demonstration of
potential PBS-based relationships, as they are based on the
widely employed concept of linearly related X and Y. An im-
portant gap in previous research is that PBS-based relation-
ships that are free of linearity have been ignored. These bivar-
iate relationships can be directly derived from the function in
Eq. 6. Given this function, X can be generated from any dis-
tributions (e.g., normal, uniform, positive skewed, negative
skewed), and Y can be generated from Eq. 6 with a manipu-

lated level of γ. In this study, three levels of c—
ffiffiffi
3

p
=2,

ffiffiffiffiffi
12

p
=2,

and
ffiffiffiffiffi
48

p
=2 —in Eq. 6 were examined, which produced three

types of uniformly distributed Y scores with SDs = 0.25, 1, and
4, which have a smaller, identical, and larger SD than the SD
(i.e., 1) of the X scores. For SDs of Y equal to either .25 or 4,
the generated X scores appear to contain outliers. These dis-
tributions reflect scenarios in which some variables contain
larger variance and have longer tails than others.

This experiment was designed with 7 × 4 × 4 = 112 simula-
tion conditions that meet the linear condition and 7 × 4 × 4 ×
3 = 336 simulation conditions that meet only the PBS condi-
tions for a total of 448 simulation conditions. Each condition
was replicated 1,000 times, and for each replication the dataset
was bootstrapped 1,000 times to generate the three bootstrap
CIs. This produced a total of 448(conditions) × 1, 000(repli-
cation) × 1, 000(bootstrap) = 448,000,000 simulated datasets.

Procedure

Type 1 To generate the simulation data, first, X scores were
generated from a normal distribution, N(0, 12), which meets
the linear condition. Second, X scores were generated from a

uniform distribution,U(−
ffiffiffiffiffi
12

p
=2,

ffiffiffiffiffi
12

p
=2 ), withmean = 0, SD

= 1; this mimics scenarios in which scores are evenly and
uniformly distributed in a sample. Third, X scores were gen-
erated from a lognormal distribution, lnN(−0.3456, 0.83262),
so that the mean is 1 and SD is 1. This forms a positively
skewed distribution, with skewness = 4 and kurtosis = 38,
commonly found in behavioral and social sciences, for exam-
ple, in data from biological measures (e.g., Wilcox, Granger,
Szanton, & Clark, 2014) and measures of affect and depres-
sion levels (e.g., Tomitaka et al., 2016). Fourth, X scores were
generated on the basis of – 1 multiplied by Xa scores, which
were generated from lnN(−0.3456, 0.83262). Hence, the

generated X scores follow a negatively skewed distribution
with mean = – 1, SD = 1, skewness = – 4, and kurtosis = 38.
Given the generated X scores, for Type 1, the linear-related Y
scores were generated from

Y ¼ ρX þ eY ; ð17Þ
where ρ is the population Pearson’s correlation converted
from the population PBS (γ) through Eq. (4), X refers to the
simulated scores from Type 1 or 2, and eY is the error score
generated from a normal distribution with mean = 0, and var-
iance = 1 − ρ2. Given this method, X and Y are expected to be
linearly correlated with a level of ρ.

For Type 2, according to Eq. 6, ϱ values were generated
from a uniform distribution, U(0, 1), with min = 0 and max =
1. Second, to allow sampling error in each replicated sample,
the γ values were generated from a binomial distribution, B(n,
γ). Given the generated ϱ and γ for each simulated respon-
dent, and the known X scores, the Y scores were generated

from either a uniform distribution [i.e., U X ; c
� �

;U −c;X
� ��

or set at the mean of Yas shown in Eq. 6. Note that to allow for

sampling error, the sample mean estimate X was used instead
of μX in Eq. 6.

Consequently, for each replication, a dataset was generated
containing both the X and Y scores that were used to compute
the PBS estimates of γ. This dataset was also used to generate
the 95% BSI, BPI, and BCaI (with 1,000 bootstrap replica-
tions). Thus, for each condition 1,000 PBS = (BP, CLr, CLS,
CLT, and CLL) estimates and their associated 95% BSI, BPI,
and BCaI were obtained. The simulation was conducted in R
(R Core Team, 2016). Note that the code called two packages,
boot (Canty & Ripley, 2016) and MASS (Venables & Ripley,
2002), that executed the bootstrap procedures and performed
the robust linear regression, respectively. The simulation code
is available in the supplementary materials.

Results

Evaluation criteria

For Distribution Types 1a and 2, two evaluation criteria are
used to assess the performance of each of the PBS estimates

of γ. First, percentage bias was computed as bias ¼ PS−γ
� �	

=γ�, where PS is the mean of the 1,000 PBS estimates
(expressed as BP, CLr, CLS, CLT, and CLL) in 1,000 simulated
samples. A PBS estimate was considered reasonable if the bias
was within ± .10 (or 10%; Li et al., 2011). This bias only
examines the performance of a PBS estimate in one condition.
To evaluate overall performance across all 336 nonparametric
conditions a second criterion was used: the mean-absolute per-

centage bias (MAPE) is defined as MAPE ¼ ∑336
s¼1 bias sð Þj j� �

=336. A MAPE smaller than .10 (or 10%) is considered
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reasonable (Li et al., 2011). MAPE was also used to separately
evaluate the performance of the 28 Type 1a linear and normal

conditions, in which MAPE ¼ ∑28
s¼1 bias sð Þj j� �

=28., and the

84 Type 1b linear and nonnormal conditions, in which MAPE

¼ ∑84
s¼1 bias sð Þj j� �

=84. Regarding the performance of boot-
strap CIs, given that 95% BSI, BPI, and BCaI were construct-
ed, coverage was expected to be 950 out of 1,000 replications
[or expressed as coverage probability (CP) = .95]. But sam-
pling error makes it impractical for researchers to obtain a
perfect CP of .95. We considered acceptable an observed CP
that falls within the range (.925, .975) (Chan & Chan, 2004).

For Distribution Type 1b, the purpose is to evaluate the
difference between Bp and CLr (i.e., =Bp −CLr ) when X–Y
points were generated from nonnormal distributions (i.e., pos-
itively skewed, negatively skewed, uniform) with an associat-
ed true correlation value (ρ). Given that Xwas generated from
a nonnormal distribution, and Y was generated from a linear
model (Eq. 17) conditional on a true correlation value (ρ)
related to X, the equivalence for Bp ≡ CLr [i.e., BP ¼
∑
n

i¼1
sign xi−�xð Þ⋅sign yi−�yð Þ>0½ �þ0:5 sign xi−�xð Þ⋅sign yi−�yð Þ¼0½ �

n ≡ 1
π sin

−1 rð Þ þ0:
5 ¼ CLR; Eq. 8 in the Appx.] becomes invalid. Hence, even
though we know the true ρ value in our simulation, the asso-

ciated true PBS value, γ ¼ P Y > Y
� �� X > X Þ, is unknown

and is unique for every type of nonnormal distribution of X.
As a result, it is inaccurate for us to evaluate biases and cov-
erage probabilities when γ is unknown.

Performance under linear conditions (Table 1)

Type 1a As expected, across the 28 conditions in which linear
and normal conditions were met, the performances of BP and
CLr were highly comparable. The biases of BP ranged from –
.005 to .008, with mean .000 and SD .003, indicating an excel-
lent fit. Of the 28 conditions, all biases fell within the criterion of
± .10 (or 10%), andMAPEwas .002. ForCLr, the biases ranged
from – .007 to .004, with mean .000 and SD .002, showing an
excellent fit. All the biases were within the criterion of ± .10 (or
10%), and MAPE was .001. Regarding the bootstrap CIs, the
mean of the 28 CPs yielded by BSI, BPI, and BCaI for BPwere
.966, .978, and .913, respectively, which are comparable to those
obtained by BSI, BPI, and BCaI for CLr, i.e., .932, .937, and
.942, respectively. Thus, both the new PBS procedure (produc-
ing the BP estimate) and the traditional CLr are trustworthy and
appropriate when the parametric assumptions are met: Both
methods produced similar results with minimal bias.

Type 1bAs is shown in Fig. 4, BP consistently produced a larger
estimate than CLr under a uniform distribution: The difference
(d) values ranged from .000 to .034, with a mean of .015. For
positively and negatively skewed distributions, BP

consistently produced a smaller estimate than CLr: Here the d

values ranged from – .046 to .001, with a mean of – .022. These
results indicate that BP and CLr are different—that is, BP ¼
∑
n

i¼1
# sign xi−�xð Þ⋅sign yi−�yð Þ>0½ �þ0:5# sign xi−�xð Þ⋅sign yi−�yð Þ¼0½ �

n ≠ 1
π sin

−1 rð Þþ
0:5 ¼ CLR, when the linear and nonnormal conditions are met.

Table 1 Coverage probabilities (CP) and percentage biases of the point
estimates of BP and, CLr when the linear and normal conditions are met
(Type 1)

BP CLr

CP CP

γ n % Bias BSI BPI BCaI % Bias BSI BPI BCaI

.50 20 .008 .972 .988 .903 .001 .912 .929 .948

60 .001 .956 .969 .901 .001 .909 .922 .927

100 .005 .958 .967 .923 .001 .929 .930 .932

300 .001 .967 .969 .941 .001 .949 .950 .955

.55 20 – .004 .968 .983 .893 – .007 .906 .920 .934

60 .001 .966 .975 .924 .004 .940 .951 .951

100 – .002 .971 .976 .927 .000 .946 .947 .953

300 .001 .957 .957 .931 .000 .932 .937 .936

.60 20 – .001 .973 .987 .884 – .002 .917 .924 .936

60 – .002 .963 .973 .918 – .002 .935 .939 .937

100 .002 .966 .979 .924 .001 .933 .936 .940

300 – .001 .961 .970 .934 .001 .945 .949 .946

.65 20 – .004 .978 .994 .896 .001 .928 .935 .947

60 .000 .958 .973 .900 .002 .925 .929 .935

100 .001 .965 .973 .936 .000 .958 .961 .962

300 – .002 .959 .968 .928 – .001 .963 .963 .963

.70 20 .002 .969 .988 .896 – .001 .906 .911 .928

60 – .004 .963 .982 .892 – .002 .934 .941 .938

100 .002 .962 .972 .922 .002 .930 .936 .942

300 .001 .954 .966 .935 .001 .931 .933 .929

.75 20 – .005 .975 .994 .885 – .002 .920 .919 .940

60 .002 .966 .984 .911 .002 .928 .931 .939

100 .003 .963 .972 .917 .000 .942 .945 .951

300 – .001 .965 .966 .926 .000 .942 .941 .941

.80 20 .004 .971 .996 .867 .002 .896 .900 .919

60 .001 .976 .988 .912 .001 .946 .951 .953

100 – .002 .976 .987 .914 – .001 .951 .952 .953

300 – .001 .965 .977 .930 .000 .943 .942 .941

γ is the population PBS parameter, n is the sample size, BP is the proposed
robust estimator for the population PBS, CLr is the Pearson-based estimator
for the population PBS, BSI is the 95% bootstrap standard interval, BPI is
the 95% bootstrap percentile interval, and BCaI is the 95% bootstrap bias-
corrected and accelerated percentile interval. Coverage probabilities outside
acceptable range are presented in bold
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Performance under PBS conditions in the absence
of linearity

Point estimates Among the five PBS estimates, BP performed
best and was the only estimate considered reasonable across
both evaluation criteria, as is shown in Fig. 5. Across the 336
conditions in which parametric assumptions were violated, the
biases ranged from – .059 to .057, with mean – .018 and SD
.017, indicating a good estimate. All 336 conditions produced
a BP estimate within the criterion of ± .10 (or 10%), showing
excellent fit. Overall, the MAPE (.019) was also well within
the criterion of ± .10 (or 10%), which demonstrates that BP is
an appropriate and robust estimator of γ across all the simula-
tion conditions.

The performance of the remaining four PBS estimates was
less than optimal. The parametric-based CLr performed poorly
and did not reliably detect PBS relationships. The biases ranged
from – .234 to .007, with mean – .119 and SD .070. Of the 336
conditions, only 128 (38.1%) yielded a CLr estimate within ±
.10. Overall, the MAPE for CLr was outside the criterion (.119),
further demonstrating that CLr is not an optimal estimator for γ
when X and Y are not linearly related.

Two robust-based PBS estimates performed slightly better
than CLr but neither performed adequately. The CLS biases
ranged from – .234 to .007, with mean – .113 and SD .070. Of

the 336 conditions, 144 (or 42.9%) produced a CLS estimate
within ± .10, and the MAPE was .114. The CLL biases ranged
from – .210 to .007, with mean – .110 and SD .064. Of the 336
conditions, 139 (or 41.4%) produced a CLL estimate within ±
.10, and the MAPE was .110. The last robust estimate, CLT,
performed worse than the parametric CLr. These biases ranged
from – .267 to .004, with mean – .146 and SD .086. Of the 336
conditions, only 96 (or 28.7%) produced aCLTestimate within ±
.10, and the MAPE was .146.

Confidence intervals As is shown in Fig. 6, two of the three
bootstrap CI procedures provided acceptable coverage probabil-
ities (CPs) for BP. The 95% BSI for BP performed best: Across
the 336 conditions, the CPs obtained from the 95% BSI ranged
from .666 to .986, with mean .954 and SD .043. Of the 336
conditions, 280 (or 83.3%) conditions produced a CP within
the criterion of (.925, .975), indicating good fit. The 95% BPI
for BP, yielded CPs that ranged from .422 to .998, with mean
.934 and SD .084. Of the 336 conditions, 229 (or 68.2%) con-
ditions produced a CP within (.925, .975). However, the 95%
BCaI forBPwas less than optimal: The CPs ranged from .652 to
.964, with mean .901 and SD .041. Of the 336 conditions, 109
(or 32.4%) conditions produced a CP within (.925, .975).

Given that the bias of the point estimates based onCLr,CLS,
CLT, and CLL are outside a reasonable range, the associated

Fig. 4 Means of 1,000 replicated estimates for BP minus CLr (i.e., d scores) across the 84 conditions in which linear and nonnormal conditions are met
(Type 1b).

Fig. 5 Biases for BP, CLr, CLS, CLT, and CLL when only the PBS condition is met (Type 2)

Behav Res (2019) 51:258–279 271



BSI, BPI, and BCaI values are likewise less than optimal. For
CLr, the coverage probabilities yielded from BSI ranged from 0
to .957 with a mean of .443. Of the 336 conditions, only 29 (or
8.6%) fell within the criterion of [.925, .975]. For BPI, range = (0,
.958), mean = .451, and 38 (11.3%) fell within the criterion. For
BCaI, range = (0, .967), mean = .433, and 54 (or 16.1%) fell
within the criterion. For CLS, BSI produced a range of (0, .968),
mean = .478, and 38 (11.3%) fell within the criterion; BPI
yielded a range of (0, .968), mean = .477, and 64 (or 19.0%) fell
within the criterion; BCaI resulted in a range of (0, .969), mean =
.467, and 64 (or 19.0%) fell within the criterion. For CLT, BSI
produced a range of (0, .968), mean = .308, and 54 (16.1%) fell
within the criterion; BPI yielded a range of (0, .966), mean =
.309, and 54 (or 16.1%) fell within the criterion; BCaI resulted in
a range of (0, .974), mean = .304, and 57 (or 17.0%) fell within
the criterion. ForCLL, BSI produced a range of (0, .961), mean =
.495, and 36 (10.7%) fell within the criterion; BPI yielded a range
of (0, .959), mean = .503, and 48 (or 14.3%) fell within the
criterion; BCaI resulted in a range of (0, .968), mean = .483,

and 61 (or 18.2%) fell within the criterion. Because only the point
estimates and BSI for BP yielded reasonable results overall, the
following discussion of the effects of the manipulated factors
focuses only on the point estimates and BSI for BP.

Effects of manipulated factors on BP and BSI

The effects of the manipulated factors on the performance of
Bp were minimal, as is shown in Table 2. There were no obvi-
ous effects of varying the distribution of Yon Bp and BSI. The
most influential factor was the distribution of X (θ): When X is
positively or negatively skewed, the point estimate biases were
slightly more negative (except when γ = .80, n = 20, and θ =
negatively skewed). For example, when γ = .80 and n = 300,
the magnitude of the biases increased from – .009 (θ = normal)
and – .008 (θ = uniform) to – .055 (θ = positively skewed) and
– .054 (θ = negatively skewed). This may be due to the sample
mean estimates (x and y ) in Eq. 7, which become less robust
estimates of the center of the distribution when there is a long

Fig. 6 Coverage probabilities when only the PBS condition is met (Type 2). BSI = bootstrap standard interval, BPI = bootstrap percentile interval, BCaI
= bootstrap bias-corrected and accelerated percentile interval
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tail. Second, when n was increased from 20 to 300, the accu-
racy of Bp improved, especially when the θ distribution is
normal or uniform. This is reasonable, because a good sample
estimate should be asymptotically assumed, meaning that
when n→∞, BP→ γ. Third, when γ increased from .50 to
.80 and other factors were held constant, the biases of Bp be-
came slightly more negative. This pattern is reasonable be-
cause γ has an upper bound of 1, which results in fewer sample
Bp estimates above γ = .80 than below γ = .80. Generally, the
effects of the manipulated factors on Bp are indeed minimal,
and hence, these results demonstrate that BP is a trustworthy
estimator for γ across the conditions examined in this study.

For BSI, the two worst coverage probabilities (.687 and .695)
resulted when γ= .80, n = 300, and θ = positively or negatively
skewed. This is understandable because BSI depends upon the
accuracy of the point estimate of Bp and under these conditions
the least accurate point estimates were found. Also, these condi-
tions are quite strict—that is, a relatively large γ = .80 (capped at
1), and a challenging skewed distribution (skewness = 4 or – 4
and kurtosis = 38), and a relatively narrow BSI (because of a
large sample size). Hence, a narrow BSI becomes more sensitive
to slight deviation from Bp to γ, and this inevitably results in
smaller CPs. When other factors (n, γ, and θ = normal or uni-
form) were manipulated, the CPs of the BSI were robust across
these conditions, demonstrating that BSI is a good CI construc-
tion procedure for Bp.

Working example

This section illustrates how researchers can obtain theBp estimate
of γ and its bootstrap CIs for their dataset using R (R Core Team,
2016; or RStudio: RStudio Team, 2016), a free and popular
statistical package in behavioral and social sciences. We have
made available the code for a function that computes the Bp
estimate, together with a sample dataset and step-by-step instruc-
tions, in the supplementary materials. First, copy the code (func-
tion name: pbs) and execute it in R. Second, enter the X and Y
scores from supplied in the supplementary materials to form a
100 × 2 data matrix in R. To best demonstrate how the code
works, we have simulated the X and Y scores so that the popula-
tion parameter γ is known and can be used to evaluate the accu-
racy of sample estimate BP. In this example, the X and Y scores
were generated from γ= .60, n = 100, θ has a uniform distribu-

tion, and σY ¼ ffiffiffiffiffi
12

p
=2. Third, run the syntax pbs(data, 1000,

.95, 1234, 4) in R, where data refers to the name of the 100 × 2
data matrix, 1000 refers to the number of bootstrap samples, .95
is 95% CI, 1234 is the seed number, and 4 is the number of
decimal places displayed in the output. If a researcher chooses
to use these default settings, the syntax can further be simplified
to: pbs(data). Alternatively, a researcher could alter any of the
arguments to suit a study’s particular needs (e.g., change the

confidence interval to 99% by entering .99 in place of .95 in
the third argument).

OnceR finishes running the code, the results will be displayed
(see Step 4 of the Appendix). In this case, BP = .61, and we
obtained a 95% BSI = (.5031, .7169), which indicates a statisti-
cally significant result at the .05 level because the range of the
BSI confidence interval does not span .50. For purposes of inter-
pretation, this BP = .61 estimate tells us that there is a statistically
significant 61% chance that when an X score is above the mean
of all X scores, the paired Y score is also above the mean of all Y
scores.

For purposes of comparison only (see note 2), computing the
correlation for this simulated dataset produces r = .1210, p =
.2306, which is nonsignificant at the .05 level. We compute the
CLr estimate of γ using Dunlap’s conversion formula (Eq. 4) to
get an estimate of .5386. TheCLr estimate is a biased estimate of
γ, as should be expected, because the underlyingX-Y relationship
is not linear. Furthermore, a researcher that computes this esti-
mate may mistakenly infer that because the correlation is not
statistically significant there is also no significant PBS relation-
ship between X and Y. However, using BP to estimate γ and the
95%BSI to test for the statistical significance of this estimate, we
can correctly identify a significant bivariate relationship that
would be missed using traditional correlational analysis.

Real-world examples

For purposes of demonstration only,3 this section presents how
researchers could lead to different conclusions if they specify a
different hypothesis (i.e., linearity vs. PBS) and use a different
statistic (i.e., r vs. Bp) to test this hypothesis. We suggest that
identifying PBS relationships in real world research can con-
tribute valuable information not revealed by traditional correla-
tional analysis. To demonstrate this contribution across different
disciplines, we randomly selected two recently uploaded bivar-
iate datasets for analysis from Ontario Data Documentation,
Extraction Service and Infrastructure (ODESI), a Web-based
digital repository for social sciences data.

The first dataset (Mychasiuk, 2017) contains behavioral data
for 74 adolescent rats with mild traumatic brain injury (RmTBI)

3 It is important to note that researchers should specify a core hypothesis prior
to collecting data in any research studies. For example, if a researcher is
interested in testing whether X and Y are linearly related, then the researcher
should specify a hypothesis of a Blinear relationship between X and Y^and use
a corresponding statistic (e.g., r) to examine this hypothesis. If a researcher
attempts to examine whether X and Yare PBS, then the researcher should test a
hypothesis that BX and Y are PBS-related^ and use a corresponding statistic
(e.g., Bp) to verify this hypothesis. The present simultaneous examinations of
an X–Y relationship through r and Bp in the working and real-world examples
are done for the purposes of demonstration only, with the goal to explore and
understand how the observed r and Bp values may differ in simulated and real-
world datasets. In practice, researchers should keep in mind the importance of
having a core or specific hypothesis before data collection and analysis. We
thank an anonymous reviewer for pointing out this important point.
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after the consumption of caffeine. We obtained r and CLr esti-
mates for the relationship between weight (weightTBI) and the
average time to right (AverageTimeToRight). A scatterplot of
the data is shown in Fig. 7. The results show that r = .158, 95%
CI = (– .083, .367), indicating no statistically significant linear
relationship between these variables. Using Dunlap’s (1994)
transformation, we obtain CLr= .551 as an estimate for γ.
However, when directly computing an estimate for γ using our
PBS method, we find BP= .581, 95% BSI = (.455, .701). BP
estimates a stronger PBS relationship than does CLr, although
the 95% CI still spans the .50 PBS zero effect.

There is an important lesson we can take from this result. If
we use Eq. 4 to convert our BP estimate to the r-metric, the value
is .252, which suggests a noticeably larger correlation than the
actual r value obtained in the correlational analysis. This is not to

suggest that the correlational analysis provided an underestimate
of the linear relationship. To the contrary, we suggest that treating
a measure of the PBS relationship as an effect size to describe a
correlation is misleading and can result in precisely such incor-
rect inferences.

Dunlap’s (1994) Eq. 4 implies that a PBS relationship
requires the existence of a linear relationship and that the
PBS estimate can describe the linear relationship. This is not
the case. The present example demonstrates the type of
problem that could arise as a result of treating CLr or any
other estimate of PBS as an effect size for a linear relation-
ship. Although linearity implies the existence of a PBS re-
lationship, the existence of a PBS relationship does not im-
ply linearity. Being able to directly compute an estimate of
the magnitude of a PBS relationship without dependence on

Table 2 Percentage biases of BP and coverage probabilities of BSI in selected conditions

n = 20 n = 60 n = 100 n = 300

γ θ %Bias BP BSI %Bias BP BSI %Bias BP BSI %Bias BP BSI

.50 1 .012 .972 .003 .959 .001 .967 .000 .959

2 – .002 .964 – .001 .959 – .001 .961 .000 .956

3 – .006 .969 – .003 .966 – .001 .959 .002 .965

4 – .007 .965 .001 .965 – .002 .960 – .001 .962

.55 1 – .008 .968 – .004 .961 – .001 .959 – .001 .955

2 – .006 .966 – .001 .959 – .002 .961 – .002 .954

3 – .009 .971 – .011 .965 – .007 .961 – .007 .957

4 – .017 .976 – .008 .968 – .009 .960 – .006 .965

.60 1 – .017 .966 – .007 .961 – .008 .968 – .003 .954

2 – .014 .969 – .008 .966 – .006 .959 – .003 .954

3 – .020 .965 – .018 .965 – .019 .962 – .015 .960

4 – .025 .967 – .018 .965 – .016 .957 – .014 .953

.65 1 – .021 .970 – .010 .972 – .010 .964 – .006 .964

2 – .020 .960 – .006 .968 – .010 .963 – .006 .965

3 – .028 .972 – .026 .966 – .027 .960 – .024 .932

4 – .031 .965 – .024 .960 – .025 .965 – .024 .935

.70 1 – .023 .973 – .013 .971 – .012 .966 – .008 .968

2 – .024 .964 – .014 .963 – .012 .966 – .007 .966

3 – .042 .971 – .035 .965 – .034 .958 – .033 .893

4 – .040 .974 – .033 .960 – .035 .951 – .032 .897

.75 1 – .029 .978 – .018 .970 – .012 .970 – .007 .967

2 – .025 .975 – .018 .966 – .014 .965 – .008 .962

3 – .047 .977 – .044 .961 – .044 .937 – .043 .812

4 – .048 .972 – .044 .952 – .042 .937 – .043 .823

.80 1 – .028 .977 – .019 .982 – .016 .979 – .009 .969

2 – .026 .980 – .018 .975 – .015 .966 – .008 .967

3 – .058 .973 – .054 .938 – .055 .904 – .055 .687

4 .035 .972 – .056 .936 – .054 .905 – .054 .695

γ is the population PBS parameter, θ refers to the distribution type of X (1 = normal, 2 = uniform, 3 = positively skewed, and 4 = negatively skewed), n is
the sample size, BP is the sample estimator for γ, and BSI is the 95% bootstrap standard interval. Coverage probabilities outside acceptable range are
presented in bold
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correlational analysis should help reduce any confusion
about the relationship between these bivariate forms. Our
PBS algorithm makes reliance on the CLr conversion for-
mula unnecessary and will allow PBS to be appreciated
independently of r.

The second dataset (Wunch, Arrowsmith, & Heerah, 2017)
comes from an environmental study that measured the density of
chemicals in a bike cargo trailer 362 times between June 28th to
July 19th, 2017. We computed r and BP estimates for the rela-
tionships between water (H2O) and carbon dioxide (CO2), r = –
.079, 95% CI = (– .180, .024), which is a nonsignificant result.
By conversion using Eq. 4, we found CLr = .475, but we obtain-
ed a very different result by direct estimation, BP = .583, 95%
BSI = (.518, .648). A scatterplot of the data is shown in Fig. 7.
Here we have identified a statistically significant PBS effect in
the absence of a linear relationship. Relying upon correlational
analysis, a researcher would conclude that there is no important
relationship between H2O and CO2. The use of PBS analysis to
obtainBP leads to a very different inference: There is a significant
probability-of-bivariate-superiority relationship between H2O
and CO2, such that when the H2O level is above the mean
H2O level, there is a 58.3% chance that the CO2 level will be
above the mean CO2 level. This example illustrates the advan-
tage of conducting PBS analysis when seeking to understand the
relationship between two variables. Not only does PBS identify
an important relationship when it exists, but it is also a relation-
ship that is easy to communicate, making the dissemination of
research findings more impactful.

Conclusions and discussion

In this article we have described a new statistical procedure to
estimate the probability of bivariate superiority, an important type
of bivariate relationship. Although little previous work has ad-
dressed this type of bivariate relationship, statisticians have

suggested its importance under the framework of the copula
theory (Jaworski et al., 2010). In addition, it has previously been
suggested as a more understandable way to describe a bivariate
relationship (Dunlap, 1994). PBS is not simply a concept trans-
lated from bivariate normal correlation (r), as is implied by
Dunlap’s CLr. Rather, it is a unique theoretical and statistical
model for quantifying bivariate relationships under the copula
theory. PBS describes how likely it is that anX score that is above
(or below) the mean is associated with a Y score that is above (or
below) the mean.

In aMonteCarlo experimentwe simulated data frombivariate
relationships under a variety of conditions, many of which vio-
lated the parametric and linearity assumptions of conventional
correlational analysis. We used our new PBS algorithm to com-
pute a point estimate, BP, of the true PBS, γ and confidence
interval in each of 448 conditions. The results of the experiment
demonstrate that BP can appropriately identify this type of bivar-
iate relationship, is robust to the simulation conditions that devi-
ated from conventional parametric assumptions, and allows for
inferences to be made as to the statistical significance of the
bivariate relationship through the use of bootstrap CIs.
Moreover, the likelihood-based interpretation of BP is more un-
derstandable and interpretable than conventional r-based inter-
pretations of bivariate relationships (i.e., proportion of variance
explained).

The differentBP andCLr estimates found inDistribution Type
1b suggest important implications about the use of CLr in prac-
tice. These results suggest that CLr estimates the PBS parameter
γ differently than BP, when the condition of linearity and
nonnormality is met. Although we do not exactly know the true
population γ value, we believe that the BP procedure, which

directly counts the number of times that Y > Y and X > X in
a sample, appears to better measure and is more consistent with

the concept of γ ¼ P Y > Y ∩X > X
� �

that defines the PBS
parameter as compared to CLr, which is based on the r-to-CLr
conversion, 1

π sin
−1 rð Þ þ 0:5. In short, at least we are safe to

Fig. 7 Scatterplots for the real-world datasets. The left panel shows a
scatterplot of the weight (weightTBI) of 74 adolescent rats to their aver-
age time to right (AverageTimeToRight) in the first real-world dataset

(Mychasiuk, 2017). The right panel shows a scatterplot of concentrations
of water (H2O) and carbon dioxide (CO2) in the second real-word dataset
(Wunch et al., 2017)
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conclude that CLr is of limited use when a researcher uses an r
value and converts it toCLr given thatX and Yare linearly related
but they are nonnormal. This result also supports Dunlap’s
(1994) suggestion that researchers can use the r-to-CLr conver-
sion, when X and Y follow bivariate normal correlation.

We provided a working example and an example from
real world research that demonstrated that PBS can iden-
tify an important and significant bivariate relationship in
the absence of a significant linear correlation. The corre-
lation in the working example was nonsignificant at the
.05 level, r = .1210, p = .2306. However, PBS analysis
identified a bivariate superiority relationship, BP = .61, p
< .05. Critically, the examples we have outlined, together
with our Monte Carlo results, imply that CLr is not an
adequate procedure for detecting PBS relationships be-
cause (a) a researcher that finds an r that is not statisti-
cally significant is unlikely to bother to transform that r to
CLr, (b) the transformation to CLr provides no information
about the significance of the effect unless an appropriate
bootstrap technique is used to construct a confidence in-
terval, and (c) when linearity and parametric assumptions
are violated the transformation from r to CLr leads to
biased estimates of γ that could lead to erroneous infer-
ences. Hence, researchers that have relied upon r or its
related models (e.g., linear regression model) to evaluate
bivariate relationships, even those that have transformed
their results to CLr, may have missed PBS relationships
that are important for theory testing and model building in
behavioral and social sciences.

We have outlined a solution to these problems and
have specified a reliable method to directly compute a
point estimate of γ that is robust to violations of paramet-
ric assumptions and provides results that are more easily
communicated for research dissemination. We have pro-
posed PBS as a new statistical tool that can be used in
future research to identify the probability of superiority in
bivariate relationships. In addition, the effect size estimate
produced by PBS analysis, BP, is a common-language ef-
fect size that can make communicating the character of
the bivariate relationship more successful. Finally, we pro-
pose PBS as a statistical analysis that behavioral and so-
cial science researchers can apply to past research. We
encourage researchers to reexamine bivariate relationships
in their datasets to find theoretically important effects that
had been previously overlooked.

Limitations and future directions

We were inspired by the ground-breaking work of others
(Dunlap, 1994; Grissom, 1994; McGraw & Wong, 1992;
Vargha & Delaney, 2000; Wolfe & Hogg, 1971) to devel-
op PBS, and we constructed this new procedure upon the
solid foundations they built. However, PBS is a new

statistical procedure, and there is much work to be done
to provide a more complete picture of PBS and its theo-
retical and practical applications. The nature of conducting
a Monte Carlo experiment is that one must choose from
among many variables that can be manipulated, and
choose the levels at which each variable will be tested.
Although we are confident that we have chosen the most
important variables for an initial test of our procedure, and
levels for each that are adequately representative of many
common data circumstances encountered in real research
scenarios, we recognize that there are other conditions of
import under which PBS should be evaluated. In particu-
lar, additional nonparametric distributions of X (e.g., bi-
modal, U-quadratic, normal-ogive, logistic) and how this
Bglues^ to γ with a particular level of γ should be con-
sidered in future research.

A priority for advancing PBS, both theoretically and
practically, is the development of generalized forms of
BP for use in research scenarios involving more than
two variables. Behavioral and social science researchers
often investigate how an outcome measure (or criterion)
can be regressed on multiple predictor variables through
regression analysis. Additional research is necessary to ex-
amine how the PBS concept can be extended and gener-
alized to more complex research situations of this nature.

Another future direction for the development of PBS
involves examination of the diagnostic value of the
probability-of-superiority conceptualization. The basic idea
of PBS focuses on the likelihood that when an X score
(e.g., daily exercise) is above (or below) the mean, the
paired Y score (e.g., hospitalization) is also above (or below)
the mean. Consequently, researchers may use PBS informa-
tion to classify or diagnose individual participants into a 2 ×
2 profile—that is, daily exercise (good or bad) and chance
of hospitalization (high or low). Future research is necessary
to investigate the accuracy and usefulness of these types of
PBS-implied diagnostic profiles for each individual partici-
pant in a research study. We expect this approach will lead
to development of a PBS-based method for individualized
diagnostic information to be communicated to people in a
way that is both understandable and useful to them.

Whereas simulation studies, such as the Monte Carlo ex-
periment we have presented herein, are effective for demon-
strating the performance of a statistical procedure under a
wide range of conditions, they are often not sufficient to con-
vince the cautious research community to adopt new tech-
niques of analysis. Therefore, it is necessary to begin applying
PBS to existing datasets in the behavioral and social sciences
literature. We invite researchers to undertake this task inde-
pendently, and we invite collaborations, to explore the degree
to which significant PBS relationships have been missed in
previously published and unpublished datasets. This under-
taking will accomplish three important objectives: (a) It will
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provide a proving ground for PBS in real-data scenarios, (b) it
will enable researchers to familiarize themselves with the PBS
procedure and interpretive structure, and (c) it will allow re-
searchers to identify previously overlooked bivariate relation-
ships of theoretical importance to their research.

Author note This research was supported by the University
Research Grants Program (URGP) to Johnson Ching-Hong Li
in the Department of Psychology at the University of
Manitoba (#47094).

Appendix

Following the mathematical proof from Blomqvist
(1950), we can derive a mathematical relationship be-
tween CLr and Bp, when the condition of bivariate nor-
mal correlation is met.

Assume that (xi, yi), where i = 1, 2, . . . , n, are n samples
from a two-dimensional population associated with a bivariate
normal, correlational cdf f(x , y),

f x; yð Þ ¼ e
− 1
2 1−r2ð Þ

x−x
sx

� �2

−2r x−x
sx

� �
y−y
sy

� �
þ y−y

sy

� �2
" #

2πs1s2
ffiffiffiffiffiffiffiffiffi
1−r2

p ;

where x is an observation in variable X, y is an observation in
variable Y, r is the sample correlation coefficient, x is the
sample mean of x, y is the sample mean of y, sx is the sample
SD of X, sy is the sample SD of Y, and π ≈ 3.14156. Let the x-
plane and y-plane be divided into four quadrants based on the
lines x = x and y =y. The cdf f(x, y) is assumed to have con-
tinuous marginal f(x) and f(y) such that the probability of
obtaining two equal x-values or two equal y-values in a sample
will be zero. Consequently, this implies that some information
about correlation coefficient r can be obtained and mathemat-
ically linked to a probability-based estimate (called q in
Blomqvist, 1950) based on the number of sample observations
(n1) that belong to the first or third quadrants compared with
the number of sample observations (n2) that belong to the
second or fourth quadrants.

When the bivariate normal correlation is met, Blomqvist’s
(1950) Eq. 12 provides a mathematical proof between q and r,

q≡
2

π
sin−1 rð Þ; ð1Þ

where B≡^ refers to the equal sign given the definition of the
bivariate normal correlation, and π ≈ 3.14156. Dividing Eq. 1
by 2 and adding a constant 0.5, Eq. 1 becomes Eq. 2,

q
1

2

� �
þ 0:5≡

1

π
sin−1 rð Þ þ 0:5: ð2Þ

According to Blomqvist’s equation (Eq. 1), there exists an
estimator (called q′) that can estimate the aforementioned
probability-based parameter q, without the condition of bivariate
normal correlation. That is, q is estimated by q′, which is equal to

q
0 ¼ n1−n2

n1 þ n2
¼ 2n1

n1 þ n2
−1; ð3Þ

where n1 refers to the number of sample data points (x , y) belong
to the first or third quadrants, and n2 refers to the number of
sample data points (x , y) belong to the second or fourth
quadrants.

Extracting the algorithm from the left-hand side of Eq. 1
and substitute it by Eq. 3, we obtain

q ¼ q′ ¼ n1−n2
n1 þ n2

¼ 2⋅
n1

n1 þ n2
−1

¼ 2⋅P Y > �Y ∩X > �Xð Þ−1; ð4Þ

Solving for P Y > Y
� �� X > X Þ in Eq. 4, we obtain

n1
n1 þ n2

¼ P Y > Y ∩X > X
� �

¼ q
1

2

� �
þ 0:5; ð5Þ

where P Y > Y∩X > X
� �

= n1
n1þn2

refers to the probability-of-

bivariate-superiority (PBS) estimate.
For continuous marginal f(x) and f(y), and when the prob-

ability of obtaining two equal x-values or two equal y-values
in a sample is zero, our proposed BP can be linked to

P Y > Y∩X > X
� �

,

BP ¼
∑n

i¼1# sign xi−x
� �

⋅sign yi−y
� �

> 0
h i

þ 0:5# sign xi−x
� �

⋅sign yi−y
� �

¼ 0
h i

n1 þ n2

¼
∑n

i¼1# sign xi−x
� �

⋅sign yi−y
� �

> 0
h i

n1 þ n2

¼ n1
n1 þ n2

¼ P Y > Y ∩X > X
� �

¼ q
1

2

� �
þ 0:5:

ð6Þ

It is important to note that the proof from Eqs. 3 to 6
does not depend upon the condition of bivariate normal
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correlation, and hence, our proposed BP is considered a

robust estimator for P Y > Y∩X > X
� �

.
When we attempt to provide a mathematical relationship

between BP and CLr, the condition of bivariate normal corre-
lation is necessary for developing such a relationship.
According to Eq. 6,

BP ¼ q
1

2

� �
þ 0:5: ð7Þ

Substitute Eq. 7 into Eq. 2, with the condition of
bivariate normal correlation, we derive that BP can be
mathematically linked to Dunlap’s (1994) CLr (and cor-
relation coefficient r) by

BP ¼ q
1

2

� �
þ 0:5

¼
∑n

i¼1# sign xi−x
� �

⋅sign yi−y
� �

> 0
h i

þ 0:5# sign xi−x
� �

⋅sign yi−y
� �

¼ 0
h i

n

≡
1

π
sin−1 rð Þ þ 0:5 ¼ CLR;

if and only if the condition of bivariate normal correlation
is met.
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