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Abstract To simplify the problem of studying how people
learn natural language, researchers use the artificial grammar
learning (AGL) task. In this task, participants study letter
strings constructed according to the rules of an artificial gram-
mar and subsequently attempt to discriminate grammatical
from ungrammatical test strings. Although the data from these
experiments are usually analyzed by comparing the mean dis-
crimination performance between experimental conditions,
this practice discards information about the individual items
and participants that could otherwise help uncover the partic-
ular features of strings associated with grammaticality judg-
ments. However, feature analysis is tedious to compute, often
complicated, and ill-defined in the literature. Moreover, the
data violate the assumption of independence underlying stan-
dard linear regressionmodels, leading to Type I error inflation.
To solve these problems, we present AGSuite, a free Shiny
application for researchers studying AGL. The suite’s intuitive
Web-based user interface allows researchers to generate
strings from a database of published grammars, compute fea-
ture measures (e.g., Levenshtein distance) for each letter
string, and conduct a feature analysis on the strings using
linear mixed effects (LME) analyses. The LME analysis
solves the inflation of Type I errors that afflicts more common
methods of repeated measures regression analysis. Finally, the
software can generate a number of graphical representations
of the data to support an accurate interpretation of results. We
hope the ease and availability of these tools will encourage
researchers to take full advantage of item-level variance in

their datasets in the study of AGL. We moreover discuss the
broader applicability of the tools for researchers looking to
conduct feature analysis in any field.

Keywords Shiny application . Artificial grammar learning .

Feature analysis . Linearmixed effects analysis

The ability to learn the statistical regularities of language is a
hallmark of human cognition, and therefore of great interest to
cognitive scientists. However, the study of language learning
is greatly complicated by factors outside of experimental con-
trol: participants arrive to the laboratory with a unique and
unknown pattern of exposure to linguistic stimuli. To simplify
the problem, researchers often study how people learn novel
artificial languages that are constructed according to rules,
analogous to the grammars that define natural language. As
with natural language, passing exposure to an artificial lan-
guage is sufficient to produce behavior consistent with sensi-
tivity to its regularities.

One method of studying how people learn the grammatical
structure of an artificial language is the artificial-grammar learn-
ing (AGL) task (Miller, 1958; Reber, 1967). In the AGL task,
participants study letter strings composed according to the rules
of an artificial grammar (see Fig. 1). These rules specify which
letters can begin and end strings, as well as which letters can
follow one another from left to right. In a subsequent test phase,
participants are shown novel strings that either conform to (i.e.,
grammatical items) or violate (i.e., ungrammatical items) the
rules of the grammar, and they must provide a numerical judg-
ment of grammaticality for each test item. In a typical
judgment-of-grammaticality test, ratings may range from –
100 to +100, where a negative rating indicates that an item is
believed to be ungrammatical, and a positive rating indicates
that an item is believed to be grammatical.
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The typical findings in AGL experiments are that people
can discriminate unstudied grammatical from ungrammatical
items at a rate greater than chance, but that they cannot artic-
ulate the rules of the grammar or the basis of their judgments.
Whereas a 50-year database of AGL experiments demon-
strates that people can make this discrimination, how people
make this discrimination remains a point of contention. One
explanation is that participants implicitly internalize some of
the rules of the underlying grammar and judge the test strings
accordingly (e.g., Reber, 1967). A second explanation is that
participants learn about fragments in the training strings (e.g.,
bigrams and trigrams) and subsequently rate the test strings
according to their inclusion of those learned fragments (e.g.,
Perruchet & Pacteau, 1990). A third explanation is that partic-
ipants learn the individual training strings and subsequently
judge the test strings by their global similarity to the training
list (e.g., Vokey & Brooks, 1992). A fourth explanation is that
participants judge test strings by a combination of implicit
grammatical knowledge and similarity-based inference (e.g.,
McAndrews & Moscovitch, 1985).

The enduring difficulty in determining the basis of partici-
pants’ judgments stems not from the quantity of data collected,
but from the quality of the analysis applied to the data. An AGL
experiment with 50 participants, each providing judgments for
50 test items, yields 2,500 observations. Yet the standard ap-
proach to these data reduces the observations to just two num-
bers: the mean judgment for grammatical items, and the mean
judgment for ungrammatical items. At this coarse level of anal-
ysis, all of the above explanations of AGL provide plausible
accounts of the results. Consequently, a standard group-level
analysis of the data cannot distinguish between the competing
accounts; a more fine-grained analysis is necessary.

Consider the hypothetical test data in Table 1, which rep-
resent a plausible scenario in an AGL experiment. Although
the standard finding, that grammatical test strings are judged

as being more grammatical (M = 37.33) than ungrammatical
test strings (M = 21.00), is reproduced, the judgments of indi-
vidual items need not reflect this overall difference. In this
example, the lowest rating is given to a grammatical item,
whereas the second-highest rating is given to an ungrammat-
ical item. These potentially meaningful nuances in the judg-
ments of individual test strings are discarded in the group-
level analysis.

But, instead of discarding this information, researchers can
leverage it. Specifically, judgments of grammaticality for in-
dividual items can provide clues about the properties or fea-
tures of strings that guide performance. For example, it is
possible that the grammatical string TXXSVPVVT is judged
as ungrammatical because it much longer than most of the
training strings the participants studied. Likewise, it is possi-
ble that the ungrammatical string TXPVPT is judged as gram-
matical because it shares many bigrams (i.e., two-letter
chunks) with the grammatical training strings. Other examples
of string features proposed in the AGL literature include legal
entry into the grammar (Redington & Chater, 1996), global
similarity between the training and test strings (Vokey &
Brooks, 1992), and letter chunks of varying sizes that are
shared between the training and test strings (Perruchet &
Pacteau, 1990). Analysis of the features that guide perfor-
mance is not in itself a new idea. Indeed, the AGL literature
is replete with examples of factorial experiments designed to
tease apart the contributions of various string features, and
thereby distinguish between the several accounts of the phe-
nomenon (e.g., Jamieson, Nevzorova, Lee, &Mewhort, 2016;
Johnstone & Shanks, 2001; Kinder, 2000; Kinder & Lotz,
2009; Vokey & Brooks, 1992). Although the value of such
analyses cannot be denied, they are limited by the a priori
nature of their experimental design. Namely, the factorial de-
sign assumes that the strings are equivalent in all features
except those manipulated explicitly by the experimenter. Not
only does this assumption fail to consider the possibility of
confounding variables, it also limits experimenters to an anal-
ysis of only a small subset of the features that might define
their training and test strings. Even worse, a forced and artifi-
cial manufacturing of materials can cue participants to the
very features that define the orthogonalized list of materials

Fig. 1 A finite-state machine depicting the rules of an artificial
grammar. To generate a grammatical stimulus, one enters the
grammar at the leftmost node (marked 1) and follows the present-
ed paths (indicated by arrows) until reaching one of the exit
nodes on the right-hand side. When a path is taken, the associated
letter is added to the end of the string. Any string that cannot be
generated in this manner is ungrammatical

Table 1 Hypothetical test data from an artificial-grammar learning
experiment

Grammatical strings JOG Ungrammatical strings JOG

TXXSVPVVT –11 PPSVP 57

TXSX 51 TXPVPT 13

SPSX 72 TPXXSVPV –7

Mean 37.33 Mean 21.00

JOG = judgment of grammaticality, on a scale from –100 (ungrammatical)
to +100 (grammatical).
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(Higham & Brooks, 1997). In summary, this practice discards
information about the many other features that participants
may be using to make their judgments, beyond those under
direct examination.

We argue instead for an a posteriori feature analysis of
existing data, in which each of several features (e.g., glob-
al similarity, chunk similarity, legal entry) is measured for
each test string presented in an experiment. Those features
are subsequently entered as predictors of participants’
judgments in a regression analysis. The results of such a
feature analysis provide a more nuanced understanding of
AGL performance, allowing researchers to untangle the
bases of participants’ judgments and to understand their
judgments for novel strings.

We are not the first to argue for such an analysis. Lorch and
Myers (1990) proposed a method of fine-grained analysis in
repeated measures designs. In their analysis, each participant’s
score on some dependent variable is regressed on multiple
predictors, and hypothesis testing is conducted on the
resulting regression coefficients. Johnstone and Shanks
(1999) first introduced Lorch and Myers’s technique to the
AGL field, using it to discount the need for two distinct mech-
anisms guiding judgments, depending on the extent of expo-
sure to the underlying grammar. The method gained some
traction in the field (e.g., Scott & Dienes, 2008) but soon
was shown to be statistically unsound (Baayen, Davidson, &
Bates, 2008). In particular, the method fails to correctly parti-
tion variance, leading to an inflation of Type I error rates.
More recently, linear mixed effects (LME) analysis has
emerged within the field of psycholinguistics as a favored
alternative for item-level feature analysis (Baayen, 2008).
This method correctly partitions the total variability by
treating items as a random rather than a fixed effect, thereby
controlling Type I error inflation. Using LME analysis, re-
searchers can assess the extent to which different candidate
features of strings in an AGL experiment contribute to partic-
ipants’ judgments while maintaining the true Type I error rate
near the nominal level.

Despite its clear theoretical benefits, there are practical bar-
riers to implementing LME analysis. First, computing the fea-
tures of the test strings, such as measures of grammaticality
and similarity, by hand is time-consuming, tedious, and error-
prone. Moreover, these measures have been ill-defined in the
literature, such that the methods for computing them are not
agreed upon. Second, although LME analysis has proven to be
a statistically sound approach to feature analysis, the unfamil-
iarity of the method has hindered its widespread adoption
within psychology; LME is an advanced statistical technique
that is more difficult to understand than more familiar linear
multiple regression approaches. Although the latter ap-
proaches are not suitable, due to their inflation of the Type I
error rate, easily implemented alternatives for more advanced
techniques such as LME are not readily available.

With these practical barriers in mind, we have developed a
freeWeb-based software suite with the intention of promoting
feature analysis in AGL experiments. The AGSuite software
comprises three integrated modules, plus a fourth module that
computes a Lorch–Myers (1990) style analysis that we will
present later. The first module of AGSuite generates letter
strings that conform to the rules of a finite-state grammar,
drawing from either commonly used grammars in the litera-
ture or a user-defined grammar. A second module quickly and
reliably computes 18 commonly assessed letter string features
from lists of the training and test strings uploaded by the user
as text files. This module also contains a link to a descriptive
catalog of all 18 feature measures, as well as examples of the
calculations used. In this way, we have removed any uncer-
tainty as to the description or computation of the features.
Finally, a third module merges the generated feature measures
from the second module with the user’s original AGL dataset
and conducts LME analysis to determine the extents to which
the different features capture variability in the data. As we
mentioned above, LME analysis resolves the inflation of
Type I errors that standard linear regression and related ap-
proaches suffer (e.g., Lorch &Myers, 1990) by expanding the
error term with corrected variance partitioning. A full treat-
ment of LME analysis and variance partitioning is beyond the
scope of this article, but we invite the reader to refer to existing
texts (e.g., McCulloch & Searle, 2001; Searle, Casella, &
McCulloch, 1992); for a more applied focus, see Baayen
(2008), who provides instructions on conducting LME analy-
sis in the R computing language. Finally, the three modules
can be used in conjunction, allowing researchers to both gen-
erate AGL stimuli and conduct a complete feature analysis on
the collected data. Alternatively, the modules can be used
independently as needed. We believe that the ease and flexi-
bility of AGSuite will help researchers conduct more in-depth
analysis of their AGL data, leveraging variance in the profile
of item-level responding that is often ignored.

Artificial Grammar Suite (AGSuite)

AGSuite can be accessed online at https://mcook.shinyapps.
io/AG_suite/. The four interconnected modules can be
accessed via tabs at the top of the program. We describe the
use of each module in turn before providing a demonstration.
See Fig. 2 for screenshots of the program.

Generating strings

The Generate Strings module allows researchers to gener-
ate grammatical training and test strings from a database
of published grammars or from a user-defined grammar.
The left pane of the interface contains a dropdown menu
for selecting from existing grammars. When a grammar is
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selected, an accompanying diagram of the grammar ap-
pears (see Fig. 2A). Sliders allow researchers to define
the minimum and maximum lengths of strings, as well
as the number of strings to generate. If the desired number
of strings exceeds the number that can be generated with-
in the specified length range, a warning message notifies
the user. The main (right) pane of this module is a table of
the generated strings, which updates in real time as the
user changes the variables in the left-hand pane. Each
column is searchable and sortable. Once the set is con-
structed, the table can be saved as a comma-separated
value (.csv) file by clicking the BDownload^ button. The
file will be saved in the Web browser’s download folder.

Strings can also be generated from user-defined grammars
by uploading a .csv file that defines the legal characters in the
grammar as well as the legal transitions between them. A link
above the upload button provides instructions for generating
the matrix of a grammar, as well as an example of the format-
ting necessary for AGSuite to read it.

Computing feature measures

The Compute Feature Measures module computes feature mea-
sures for each letter string provided by the user (see Fig. 2B).1

The user uploads the training and test strings as text (.txt) files
with one string per line. Once the file is uploaded, each test item
is compared to all training items. Eighteen different measures can
be computed for each test item: string length; legal first letter;
minimum and mean Levenshtein distance; global and anchor
bigram, trigram, and overall associative chunk strength; bigram,
trigram, and overall chunk novelty; bigram, trigram, and overall
novel chunk proportion; first-order redundancy; and analogical
similarity. The checkboxes in the left-hand pane determinewhich
measures are displayed in the table to the right. The BMeasure
descriptions^ link contains a catalog of each measure’s descrip-
tion and example calculations for each (see the Appendix). Each
column of the measures table is searchable using the text box
below the columns, and sortable using the arrows above the
columns. Once the calculations are complete, users can down-
load a .csv file using the BDownload^ button at the bottom of the
left-hand pane. That file will be downloaded to the browser’s
download folder and can be viewed with any standard spread-
sheet program (e.g., Microsoft Excel, Apache OpenOffice, or
Google Docs). These computed feature measures can be used
as descriptive statistics to inspect the relationship between the test
and training items. However, in the context of AGSuite, these
measures serve as the predictors available to conduct an LME
analysis. They are directly available to the LME module, which
uses them to determine the extent towhich features correlate with
the profile of item-level judgments.

Conducting linear mixed effects analysis

The Linear Mixed Effects Analysis module (simply the LME
module hereafter) allows researchers to conduct an LME anal-
ysis (see Fig. 2C) using the feature measures (e.g., string
length, associative chunk strength) generated in the Compute
Feature Measures module just described. To conduct the anal-
ysis, the user uploads judgment-of-grammaticality data as a
.csv file using the button in the left-hand pane. These data
require three variables, such that each row contains a partici-
pant identifier, a test string, and the participant’s correspond-
ing grammaticality judgment for each test string (see Fig. 3).
Once the data are uploaded, three dropdown boxes in the left-
hand pane will be populated with the variable names from the
data file, such that the user can define the dependent variable,
the subjects variable, and the items variable from the dataset.
Similarly, a dropdown menu populated with the predictors
from the Compute Feature Measures module allows the user
to select which predictor(s) to include in the analysis.

The statistical analysis itself is conducted by the lme4 R
package (Bates, Maechler, Bolker, & Walker, 2015); our ad-
dition of an intuitive point-and-click method allows users to
quickly test different LME models without having to specify
the formulae describing the model. For instruction on using,
understanding, and troubleshooting issues with the lme4 pack-
age (such as convergence failures), we recommend that users
consult the lme4 package documentation, currently located at
https://cran.r-project.org/web/packages/lme4/lme4.pdf.

The main results pane of the LMEmodule has three subsec-
tions, accessed by tabs. The first subsection displays a summary
of the model being tested. The information of particular interest
to researchers analyzing AGL data is the list of regression co-
efficient estimates for each predictor, along with accompanying
t and p values, given in the table titled Fixed effects. This sum-
mary output also includes a description of the residuals from the
regression analysis, titled Scaled residuals, a table of variance
partitioning titled Random effects, and the correlations between
predictors, titled Correlation of Fixed Effects. The second sub-
section displays tables of the coefficients for each predictor as a
function of subjects, or a histogram for each individual subject’s
judgments of grammaticality. The third subsection display ta-
bles of the coefficients for each predictor as a function of test
items, or a histogram for each individual item’s judged gram-
maticality (Fig. 2D).

Lorch–Myers (1990) analysis

Although AGSuite provides a solution to known problems
with the Lorch–Myers (1990) technique for analyzing item-
level judgments in within-subjects designs (Baayen et al.,
2008), the Lorch–Myers method is still used in the literature.
Therefore, we included a fourth, optional module that con-
ducts an analysis of item-level judgments using Lorch and

1 This module is also available as a standalone R package, the source code for
which can be downloaded from https://github.com/cookm346/AGSuite.
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Myers’s technique. The purpose of including this module,
despite its known shortcomings, is twofold. First, its inclusion
allows researchers the option of using this more familiar re-
gression method for conducting feature analysis if they wish.
Second, it provides a familiar point of comparison for the
LME method.

This module uses the same data as the LME module and is
presented in a similar layout, inwhich users define the variables of
their dataset and the predictors to be used in the model from

dropdown menus. Unlike in the LME module, the main pane of
this module presents a subject-by-predictor table of regression
coefficients, including the R2, F, and p values for each subject’s
regression model. More critically, the table includes the outcomes
of single-sample t tests conducted on the coefficients for each
predictor over subjects. These t tests are the statistics needed to
decide whether each predictor included in the analysis is correlat-
edwith participants’ item-level judgments of grammaticality.2We
refer the reader to Lorch and Myers’s (1990) original article for
the details of the statistical method, and to Johnstone and Shanks
(1999) for an applied example of how the technique can be used
to conduct an a posteriori feature analysis of AGL data. As with
the LMEmodule, histograms for each subject and item are avail-
able via tabs at the top of the Lorch Myers Analysis module.

In summary, AGSuite is a set of four interconnected modules.
The Generate Strings module generates training strings that con-
form to the rules of a grammar defined by the user. The strings
can be generated either from grammars in the published AGL
literature or from a custom grammar uploaded to the program by
the user as a matrix. The Compute Feature Measures module
allows researchers to upload training and test string and generates
18 commonly used feature measures for each test string by com-
paring each against all of the training strings. The LME module
matches the features matrix generated by the Compute Feature
Measures module of the program with the judgment data to be
used in LME feature analysis. This module allows researchers a
point-and-click method of conducting feature analysis on their
original AGL data. The fourth module allows researchers to con-
duct a Lorch–Myers (1990) style analysis of their data for com-
parison against the LME results.

An empirical demonstration

The power of AGSuite comes from the ability to analyze
existing data in the original format and identify patterns in the
data that were either not asked about or not detectable by the
original analysis. Having described the program, we now turn
to a demonstration of how AGSuite can be used to conduct a
feature analysis that will enrich our understanding of existing
AGL data. The reader may follow along with the demonstration
at https://mcook.shinyapps.io/AG_suite_demo/.

Jamieson andMewhort (2010, Exp. 3) conducted a standard
artificial-grammar experiment in which 47 participants studied
20 grammatical training strings and then rated the grammatical-
ity of 50 test strings: 25 grammatical and 25 ungrammatical.
Each rating was collected on a scale ranging from –100
(ungrammatical) to +100 (grammatical). Jamieson and
Mewhort used the data to argue that an exemplar-based account

2 Although we present the features as predictors, it is important to note that the
a posteriori nature of the analysis supports a conclusion that the predictor
variable correlates with performance, but it cannot justify the conclusion that
participants used the feature to judge the test items.

Fig. 3 Screenshot of the required data format for AGSuite. Column A
identifies the subject (i.e., subject_ID). The subject identifiers can be in
any format the researcher chooses. Column B lists the test items judged
by each participant (i.e., test); the program requires one observation for
each item per participant, but the order in which the items are listed does
not need to be consistent across participants. Column C lists the
judgments of grammaticality (i.e., Judgement). Although column
headings are required so that the users of AGSuite can identify and
select those variables within the program, the particular column
headings that we present are arbitrary; the user can use whatever labels
are preferred. The data must be saved as a .csv file
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of implicit learning accounted for performance at the level of
individual items. However, whereas their analysis provided ev-
idence in favor of one predictor of performance, global similar-
ity, it failed to consider or rule out other potential predictors of
performance. More critically, their category-level analysis of
the data (i.e., by grammatical status) discarded a good deal of
the available information contained in the item estimates by
making group-level comparisons.

To remedy the problem, we reanalyzed Jamieson and
Mewhort’s (2010, Exp. 3) data using AGSuite. We first
uploaded the training and test strings from Jamieson and
Mewhort’s original study into the Compute Feature Measures
module as text files. We then uploaded their original data into
the LMEmodule as a .csv file. After specifying which variables
in the dataset corresponded to the subjects, items, and depen-
dent variable identifiers using the dropdown menus, we speci-
fied three measures to use as predictors of peoples’ judgments:
legal first letter (a binary value that indicates whether a test
string’s first letter matches the first letter of any studied training
string), string length (the number of letters in a test string), and
global bigram associative chunk strength (the similarity of a test
string’s two-letter chunks to those of all the training strings).

Panel C of Fig. 2 presents the summary output from the
analysis. As we described above, the main results pane pro-
vides a description of the residuals from the regression analy-
sis, a table of variance partitioning, and the correlations be-
tween predictors. The information of greatest interest to us is
outlined in the table titled Fixed effects, which provides esti-
mated coefficients for each predictor included in the model, as
well as the associated t and p values.

The results show that the legal entry predictor, which mea-
sures whether a test string includes a rule violation at the first
letter of the test items, was reliably correlated with judgments
of grammaticality, β = 19.68, p = .016. Thus, a rule violation
by the first letter of the string reduces judgments of grammat-
icality by 19.68 judgment units on average. This suggests that
participants are quite sensitive to rule violations at the begin-
ning of a string. In fact, Jamieson and Mewhort (2010) noted
in passing that test items beginning with a T or an S tended to
be rated as more grammatical than those beginning with other
letters, a fact consistent with their grammar, in which all of the
training items began with T or S (Fig. 2A shows the grammar
they used). By conducting a feature analysis, we not only
found statistical support for their observation, but also quan-
tified the effect in a way that was not possible with a blunt
group-level analysis.3

Likewise, global bigram associative chunk strength, a mea-
sure of bigram (i.e., two-letter chunk) similarity between the
training and test strings, was reliably correlated with judgments
of grammaticality, β = 6.17, p < .001. Thus, participant’s judg-
ments were correlated with differences in the frequencies with
which two-letter chunks appeared in the training strings. By
contrast, increasing the string length did not reliably affect judg-
ments of grammaticality, β = 0.04, p = .99. This is not surpris-
ing, given the restricted range of the test string length (i.e., 3 to
6); had there been test items that were drastically longer than
many of the training items, this feature might have correlated
very strongly with participants’ judgments.

In summary, whereas Jamieson andMewhort (2010) provid-
ed evidence that global similarity of the training and test strings
could account for participants’ overall performance in an AGL
experiment, their original analysis failed to exclude other pos-
sible explanations or to describe performance at a finer grain
than the group means (i.e., hits and false alarms). AGSuite, on
the other hand, allowed us to quickly and easily quantify the
extent to which a variety of test string features were correlated
with the judgments of grammaticality. Moreover, the obtained
predictor coefficients for the three predictors included in the
LME analysis can be used to make quantitative predictions
about how participants might respond to strings not presented
in the original experiment. More importantly, our approach
supports a more inclusive analysis of judgments, because it
does not require that the stimulus features of interest be includ-
ed in the a priori experimental design.

General discussion

Researchers have used the artificial-grammar learning task as a
simplified means of examining language acquisition (e.g.,
Miller, 1958; Reber, 1967). Yet, despite more than five decades
of demonstrations that participants can discriminate grammati-
cal from ungrammatical test strings, our understanding of how
they do so remains debated. We argue that this is not due to a
limitation of the data collected, but rather to the nature of the
analyses typically applied to AGL data.

In this article, we have presented AGSuite as a user-friendly
tool to conduct a more thorough and informative analysis of
item-level judgments of grammaticality. Our example reanaly-
sis of Jamieson and Mewhort’s (2010) data makes the point. In
a standard analysis, they were limited to the conclusion that
global similarity between the training and test strings allowed
participants to discriminate grammatical from ungrammatical
test items. By the feature analysis we presented, we compared
the influences of three string features to determine that both
legal entry and global bigram associative chunk strength were
correlated with judgments of grammaticality, whereas string
length was not. Once participants’ judgments are explained

3 As our example implies, the method is appropriate for an analysis with
continuous judgments of grammaticality. We recommend caution when apply-
ing the methods to categorical judgments of grammaticality. Although several
research groups have applied the Lorch–Myers (1990) technique to categorical
judgments, the same limitations apply to that variation on the technique, and
thus the same caution is warranted.
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and predicted at the level of string features, the group-level
predictions follow naturally.

Several research groups have approached the exploration
of features via experimental design, whereby the features of
strings are crossed factorially and their relative contributions
are gauged by group-level comparisons between the condi-
tions (e.g., Jamieson, Nevzorova, et al., 2016; Johnstone &
Shanks, 2001; Kinder, 2000; Kinder & Lotz, 2009; Vokey &
Brooks, 1992). Others have made use of alternative statistical
techniques that offer more fine-grained analyses. For instance,
the technique proposed by Lorch and Myers (1990) gained
some traction in the field of AGL (e.g., Johnstone & Shanks,
1999; Scott & Dienes, 2008) before it was shown to be statis-
tically unsound (Baayen et al., 2008). LME analysis has
emerged as a promising alternative to the Lorch–Myers tech-
nique, because it conducts feature analysis without inflating
the Type I error rate beyond the nominal level (Baayen, 2008;
McCulloch & Searle, 2001; Searle et al., 1992).

Critically, however, AGSuite simplifies what would other-
wise be an arduous task: Computing numerous feature mea-
sures for each test string is time-consuming and error-prone.
At the same time, the LME analysis is an unfamiliar and rela-
tively difficult statistical technique. AGSuite solves both prob-
lems with the ease of an intuitive Web-based user interface.
This freely provided suite of interconnected modules provides
a simple means of generating AGL test materials from a data-
base of known grammars, computing feature measures for each
test string, and conducting LME analysis to determine the ex-
tents to which those features are correlated with participants’
profiles of item-level judgments. By providing this set of tools,
we aim to highlight the value of feature analysis in AGL re-
search in particular and to provide an efficient, standardized,
and explicit means to encourage its systematic adoption.

Further applications of AGSuite

Although AGSuite was developed with the study of AGL in
mind, the suite’s structure provides a foundation that can be
modified to generalize its use to other domains of psycholog-
ical investigation. Below we outline domains that would ben-
efit from awareness and use of feature analysis, though we
emphasize that the potential applicability extends even further
beyond this handful of examples.

MacLeod, Gopie, Hourihan, Neary, and Ozubko (2010)
presented evidence that participants remember words that they
speak aloud better than words that they read silently—a phe-
nomenon called the production effect (see also Jamieson,
Mewhort, & Hockley, 2016; Jamieson & Spear, 2014). They
explained the memory benefit for spoken words as a benefit of
memorial distinctiveness conferred by the act of production
(cf. Bodner, Taikh, & Fawcett, 2014). Feature analysis can be
applied to data from experiments on the production effect to
identify the features that participants encode when they

produce a word, as compared to the features that they encode
when they read but do not produce a word. For example, it
may be that phonological features predict memory for pro-
duced words, whereas orthographic features predict memory
for words read silently. To solve the issue, one can correlate
the item-level recognition judgments with phonological and
orthographic features of the training and test words.

Feature analysis might also help uncover the basis for de-
cisions in recognition memory experiments. For example, one
might use the technique to identify the stimulus properties to
which participants attend (e.g., word frequency, concreteness,
or imageability) as a function of the study instructions. The
technique might also be used to reevaluate the levels-of-
processing theory (e.g., Craik & Lockhart, 1972) by identify-
ing the features that participants attend to and encode under
shallow- versus deep-processing instructions. A corollary of
using feature analysis in such circumstances is a redefinition
of verbal concepts, such as distinctiveness or deep processing,
in terms of specific and quantifiable predictors already avail-
able in databases such as the MRC Psycholinguistic
(Coltheart, 1981) and the SUBTLEX-UK (Van Heuven,
Mandera, Keuleers, & Brysbaert, 2014) databases.

The applicability of the tool, of course, is not limited to
memory. Consider an analysis of perceptual judgment tasks.
One might, for example, collect participants’ judgments of
visual patterns (e.g., preference judgments) and subsequently
use feature analysis to identify which stimulus variables (e.g.,
symmetry, complexity, and density) predict judgments across
items. The same analysis could examine preferences, or any
other ratings, concerning auditory patterns, tactile patterns,
tastes, or odors.

Finally, feature analysis can be especially valuable to those
who conduct experiments on populations that are difficult to
recruit or that are time-consuming and costly to study.
Consider, for instance, studies of language acquisition in in-
fants, a demographic that is notoriously difficult to recruit and
from which only a handful of responses can be collected (e.g.,
Ko, Soderstrom, & Morgan, 2009). Rather than taking the
mean of responses across such participants, thereby discarding
the bulk of the hard-earned data, researchers can leverage the
full set of responses, using feature analysis to uncover patterns
that would be otherwise difficult to detect.

In all instances, AGSuite offers an excellent foundation
from which other applications can build. Consider experi-
ments that make use of natural linguistic stimuli. The
Generate Strings module of AGsuite currently generates test
strings based on the rules of a preselected artificial grammar,
in line with a string length range specified by the user. To
generate natural linguistic stimulus sets, the program could
be altered to select words from a psycholinguistic database,
in line with ranges of familiarity, concreteness, imageability,
or other factors specified by the user. Similarly, the Generate
Feature Measures module of AGSuite currently compares test
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and training items on the basis of letter and chunk similarity
metrics common in the AGL literature. AGSuite could easily
be modified to extract feature measures from existing linguis-
tic databases, such as SUBTLEXus (Brysbaert, & New,
2009), the English Lexicon Project (Balota et al., 2007), or
various age-of-acquisition ratings (e.g., Kuperman,
Stadthagen-Gonzalez, & Brysbaert, 2012). Alternately, mea-
sures of similarity could be computed from the semantic sim-
ilarity of words imported from vector space models such as
latent semantic analysis (Landauer & Dumais, 1997),
BEAGLE (Jones & Mewhort, 2007), or HAL (Burgess &
Lund, 2000). Because it pulls directly from the generated fea-
ture measures, the Linear Mixed Effects Analysis module of
AGSuite would require no major alteration in order to accom-
modate data from any domain, provided that the data were
correctly formatted.

No matter the particular research question, a good ex-
periment yields rich information about the very complex
processes underlying cognition and behavior. The practice
of averaging responses over items to obtain group means
may serve a useful simplifying function, but it discards
valuable data and consequently limits our understanding
of the complexities of the problems we are studying.
There are a number of domains in which the LME tech-
nique can help us make use of item-level responses. In the
domain of AGL, the issue was noted by Dienes in 1992 and
adopted in analyses by Jamieson and Mewhort (2010) and
Jamieson, Vokey, and Mewhort (2017). But, as we have
outlined, the same techniques can help researchers make
progress in investigations of learning, memory, and other
domains.

It is time we made full use of the data we have collected.
This argument is in line with the statistical techniques put
forward by Lorch andMyers (1990), and subsequently refined
by Baayen (2008) and others. Although we have not further
developed their statistical arguments, we have brought their
analytic techniques into practical use by providing a software
suite that solves both technical and computational problems
for researchers. It is our hope that offering AGSuite as a free
and user-friendly Web-based tool will raise awareness of the
value of feature analysis in AGL and other cognitive domains,
and will encourage researchers to consider item-level as well
as group-level measurements of their data.

Author note This research was supported by a University of Manitoba
Undergraduate Research Award toM.T.C., an NSERC PGS-D to C.M.C.,
and an NSERC Discovery Grant to R.K.J.

Appendix

For all measures other than string length and first-order redundan-
cy, each test string is compared to all strings in the training list.

String Length
The number of characters in a particular string.
Legal Entry
BIs the first letter of this test string the first letter in any

training strings?^
The entry (i.e., first) letter of all the training strings is de-

termined and the software reports if each test string’s first
letter appears as the first letter in any of the training strings.
To the extent that first letters in the training strings cover all
legal first letters as defined by the grammar, the measurement
indicates if the string enters by an illegal route.

Note that this measure is a binary variable, where 0 = illegal
entry and 1 = legal entry.

Min Levenshtein (Vokey & Brooks, 1992)
BHow similar is this test string to the next most similar

training string?^
This is calculated by determining the Levenshtein (edit)

distance of a particular test string with all training strings
and then reporting the lowest Levenshtein distance.
Although we use the more general term from computer sci-
ence (i.e., Levenshtein distance), the measure is formally
equivalent to Vokey and Brooks’s (1992) measurement called
edit distance.

Example:
The test string AAC would be compared to all training

strings. The Levenshtein distances for the test string AAC
with each of the following training strings would be:

ABC: 1

The letter B is substituted for the second A in the
training string.

CBA: 3

The letter B is deleted from the training string resulting in
CA. Then, the C and A in CA are substituted resulting in AC.
Finally, the insertion of an A results in AAC.

ABCDEF: 4

Deletions of the last 3 letters D, E, and F, as well as one
substitution of the B to an A is required to edit the training
string ABCDEF to the test string AAC.

The minimum Levenshtein distance between AAC and the
study list ABC, CBA, and ABCDEF is equal to 1.

Mean Levenshtein (Vokey & Jamieson, 2014)
BHow similar is this test string on average, to all

training items?^
This is calculated by determining the Levenshtein (edit)

distance of a particular test string with each training string
and then averaging those Levenshtein distances.

Example:
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Using the examples from the min Levenshtein distance
above, the mean Levenshtein distance for the test string
AAC with the trainings strings ABC, CBA, and ABCDEF is
((1 + 3 + 4)/3) = 2.67.

Global Bigram Associative Chunk Strength (ACS;
Johnstone & Shanks, 2001; Knowlton & Squire, 1996)

BHow many times do this test string’s bigrams (two letter
strings), relative to the number of bigrams in the test string,
occur in any of the training strings?^

Each test string is decomposed into its bigrams. The num-
ber of times a test string’s bigrams occur in any of the training
strings is summed and then divided by the number of bigrams
in that particular test string.

Example:
The test string ABCD is decomposed into three bigrams

AB, BC, and CD.
Comparing ABCD to the following training strings,

we count the number of times each bigram occurs in
any training string:

ABC: 2 (AB, BC)
ABCDEF: 3 (AB, BC, CD)
ACDE: 1 (CD)
Total: 6
Test string’s number of bigrams: 3
Global bigram ACS: 6/3 = 2

Global Trigram ACS
BHow many times do this test string’s trigrams (three letter

strings), relative to the number of trigrams in the test string,
occur in any of the training strings?^

Each test string is decomposed into its trigrams. The num-
ber of times a test string’s trigrams occur in any of the training
strings is summed and then divided by the number of trigrams
in that particular test string.

Example:
The test string ABCD is decomposed into two trigrams of

ABC and BCD.
Comparing ABCD to the following training strings, we count

the number of times each trigram occurs in any training string:

ABC: 1 (ABC)
ABCDEF: 2 (ABC, BCD)
ACDE: 0
Total: 3
Test string’s number of trigrams: 2
Global trigram ACS: 3/2 = 1.5

Global ACS
BHow many times do this test string’s bigrams (two letter

strings) or trigrams (three letter strings) occur in any of the
training strings?^

First Global Bigram ACS and Global Trigram ACS are
calculated. Global ACS is a sum of these two measures.

Anchor Bigram ACS
BHow often do a test string’s first and last bigrams (two

letter strings) appear as the first and last bigrams in the training
strings?^

The number of times a test string’s first and last bigram
occur as the first and last bigrams in any of the training strings
is summed and then divided by two.

Example:
The test string ABCD has anchor bigrams of AB and CD.
Comparing ABCD to the following training strings, we

count the number of times each bigram occurs as the first
and last bigrams in all training strings:

ABCE: 1 (AB)
ABCDEF: 1 (AB)
ACDE: 0
Total: 2
Test string’s number of anchor bigrams: 2
Anchor Bigram ACS: 2/2 = 1

Anchor Trigram ACS
BHow often do a test string’s first and last trigrams (three

letter strings) appear as the first and last bigrams in the training
strings?^

The number of times a test string’s first and last trigram
occur as the first and last trigrams in all of the training strings
is summed and then divided by two.

Example:
The test string ABCD has anchor trigrams of ABC

and BCD.
Comparing ABCD to the following training strings, we

count the number of times each trigram occurs as the first
and last bigrams in any training string:

ABCE: 1 (ABC)
ABCDEF: 1 (ABC)
ACDE: 0
Total: 2
Test string’s number of anchor trigrams: 2
Anchor Trigram ACS: 2/2 = 1

Anchor ACS
BHow often do a test string’s first and last bigrams (two

letter strings) or trigrams (three letter strings) appear as the
first and last bigrams in the training strings?^

First Anchor Bigram ACS and Anchor Trigram ACS are
calculated. Anchor ACS is a sum of these two measures.

Bigram Novelty
BHow many of the bigrams (two letter strings) in this par-

ticular test string are NOT in any training strings?^
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Bigram Novelty is a measure of the number of bigrams in a
test string that do not occur in any of the training strings.

Example:
The test string ABCDEF decomposed into its five bigrams:

AB, BC, CD, DE, and EF. Each of the bigrams is checked
against each of the following three training strings:

ABC: 2 (AB, BC)
ABDC: 0 (AB – repeat)
ACDE: 2 (CD, DE)

Four of the five bigrams from the test string are ob-
served in the training strings. Therefore, one of the five
bigrams of the test string ABCDEF were not observed in
the training strings (EF). The Bigram Novelty of the test
string ABCDEF with the training strings ABC, ABDC, and
ACDE is therefore 1.

Trigram Novelty
BHow many of the trigrams (three letter strings) in this

particular test string are NOT in any training strings?^
Trigram Novelty is a measure of the number of trigrams in

a test string that do not occur in any of the training strings.
Example:
The test string ABCDEF is decomposed into its four tri-

grams: ABC, BCD, CDE, and DEF. Each of the trigrams is
checked against each of the following three training strings:

ABC: 1 (ABC)
ABDC: 0
ACDE: 1 (CDE)

Two of the four trigrams from the test string are observed in
the training strings (ABC, CDE). Therefore, two of the four
trigrams of the test string ABCDEF were not observed in the
training strings (BCD and DEF). The Trigram Novelty of the
test string ABCDEF with the training strings ABC, ABDC,
and ACDE is therefore 2.

Chunk Novelty
BHow many of the bigrams (two letter strings) or trigrams

(three letter strings) in the test string are NOT in any training
strings?^

First Bigram Novelty and Trigram Novelty are calculated.
Chunk Novelty is a sum of these two measures.

Bigram Novel Chunk Proportion (NCP)
BHow many of the bigrams (two letter strings), relative to

the test string’s length, are NOT in any training strings?^
Bigram NCP is a sum of all the times a bigram occurs in a

test string when that bigram does not occur in any of the
training strings (bigram novelty) divided by the number of
that particular string’s bigrams (i.e., the number of letters a
string has minus one).

Example:

The test string ABCDEF decomposed into the five
bigrams: AB, BC, CD, DE, and EF. Each of the bigrams is
checked against each of the following three training strings:

ABC: 2 (AB, BC)
ABDC: 0 (AB – repeat)
ACDE: 2 (CD, DE)

Four of the five bigrams from the test string are observed in
the training strings. Therefore, one of the five bigrams of the
test string ABCDEF were not observed in the training strings
(EF). The Bigram NCP of the test string ABCDEF with the
training strings ABC, ABDC, and ACDE is 1/5 = 0.2.

Trigram NCP
BHow many of the trigrams (three letter strings), relative to

the test string’s length, are NOT in any training strings?^
Trigram NCP is a sum of all the times a trigram occurs in a

test string when that trigram does not occur in any of the
training strings (Trigram Novelty) divided by the number of
that particular string’s trigrams (i.e., the number of letters a
string has minus two).

Example:
The test string ABCDEF is decomposed into its four tri-

grams: ABC, BCD, CDE, and DEF. Each of the trigrams is
checked against each of the following three training strings:

ABC: 1 (ABC)
ABDC: 0
ACDE: 1 (CDE)

Two of the four trigrams from the test string are observed in
the training strings (ABC, CDE). Therefore, two of the four
trigrams of the test string ABCDEF were not observed in the
training strings (BCD and DEF). The Trigram NCP of the test
string ABCDEF with the training strings ABC, ABDC, and
ACDE is 2/4 = 0.5.

NCP
BHow many of the bigrams (two letter strings) or trigrams

(three letter strings) in this particular test string are NOT in any
training strings?^

First Bigram NCP and Trigram NCP are calculated. Chunk
Novelty is a sum of these two measures.

First-Order Redundancy (Jamieson, Nevzorova,
et al., 2016)

BHow predictable are the bigrams (two letter strings) in this
particular test string?^

The test string is first decomposed into its bigrams and the
probability of each bigram appearing in the string is comput-
ed. First-Order Redundancy measures the predictability of the
bigrams in the test string, by computing the complement of the
average information relative to the maximum information
possible defined as a string of the same length made up of
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all unique letters (i.e., the denominator in the following for-
mula),

R1 ¼ 1−

−
Xm

i¼1

Xm

j¼1

pi jlog2 pi j
� �

log2 n−1ð Þ
where, p is the probability of each bigram, m is all possible
letters A…Z, and n is the length of the string. Redundancy
ranges from 0 (not at all redundant/predictable) to 1
(completely redundant/predictable).

Example:
The test string ABABABAB is decomposed into two

bigrams: AB and BA. AB occurs four times and BA occurs
three times, with seven bigrams total. This results in the prob-
abilities of 0.57 and 0.43 for AB and BA, respectively. Using
the first-order redundancy formula from above results in:

R1 ¼ 1−
− 0:57*log2 0:57ð Þ þ 0:43*log2 0:43ð Þ½ �

log2 8−1ð Þ ¼ 0:65

As another example, the test string BBBBBBBB is
decomposed into one bigram: BB that occurs seven times, with
seven bigrams total. This results in a probability of 1 for BB.
The first-order redundancy using the formula above results in:

R1 ¼ 1−
− 1*log2 1ð Þ½ �
log2 8−1ð Þ ¼ 1

Analogical Similarity (Brooks & Vokey, 1991)
BIgnoring surface structure, how often does the pattern of

symbols in this test string appear in all training strings?^
This measure computes the number of training strings that

have an identical analogous pattern to the test string.
Example:
The pattern of the test string CBBA can be abstracted to a

pattern of 1223. This pattern is checked against all training
strings. The number of training strings that contain this pattern
is the Analogical Similarity:

ABCD: (pattern: 1234, match: no)
BAAC: (pattern: 1223, match: yes)
AABC: (pattern: 1123, match: no)

The Analogical Similarity for the test string CBBA compared
to the training strings ABCD, BAAC, and AABC is therefore 1.
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