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Abstract We report a new multidimensional measure of vi-
sual complexity (GraphCom) that captures variability in the
complexity of graphs within and across writing systems. We
applied the measure to 131 written languages, allowing com-
parisons of complexity and providing a basis for empirical
testing of GraphCom. The measure includes four dimensions
whose value in capturing the different visual properties of
graphs had been demonstrated in prior reading research—(1)
perimetric complexity, sensitive to the ratio of a written form
to its surrounding white space (Pelli, Burns, Farell, & Moore-
Page, 2006); (2) number of disconnected components, sensi-
tive to discontinuity (Gibson, 1969); (3) number of connected
points, sensitive to continuity (Lanthier, Risko, Stolz, &
Besner, 2009); and (4) number of simple features, sensitive
to the strokes that compose graphs (Wu, Zhou, & Shu, 1999).
In our analysis of the complexity of 21,550 graphs, we (a)
determined the complexity variation across writing systems
along each dimension, (b) examined the relationships among
complexity patterns within and across writing systems, and (c)
compared the dimensions in their abilities to differentiate the
graphs from different writing systems, in order to predict hu-
man perceptual judgments (n = 180) of graphs with varying

complexity. The results from the computational and experi-
mental comparisons showed that GraphCom provides a mea-
sure of graphic complexity that exceeds previous measures in
its empirical validation. The measure can be universally ap-
plied across writing systems, providing a research tool for
studies of reading and writing.
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The world’s writing systems contain graphs that span a wide
variety of visual forms. Much of this variety is associated with
variable mappings that graphic units can have to linguistic
units (abjad, alphabetic, syllabary, alphasyllabary, and
morphosyllabary). This mapping variety has been the focus
of comparative reading research (e.g., universal grammar of
reading, Perfetti, 2003; phonological grain size, Ziegler &
Goswami, 2005; orthographic depth, Katz & Frost, 1992;
semantic transparency, Wydell, 2012; for reviews, see Frost,
2012; Perfetti & Harris, 2013; Seidenberg, 2011). The actual
forms of the graphic units have received less attention.
However, the visual forms of graphs—reflecting their visual
complexity and discriminability—have the potential to affect
the identification of both individual graphs and graph combi-
nations (e.g., single letters and letter combinations in alpha-
bets and abjads, akshara in alphasyllabaries, syllables in syl-
labaries, and characters in morphosyllabaries; Pelli, Burns,
Farell, & Moore-Page, 2006), and thus to affect learning to
read.

To study the effects of graphic challenges to learning to
read in a universal way, free of biases based on a particular
writing system, it is important to have a measure of graphic
complexity that is sensitive to the variety of devices used in
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writing. We report here such a measure, a multidimensional
measurement system for quantifying graphic complexity,
GraphCom, and its application to 131 written languages. We
demonstrate the value of the system in predicting similarity
ratings made by speakers of different languages.

In what follows, we first discuss the broader context for
descriptions of graphic units, delineating the units that are
the object of our study and reviewing previously developed
measures of graphic complexity (i.e., perimetric complexity:
Pelli et al., 2006; Watson, 2012) and considering perceptual
principles in human cognition. We then present the rationale
and descriptions of our new multi-dimensional measure, the
results of applying the measure to 131 languages, and the
performance of the measure in predicting visual similarity
judgments.

Graphic units: Graphs and graphemes

It is common in alphabetic reading research to refer to a graph-
eme as the basic unit of writing—in particular, one or more
letters that map onto a single phoneme. Such a definition lacks
both universality (e.g., Chinese characters do not map to pho-
nemes) and also departs from the logic of linguistic descrip-
tions. A definition of grapheme that conforms to linguistic
analysis by being parallel to descriptions of phoneme and
morpheme is this: a grapheme is a functional unit of writing
that abstracts over variations in graphs—allographs; for in-
stance, all the fonts for the letter b that exist at in a given
language. The unit is functional in that the grapheme is the
minimal graphic unit distinguishing two written morphemes,
thus analogous to the phoneme, which distinguishes two spo-
ken morphemes. For example, in English all letters are graph-
emes as well as graphs, because all letters distinguish among
written English morphemes. According to this definition, the
functional role of graphemes does not depend on mapping to
phonemes, as attested by the contrast between homophonic
morphemes such as buy/bye and reel/real. This technical def-
inition of grapheme also includes nonletter graphemes such as
the apostrophe, which distinguishes teacher’s from teachers.
What counts as a grapheme is language-dependent even with-
in a writing system. Thus, a capital letter and a lowercase letter
seem to be allographs of a single grapheme in English, but
probably not in German, where capitalization distinguishes
between grammatically derived morphemes (Wissen as noun
vs. wissen as verb). This sense of a grapheme as a
distinguisher of written morphemes is more systematic and
universal than the commonly used definition in the English
language research literature. Thus, it applies to Chinese as
well, where a character is a grapheme as well as a morpheme
and distinguishes between multimorpheme words.

For purposes of measuring graphic complexity, our view is
that the common psychological use of Bgrapheme,^ which

originated in alphabetic research, is too narrow. However,
the more universal linguistic definition requires a detailed
morphological analysis of each written language, a goal that
is beyond the scope of our research. These issues of the def-
inition of grapheme have led us to focus instead on the min-
imal unit of the graph, a written form that can be combined
with other graphs to form graphemes (in any sense of graph-
eme). These graphs are readily recognized by literate users of
a language as basic writing units—several thousand characters
in Chinese, 26 letters in English, 33 letters in Russian, and 46
kana in the Japanese syllabaries—that are combined to pro-
duce written language, whatever their mapping. Most impor-
tant is that a metric based onwriting graphs (rather than graph-
emes) can be applied to any written language according to the
goals of a researcher. For an English example, the complexity
measure applied to the letters S and H separately can also be
applied to the combination SH if one wants to measure
Bgrapheme^ complexity.

Writing graphs, as a culture product, are different
from other visual categories

Every writing graph (henceforth, simply Bgraphs^) is a basic,
two-dimensional visual form that participates alone or in com-
bination in coding a linguistic unit (e.g., phoneme, syllable, or
morpheme). In the information they convey, these graphic
forms are different from other visual categories such as natural
scenes, objects, and faces, but similar to line drawings
(Changizi, Zhang, & Shimojo, 2006). Scenes carry more com-
plex information about color, texture, shading, illumination,
and occlusion (Sayim & Cavanagh, 2011). Objects, similar to
scenes, provide more information about three-dimensional
space, depth, and texture than line drawings. Faces, although
they are composed with fewer elements than scenes and ob-
jects, are still more complex than line drawings because faces
are usually seen frommany viewpoints. In contrast, line draw-
ings are simple. Because their complexity varies along fewer
visual dimensions, indices that are useful for natural visual
categories—for example, entropy on information, Fourier
analysis on spatial-frequency, JPEG compression for size of
an image (see Chikhman, Bondarko, Danilova, Goluzina, &
Shelepin, 2012)—are not applicable.

Although graphs and line drawings share the general prop-
erties of two-dimensional simplicity, graphs become differen-
tiated from line drawings with the earliest emergence of liter-
acy contexts. Letters, the graphs used in alphabetic systems
for examples, are differentiated from line drawings by chil-
dren by the age of three (Levin & Bus, 2003; Robins &
Treiman, 2009). For English-speaking young children, pre-
schoolers 3–5 years of age who are preliterate have some
understanding that a written word represents a specific spoken
word, differing in this way from a drawing (Treiman,
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Hompluem, Gordon, Decker, & Markson, 2016). Moreover,
these children are sensitive to the visual spatial layout of their
own writing system, as compared to foreign writing systems
(Treiman, Mulqueeny, & Kessler, 2014). When they are asked
what writing is, these young children are more likely to choose
sets of graphs from their own language (i.e., English) as in-
stances of writing than graphs in other languages (e.g.,
Chinese characters; Lavine, 1977). These observations point
to a categorical importance of graphs, as they becomes a func-
tionally distinct perceptual objects in learning to read.

Previous measures of graphic complexity

One well-defined and well-attested dimension for quantifying
graphs is perimetric complexity (Pelli, Bums, Farell, &
Moore-Page, 2006): the ratio of the square of the sum of the
inside and outside perimeters to the product of 4π and the area
of the foreground (Pelli et al., 2006; Watson, 2012; see
Tables 1 and 2 for examples, and the Method section for the
algebraic expression).More informally, perimetric complexity
captures the density of the written marks (Bblack ink^) relative
to the background space in which they are located. Perimetric
complexity has some valuable characteristics. First, it is ob-
jective, quantitative, and size-invariant. Thus, its values are
not affected by font size. Second, it is empirically tested and
correlates well with other subjective measures, such as pattern

goodness and information load (for a discussion, see Jiang,
Shim, & Makovski, 2008). Third, it is computerized, and the
algorithm can be used for binary-code (black-and-white) im-
ages (Watson, 2012), making it a tool that is general across
visual categories.

Pelli et al. (2006) applied perimetric complexity to a range
of graphs and demonstrated that perimetric complexity is in-
versely proportional to graph identification efficiency.
Specifically, they sampled graphs across a wide range of writ-
ten languages (i.e., Arabic, Armenian, Chinese, Devanagari,
English, and Hebrew) and different fonts (e.g., Bookman,
Couier, Helvetica, Kustler, and Sloan). They asked partici-
pants (ranging from 3 to 68 years of age) to look at a briefly
displayed graph and then to identify it from a list of graphs in
the given language. Graphic complexity was negatively cor-
related with human identification efficiency. Given the reli-
ability and validity of perimetric complexity, it became a use-
ful measure for controlling the complexity of stimuli in studies
on learning to read (e.g., Liu, Chen, & Wang, 2016; Wang,
McBride-Chang, & Chan, 2014; Yin & McBride, 2015).

Research on the relation between visual complexity and
learning to read across writing systems suggests that learning
to read more visually complex first language (L1) may require
higher visual skills and may, in turn, strengthen such skills. In
particular, a series of studies by Nag and colleagues provided
evidence that visual skills required for reading Indian lan-
guages tend to be relatively high as compared with alphabetic

Table 1 Comparison of two graphs in terms of their visual complexity

English Graph (Alphabet) Thai Graph (Alphasyllabary)

Perimetric Complexity (PC) 13 13

Number of Disconnected Components (DC) 1 2

Number of Connected Points (CP) 3 2

Number of Simple Features (Strokes) (SF) 4 4

Table 2 Five graphs with complexity values using GraphCom, the measurement system with four dimensions

Writing system Abjad Alphabet Syllabary Alphasyllabary Morphosyllabary

Written language Hebrew Russian Cree Telugu Chinese

Example graph

PC 5.16 7.83 12.04 18.06 20.85
DC 1 1 3 3 1
CP 1 1 3 2 14
SF 2 2 6 5 9

PC = perimetric complexity, DC = number of disconnected components, CP = number of connected points, SF = number of simple features
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languages (e.g., Nag, 2008; Nag & Snowling, 2011; Nag,
Snowling, Quinlan, & Hulme, 2014; Nag, Treiman, &
Snowling, 2010). These high demands come from the large
number of graphs in these Bextensive^ written languages
(Nag, 2007, 2014) and impose a strong influence on the pace
of learning to read (Nag, Caravolas, & Snowling, 2011). It is
possible that meeting the higher learning demands imposed by
visually complex writing systems leads to improved visual
skills: in a cross-writing-system study (McBride-Chang
et al., 2011), children learning to read traditional Chinese
outperformed age-matched kindergarteners who were learn-
ing to read less complex languages (Hebrew and Spanish) in
a visual–spatial processing task. Similarly, in a comparison of
8- to 14-year-old readers of Chinese and Greek, controlling for
reading experience, Chinese readers of all ages outperformed
their age-matched Greek counterparts on visual-spatial pro-
cessing (Demetriou et al., 2005). Collectively, these findings
underscore the importance of visual complexity of graphs re-
garding their roles in impacting learning to read across writing
systems.

Complexity characteristics in different writing
systems

Not all characteristics of graphs found to be important in read-
ing research are captured by perimetric complexity. There are
many examples of two graphs that share the same value in
perimetric complexity, while differing substantially in other
ways. For instance, in Table 1, perimetric complexity quan-
tifies both the graph <w> (an English letter) and the graph
< > (a Thai letter) as 13; however, the two graphs have
salient visual differences in their numbers of disconnected
components (i.e., <w> has one component, and < > has
two components), and thus also in their numbers of connected
points; <w> has three points, each composed by two lines, and
< > has two connected points, each composed by one circle
and one line.

Variation in disconnected components is typical for
alphasyllabaries, and variation in numbers of connected points
is typical for alphabets. The numbers of connected points in
letters of the Roman alphabet used in English (e.g., line ter-
minations in <R>) are the features most critical in letter iden-
tification (Fiset et al., 2008). In alphasyllabaries, letters featur-
ing disjointed components (e.g., the Thai letter < >) are
highly associated with visual confusion in early literacy
(Winskel, 2010). However, it is unclear whether the number
of connected points, an important factor in the recognition of
alphabetic writing, also affects letter identification in an
alphasyllabary; similarly, we do not knowwhether the number
of disconnected components, a salient measure in an
alphasyllabary, plays a role in early alphabetic literacy.

In the morphosyllabic system for Chinese languages, the
number of strokes (usually defined as a one-timemovement of
pen) has been long used as a complexity index with demon-
strated psychological reality. For instance, Su and Samuels
(2010) report that, in a Chinese character recognition task,
response latencies to characters increased with the number
of strokes for Chinese-speaking second-graders. In a study
of Japanese kanji, Tamaoka and Kiyama (2013) found that
both lexical decision times and naming depended on the num-
ber of strokes as well as on kanji frequency. Chinese character
reading studies have also examined (and experimentally con-
trolled) the number of strokes in both simplified (Wu, Zhou, &
Shu, 1999) and traditional (Y. P. Chen, Allport, & Marshall,
1996) Chinese. Although all writing varies in the number of
strokes, this measure remains unapplied to any writing system
other than Chinese.

To examine complexity characteristics of graphs in dif-
ferent written languages and to examine and compare
reading and writing across writing systems, a general,
multidimensional measure that can apply to all writing
systems is needed.

Gestalt principles for perceptual organization
of graphs

Some of the features highlighted in research (i.e., numbers of
disconnected points, connected components, and strokes, re-
spectively) seem to echo principles of the perceptual organiza-
tion of relations among visual components (proximity, symme-
try, convexity, closure, connectedness, and continuation) that
were emphasized in Gestalt theory (Koffka, 1935/1963). These
principles were proposed as a partial answer to the question of
how individual elements group into parts that then group into
the larger perceptual object that is separated from other percep-
tual objects (Ehrenstein, 2008; Spillmann & Ehrenstein, 2004).
For example, continuation affords clues to the relationship be-
tween simple features (Biederman, 1987), and connectedness is
sensitive to information regarding continuity (Lanthier, Risko,
Stolz, & Besner, 2009). In contrast, discontinuity highlights
relations between more complex features.

An emphasis on continuity and discontinuity echoes the
criteria for making a well-designed written language sug-
gested by Watt (1983, 1994; see also Treiman & Kessler,
2011). Watt argued that shapes in such written language
should be (1) similar, or have a degree of homogeneity; (2)
contrasting, or distinguishable from one to another; (3)
economical, or easy to perceive and produce; (4) redundant;
(5) attractive; and (6) expressive. The systematicity of graph
shapes was also emphasized by Treiman and Kessler (2014),
who observed that, across writing systems, there is a tendency
for graphs to look similar. This similarity may reflect basic
principles of learning, one of which is that learners abstract
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patterns that hold across a set of graphs and use these patterns
to supplement their memory for individual graphs.

Consideration of the different ways in which graphs vary
across writing systems led us to develop a new measure that
uses these different complexity-related variations, while also
building on perimetric complexity. This measure, GraphCom,
consists of four dimensions: perimetric complexity, number of
disconnected components, number of connected points, and
number of simple features (strokes). We applied this visual
complexity measure to a large number of written languages,
representing all five of the major writing systems. To the best
of our knowledge, this is the first attempt to apply multidi-
mensional complexity measures to quantify a larger number
of graphs, in order to provide a valid tool to study the visual
forms of those graphs.

The graph complexity measure, GraphCom

GraphCom includes four dimensions of graph measurement.
The three dimensions added to perimetric complexity are
quantified by the following basic units: A simple feature, fol-
lowing Pelli et al.’s (2006) definition, is a discrete element of
an image that can be discriminated independently from other
features. For example, <T> has two simple features, a vertical
segment and a horizontal segment. A connected point (or a
junction) is an adjoining of at least two features. For example,
<T> has one (the junction of the horizontal line and the verti-
cal line) and <F> has two connected points (the junctions of
one vertical line with two horizontal lines). A disconnected
component is a simple feature that is not linked to other fea-
tures in a set. For example, disconnected components are
shown, respectively, in <i> (the dot and the vertical line) and
< > (the horizontal line on the top and the integral compo-
nent at the bottom). Given these basic definitions, we can
describe our four dimensions:

Perimetric complexity (PC) PC is the ratio of the squared
perimeter of a graph (number of pixels) to the number of

background pixels in the graph. Specifically, PC is P2

A4π , the
square of the sum of the inside and outside perimeters of the
foreground (P), divided by the foreground area (A), divided
by 4π (Pelli et al., 2006; Watson, 2012). For example, if
upper-case <W> has a 4,656-pixel perimeter and 136,602-
square-pixel area, its perimetric complexity is 12.6287
(= 4,656 × 4,656 / 136,602 / 4π). This dimension is sensitive
to the changes in luminance across space (i.e., spatial frequen-
cy) of a graph and its value is invariant to the size of the graph
(Grainger, Rey, & Dufau, 2008).

Number of disconnected components (DC)DC is defined as
a simple feature or a feature that is not linked to other features

in a set. If a given graph is composed of multiple disconnected
components, there are spaces among these components; for
instance, < > has four disconnected components created by
spaces among the circle and the three dots. This dimension is
sensitive to discontinuity information (Gibson, 1969).

Number of connected points (CP) CP is a point of contact
between features. This dimension is sensitive to information
regarding continuity (Lanthier et al., 2009) and provides clues
to relations between simple features (Biederman, 1987), coun-
ter to the DC dimension. Note that CP is not simply the in-
verse of DC; for instance, Vai syllables < > and < > have
the same number of disconnected components (three), but the
number of connected points of < > is four (for the diamond)
and the number of connected points of < > is zero.

Number of simple features (SF) SF is a discrete element that
can be discriminated from others (Pelli et al., 2006); a typical
example is a stroke within a Chinese character (Wu, Zhou, &
Shu, 1999). Other examples for one simple feature include a
line, a dot, a circle, or a curved line. To make the measure size-
invariant, length, width, and thickness are not considered
properties of features. This dimension is sensitive to the extent
to which the graph combines simple features.

Collectively, these four dimensions provide objective, quan-
titative, and size-invariant estimations of graphic complexity.
Table 2 shows how these four dimensions of GraphCom cap-
ture different characteristics of five example graphs.

Method

The written languages

For the application of the GraphCom to actual writing, we
selected 131 written languages to represent five writing sys-
tems1 (alphabet, 60; abjad, 16; alphasyllabary, 41; syllabary,
11; morphosyllabary, 3), using languages examined in previ-
ous cross-writing-system (Changizi & Shimojo, 2005), cross-
alphabet (Seymour, Aro, & Erskine, 2003), and cross-script

1 Writing systems are broad families of written languages, delineated by the
linguistic units represented by their graphemes (e.g., abjads: consonants; al-
phabet: phonemes; alphasyllabaries: consonant–vowel units; syllabaries: syl-
lables; morphosyllabaries: syllable morphemes; Cook & Bassetti, 2005).
Among writing scholars, there is some variation in the names for these sys-
tems. For example, what we refer to here as alphasyllabaries, following Bright
(1992), have been named abugida by Daniels (1990) to reflect their distinc-
tiveness and to counter the impression that they are a mix of alphabetic and
syllabic writing. This five-way classification system is a more accurate reflec-
tion of differences between written languages than is the traditional three-way
system (e.g., Gelb, 1952). In particular, the three-way system included both
alphasyllabaries and consonantal abjads as alphabets. The differences between
these systems and alphabets are sufficient for us to adopt the five-way classi-
fication. For a penetrating discussion of these issues, see Share and Daniels
(2016); for a contrary view of alphasyllabaries as alphabets, see Rimzhim,
Katz, and Fowler (2014).
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(traditional vs, simplified Chinese; H. C. Chen, Chang, Chiou,
Sung, & Chang, 2011) studies. To identify the inventory of
graphs and writing system categories for these languages, we
followed Changizi and Shimojo (2005), who used Ager’s
Omniglot: A Guide to Writing Systems (Ager, 1998). For the
three languages on which Omniglot offers no information, we
consulted other sources: H. C. Chen et al. (2011) for the two
major scripts of Chinese (i.e., traditional and simplified
Chinese), and an official list of 1,006 Japanese kanji by school
year (Ministry of Education in Japan, 2015). Finally, for pur-
poses of the complexity measure, we used only the forms of
isolated graphs. For most written languages (ignoring hand-
writing), this is of no consequence. However, in some, espe-
cially the akshara of alphasyllabaries, graphs can change
shape when they are combined in actual writing: Vowel
graphs are reduced to diacritics when conjoined with conso-
nants. These variations, which are important in actual writing,
are not captured in our analyses, which defines the graphs of
every language in their canonical forms.

Graphic complexity quantification

We generated images of each of 21,550 graphs using the
Processing software (www.processing.org; Reas & Fry,
2010). Graphs were presented in black Arial font against a
500 × 500 pixel white background. In all, 25% of the
selected languages are not supported by the Arial font; for
these, an alternative font similar to Arial was adopted.
Appendix Table 10 summarizes the detailed information
about these 131 written languages. Measures of the four
dimensions of the GraphCom were then applied to each of
these 21,550 images.

Results

Complexity variation along individual dimensions

We describe the complexity of a graph as a set of values along
the four dimensions of GraphCom. Figure 1 shows the com-
plexity variations across writing systems as boxplots for each
of the four dimensions: perimetric complexity (PC), number
of disconnected components (DC), number of connected
points (CP), and number of simple features (SF).

To assess the relationships among these dimensions,
we correlated the complexity values on each of the four
dimensions across the five writing systems, as well as
separately for each writing system. Table 3 summarizes
the results for the overall correlations, collapsed across
writing systems: All correlations are greater than .82 (all
ps < .001), except for the r = .65 correlation of DC (the
number of disconnected components) with CP (the num-
ber of connected points). Perimetric complexity shows
high correlations with the other dimensions, although a

lower correlation with DC, reflecting PC’s ability to cap-
ture indirectly much of what the other dimensions target
specifically. However, the measure with the greatest
shared variance is the number of simple features, the
building blocks of the graphs. Finally, the correlations
show that the number of discontinuous components
(DC) is the most distinctive measure, sharing no more
than 67% of variance with other measures, and only
42% with the number of connected points. Significantly,
not all writing systems showed the same pattern of corre-
lations among the dimensions. These specific writing sys-
tem differences are discussed in Chang (2015).

Dimensions differentiate writing system pairs

Next, we determined which dimension is best at differ-
entiating among parent writing systems. If different di-
mensions play a role in such differentiation, this would
support the value of the multidimensional approach. For
this analysis, we used the nonparametric Kolmogorov–
Smirnov (KS) distance2 (Stephens, 1974), one of the
most commonly used distance measures for comparing
two samples. In our case, the two samples correspond
to two writing systems. The KS distance, which does
not assume a normal distribution, is sensitive to the dif-
ference in the cumulative distribution functions of two
samples, and thus is suitable for the highly nonnormal
distributions of our writing systems on the various di-
mensions. Our five writing systems yielded ten writing
system pairs. For each pair, we calculated the KS dis-
tances on each dimension (see Table 4); the dimension
responsible for the greatest KS distance was taken as the
dimension that is most sensitive to differences between
those two writing systems.

Table 5 shows the complexity dimension that maximal-
ly differentiates each pair of writing systems. Thus, the
alphabet and abjad writing systems are most differentiated
by thei r numbers of disconnected components ;
alphasyllabaries and morphosyllabaries are most differen-
tiated by their numbers of simple features; and so forth.
The number of connected points was not a maximal
differentiator for any pair of systems. Interestingly,
perimetric complexity, which has been the only dimension
used to compare graphic complexity across writing sys-
tems in prior research (Pelli et al., 2006), was the most

2 The KS distance between two samples is the maximal difference between
their (empirical) cumulative distribution functions. Given one sample, the
cumulative distribution function is the function F(x) whose value is Bthe ratio
of data points below x.^ For instance, when x is the median, then F(x) = .5;
when x is the first quartile, F(x) = .25. Given two samples with cumulative
distribution functions F1(x) and F2(x), the absolute difference, |F1(x) – F2(x)|,
is a function of x. The KS distance is defined as the maximal value of |F1(x) –
F2(x)| for all possible values of x.
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reliable differentiator only for the alphasyllabary–alphabet
pair. These results suggest that the most effective dimen-
sion for differentiating writing system pairs is the number
of disconnected components (DC); in Table 5, DC pro-
vides maximal differentiation for six of the ten writing
system pairs. More generally, the results highlight the val-
ue of the multidimensional approach. No single dimen-
sion is universally the most effective at distinguishing
any two arbitrarily selected writing systems.

Behavioral validation: Similarity ratings of graph
pairs

To provide a behavioral test of GraphCom and its individual
dimensions, we had participants with different first language
(L1) backgrounds make similarity ratings on pairs of graphs
from a single written language. We chose similarity ratings
because they represent a paradigm commonly used in visual
science and psychology over the past 130 years (for a review,

tolPxoBnoisnemiDlaudividnI
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Number of 
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Number of 
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Fig. 1 Boxplots comparing graphic complexity across writing systems,
for each dimension. The boxplots indicate, for each writing system

(coded by color), the range of written languages (in terms of Quartile 1,
Quartile 2, Quartile 3, and outliers)
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see Mueller & Weidemann, 2012). The assumption is that two
graphs that are more similar in complexity will be judged more
similar than two graphs that are less similar in complexity.

Method

Stimuli

To select a language that is representative of its writing system,
we identified a centroid for each writing system within a multi-
dimensional complexity space3 defined by the four dimensions
of GraphCom. A centroid is the geometric center of a multidi-
mensional space; in our case, the centroid of a writing system is
the location of the unweighted mean of all the written languages
within this writing system—that is, the average of their coordi-
nates along the four dimensions. Thus, for each writing system,
one language was designated as its centroid written language:
Hebrew (abjad), Russian (alphabet), Telugu (alphasyllabary),
Cree (syllabary), and Chinese (morphosyllabary). The stimuli
included graphs from these five centroid written languages.

We created two categories for Chinese, because it contains
thousands of characters and more than one type of graphic unit.
Basic components (including radicals), which are the functional
Bbuilding blocks^ in the Chinese language (Shen & Ke, 2007),
can stand alone as characters and are composed of a small num-
ber of strokes (average: 4.52). Compound characters, which are
composed from these building blocks, have a large number of
strokes (average: 13.21). Thus, we classified all characters as
either basic or compound; note that these characters have the
same forms in the traditional and simplified Chinese systems.

The division of Chinese into basic and compound types
resulted in six groups of graphs based on the centroid written
languages. These are ordered, in terms of increasing

complexity, Hebrew, Russian, Cree, Telugu, basic Chinese
characters, and compound Chinese characters. For the similar-
ity ratings, graphs were paired within each written language,
with graphs in each pair matched on either upper or lower case
and, where applicable, vowel or consonant; all graphs in each
written language (except for Chinese) were exhaustively used.

We created four stimulus lists, each consisting of six groups
of graphs. Each list contained 180 pairs, more than the 120 pairs
that are adequate to induce meaningful similarity judgments
(Simpson, Mousikou, Montoya, & Defior, 2013). Appendix
Table 11 shows the graph pairs for each list; Table 6 provides
further information regarding these pairs of graphs.

Observers

A total of 180 observers participated in this experiment. All
reported normal or corrected-to-normal vision. Table 7 pre-
sents demographic information about these observers. We
chose observers whose first language was among those five
languages with the most speakers worldwide (Arabic,
English, and Hindi) and for whom the graphs to be judged
were not from their first language.

Procedure

The experiment was carried out via a large crowdsourcing
platform, Amazon Mechanical Turk (MTurk). MTurk data
have been demonstrated to be indistinguishable from labora-
tory data in different research fields (e.g., economics: Horton,
Rand, & Zeckhauser, 2011; politics: Berinsky, Huber, & Len,
2012; social science: Buhrmester, Kwang, & Gosling, 2011;
psycholinguistics: Sprouse, 2011; and psychology: Simcox &
Fiez, 2014); to ensure data quality, we also followed the prin-
ciples for using MTurk (Chandler, Mueller, & Paolacci, 2014)
to design our online experiment. Four human intelligence
tasks (HITs) for recruiting observers from four writing sys-
tems were posted on MTurk’s online recruitment interface.
Each HIT had a two hour completion limit. Consent was ob-
tained prior to the experiment; after MTurk volunteers agreed
to participate, they were directed via a Web link to any of the
four stimuli lists for similarity ratings.

The sequence of tasks was the same for each observer: a
similarity rating, a language history questionnaire, a demo-
graphic background task, and a translation task (except for
the English HIT) for verifying the observer’s L1 backgrounds.
After completing the last task, a unique 13-digit code associ-
ated with the observer’s responses appeared on the screen
automatically, along with debriefing information. The observ-
er was instructed to report the code to MTurk to obtain mon-
etary compensation. Successful generation of the 13-digit
code also indicated that all of the observer’s responses were
successfully sent from their local machines to our server.
Below, we give a brief introduction for each task.

3 In constructing this multidimensional space, we calculated, for each written
language, the mean score on each dimension. Because the scale varies among
dimensions (min–max range and interquartile range [Q3 – Q1] for each di-
mension: perimetric complexity: 1–76, Q3 –Q1 = 22; number of disconnected
components: 1–18, Q3 – Q1 = 4; number of connected points: 0–37, Q3 – Q1
= 8; number of simple features: 1–32, Q3 – Q1 = 8), we transformed the
resulting means to within-dimension ss scores. This standardization procedure
addressed the issue of scale difference, allowing for comparisons of complex-
ity on the same scale.

Table 3 Correlations of graphic complexity across writing systems

Perimetric
Complexity
(PC)

Number of
Disconnected
Components (DC)

Number of
Connected
Points (CP)

Number of
Simple
Features (SF)

PC 1.00

DC .82*** 1.00

CP .89*** .65*** 1.00

SF .95*** .83*** .93*** 1.00

*** p < .001
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Similarity rating task This task was designed to tap variabil-
ity in observers’ judgments of visual similarity. Each trial began
with a black fixation cross appearing for 300 ms, followed by a
pair of graphs appearing for up to 5,000 ms, followed by a
blank for 1,000 ms. The observer saw a pair of graphs appear
at the center of the screen and the heading B1 = very different 2
= mainly different 3 = mainly similar 4 = very similar^ at the
bottom of the screen. The observers were instructed to rate how
visually similar the two graphs were by pressing one of four
keys on their alphanumeric keypad (not the numeric keypad) to
indicate the rated similarity. Once the observers had responded,
the screen moved on to the next trial.

After instructions, the observers were given 12 demonstra-
tion trials with explicit statements on the degree of similarity,
12 practice trials without feedback, and 180 experimental tri-
als; the ordering of grapheme pairs was randomized. Table 8
shows trials in the demonstration, practice, and experimental
phases. Responses and response time were recorded. This task
took approximately 15 minutes to complete.

Language questionnaire The language questionnaire
(Tokowicz, Michael, & Kroll, 2004) was used to assess par-
ticipants’ language-learning experiences both quantitatively
(e.g., rating general language learning skill) and qualitatively
(e.g., comments about language-learning experience).
Observers were encouraged to give their best answers to the
questions, without any time limit.

Demographic background questionnaire The demographic
background questionnaire was developed to learn more about
observers’ educational, cultural, and health statuses (e.g., vi-
sual and hearing problems) and their surroundings during par-
ticipation in this study. The responses on visual and hearing

questions were used to filter data quality. We imposed no time
limit to complete this survey.

Translation task The translation task was developed to filter
the data for quality. This task consisted of 20 English words
chosen from the instructions for this experiment. Observers
saw one word at a time and were asked to type the first trans-
lation to their L1 that came to mind within 12 seconds; timing
was determined in a pilot study. Observers who failed to pro-
vide translations in a written language consistent with their
reported L1 were excluded from the analysis.

Results

Each dimension played a prominent role in predicting human
similarity ratings.

To test the effects of complexity on the perceptual judg-
ments, we used a mixed-effects modeling approach, which is
well-suited to assess the effects of both items (graphs) and
subjects (observers) (Baayen, Davidson, & Bates, 2008). We
assumed that two graphs that were more similar in complexity,
as measured in GaphCom, would be judged more visually sim-
ilar than two graphs that were less similar in complexity.
Accordingly, we expected that a model that used all four di-
mensions of graphic complexity would provide the best fit to
the human similarity ratings. We thus tested alternative models
by means of a backward elimination procedure, which ensured
that any joint predictive capability4 of the dimensions could be
observed (Burnham&Anderson, 2003). We first tested the full

4 Backward elimination (or a back-out procedure) has an advantage over for-
ward and stepwise selections. Forward selection and stepwise methods can fail
to identify predictive models based on joint contributions of variables, because
if the variables don't predict well individually, they will never enter the model.
Because the backward method starts with everything in the model, joint pre-
dictive capability will be seen.

Table 4 KS distances between two given writing systems for each dimension

Perimetric Complexity (PC) Number of Disconnected Components (DC)

AL AS AJ SY MS AL AS AJ SY MS

AL – AL –

AS .20 – AS .19 –

AJ .10 .14 – AJ .27 .32 –

SY .23 .06 .18 – SY .38 .27 .32 –

MS .18 .08 .13 .14 – MS .28 .24 .25 .19 –

Number of Connected Points (CP) Number of Simple Features (SF)

AL AS AJ SY MS AL AS AJ SY MS

AL – AL –

AS .06 – AS .16 –

AJ .07 .06 – AJ .09 .11 –

SY .06 .09 .08 – SY .12 .09 .12 –

MS .05 .06 .07 .07 – MS .24 .34 .27 .31 –

AL = Alphabet; AS = Alphasyllabary; AJ = Abjad; SY = Syllabary; MS = Morphosyllabary
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model containing all the predictors (the four complexity dimen-
sions); then we constructed a second model that removed one
of the predictors, to test whether removing one predictor would
reduce the predictive performance. If so, that was evidence that
the predictor should remain in the model.

Our predictors were the absolute differences in similarity
ratings between two graphs in each of the complexity dimen-
sions (i.e., PC, DC, CP, and SP). We performed a series of
model comparisons with Laplace estimation using the lmer()
function of the lme4 package (Bates, Maechler, & Dai, 2010)
to fit the models, and the likelihood ratio test (Lehmann, 1986)
to determine model performance. The lme4 model formulae
used to fit each model are displayed in Appendix A.

The full mixed-effects model (FULL) included fixed effects
of the four predictors and crossed random effects for subjects
and items. The additional four models had fixed effects for three
predictors (one predictor removed for each model) and crossed
random effects for subjects and items. Thus, four model com-
parisons were carried out. Table 9 summarizes themodel tests in
terms of the Akaike information criterion (AIC) and Bayesian
information criterion (BIC), two common criteria for model
selection, as well as the chi-square values (and associated de-
grees of freedom) for the likelihood ratio test. A lower AIC/BIC
indicates a better-fittingmodel (Wasserman, 2006). As is shown
in Table 9, both AIC and BIC suggested that the FULL model
scored best on these criteria. Similarly, for all likelihood ratio
tests, the FULL model showed significant advantages over any
reduced model (p values below .001): [FULL without PC vs.
FULL, χ2(8) = 372.88; FULL without DC vs. FULL, χ2(8) =
138.44; FULL without CP vs. FULL, χ2(8) = 390.08; FULL
without SF vs. FULL, χ2(8) = 558.83]. These tests indicate that
removing any one of the predictor dimensions made the model
significantly worse in accounting for variance in the data. This

suggests that each dimension played a role in accounting for
observers’ judgments of similarity.

Discussion

The multidimensional measure of graphic complexity,
GraphCom, is a useful tool for assessing visual complexity
in any writing system. Its dimensions are grounded in basic
perceptual factors—the number of simple visual features
(lines, curves, and dots), the number of connected points,
and discontinuities in the configural form. These dimensions
are added to perimetric complexity, a proven measure that
captures overall configurational complexity (Pelli et al.,
2006).We applied GraphCom to 131 written languages across
the world’s fivemajor writing systems, demonstrating that this
measurement system surpassed previous measures in
predicting human perceptual judgments. Importantly for re-
search, GraphCom can be applied to any of the many other
written languages beyond our sample of 131.

The value of GraphCom is supported by several results.
First, it resulted in an ordering of complexity among the 131
languages that aligns with informal observations of these lan-
guages. Thus, Chinese written in its traditional script is mea-
sured as the most complex written language, more than the
simplified Chinese script. At the other end of the scale, abjads
and alphabets show similar low levels of complexity, and are
distinguished primarily by their number of discontinuous ele-
ments. Of course, these alignments are to be expected to some
extent, because we developed GraphCom measures to reflect
properties of real writing. Thus, the ordering of the written
languages is not a validation, but a demonstration that the
measure produces sensible outcomes.

Table 5 Dimensions that maximally differentiate writing system pairs

Alphabet Alphasyllabary Abjad Syllabary Morphosyllabary

Alphabet –

Alphasyllabary PC –

Abjad DC DC –

Syllabary DC DC DC –

Morphosyllabary DC SF SF SF –

PC = perimetric complexity, DC = number of disconnected components, SF = number of simple features

Table 6 Characteristics and numbers of graph pairs for each written language in similarity rating (per list; four lists in total)

Writing system Abjad Alphabetic Syllabary Alphasyllabary Morphosyllabary

Written language Hebrew Russian Cree Telugu Chinese

Number of graphs in the written language 32 Upper: 33
Lower: 33

80 Vowels:35
Consonant:35

Basic:
242

Compound: 5,600+

Number of pairs per list 32 33 40 35 20 20
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More interesting are the results concerning the individual
dimensions. Perimetric complexity, the most commonly used
measure for capturing configurational complexity of graphs in
prior research, may not be suitable in some situations. When
we applied each dimension to pairs of writing systems, using
the nonparametric KS distance measure, we found that
perimetric complexity was not the best differentiator among
writing systems. It was the most successful differentiator only
for separating alphabetic from alphasyllabary languages. The
number of disconnected components was generally the most
important distinguisher of writing systems.

Also relevant are the results of a modeling study that simu-
lated graph learning across hundreds of languages (Chang,
Plaut, & Perfetti, 2016). In the learning model, each dimension
of theGraphComwas found to uniquely account for the training
times the model needed to reach mastery. Indeed, perimetric
complexity was the weakest predictor in the graph learning
simulation; the number of simple features was the strongest one.

The most direct validation of the measure comes from its
prediction of human perceptual similarity judgments. In fitting
the perceptual judgment data to regressionmodels, we found that
all dimensions contributed to explaining the data. Removing any
one dimension score from the model significantly reduced the
model’s ability to predict visual similarity judgments.

We emphasize that these dimensions are not independent,
and indeed they are highly inter-correlated when the data are
collapsed across writing systems to allow a correlation based
on 21,550 graphs. Writing systems differ in how they use the
visual, graphic characteristics that are measured by
GraphCom dimensions (Chang, 2015). In alphabets, connect-
ed points (or line junctions such as <L>, <T>, and <Y>) are
especially important in letter identification (Lanthier et al.,
2009; Szwed, Cohen, Qiao, & Dehaene, 2009). This im-
portance reflects the relatively small number of graphs needed
in most alphabetic languages. This allows the re-use of a small
set of simple features that can be combined at junctions to

Table 8 Examples for graph pairs at different phases in the similarity rating task

Trials Suppose to be “Very different” Suppose to be “Very similar”

Demonstration phase

Practice phase

Experimental phase

Table 7 Demographic information for the participating observers (n = 180 in total)

First Language (L1) Estimated L1 Speakers Sample Size Gender Mean Age (SD) Mean Number of Learned Language (SD)

Arabic 295 million 60 29 males 27.42 (4.86) 2.53 (0.93)

English 339 million 60 22 males 26.37 (5.64) 1.67 (0.86)

Hindi 260 million 60 42 males 27.75 (5.67) 2.53 (0.72)

Number of learned languages include first language; SD = standard deviation; Estimates of L1 speakers were retrieved fromWikipedia: https://goo.gl/ILTaOu
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form unique graphs. In contrast, morphosyllabic writing
(Chinese and Japanese kanji) requires a very large number
of graphs to code syllable morphemes. As the number of
graphs increases, recombining features through connected
points becomes impossible; instead additional graphs must
add more simple features that also create more connected
points and discontinuous components. Overall, graphic com-
plexity is largely driven by the number of graphs that is need-
ed in a written language. Collapsed over all 131 orthographies
in our study, the number of graphs is highly correlated with the
GraphCommeasure of written language complexity, r = .78 (p
< .001). This correlation is governed by how the written lan-
guage manages the mapping of graphs to linguistic units in
spoken language, because the writing system largely deter-
mines the number of graphs required (for a discussion, see
Perfetti & Harris, 2013; Perfetti & Verhoeven, in press).

Although the neural basis of visual perception is beyond
the scope of our study, it seems relevant to consider the rela-
tion between the properties of the graphs developed for writ-
ten language and the properties of human vision. Hubel and
Wiesel (1962, 1965) established that the receptive field of the
cats’ visual system included line, curvature, and edge detec-
tors and computations that estimate their numbers. Primate
visual systems have layered receptive fields that selectively
respond to specific dimensions—for instance, V1 neurons to
orientations; V2 neurons to corners; or V4 neurons to linear
gratings, colors, angles, and curves—and computational abil-
ities that operate across these layers (Van Essen, Anderson, &
Felleman, 1992; for more recent work, see Coen-Cagli &
Schwartz, 2013; Grill-Spector & Malach, 2004; Troncoso,
Macknik, & Martinez-Conde, 2011).

Details aside, it is reasonable to suggest that the develop-
ment of writing graphs has become aligned with human vision
capabilities within other constraints, especially time and effort
in graph production (Changizi & Shimojo, 2005). The three
added dimensions (beyond perimetric complexity) of
GraphCom seem to align with basic detection functions (sim-
ple features) and computational capabilities (connected points,
discontinuous components) of human vision. Perimetric com-
plexity seems to indirectly capture most of these detection and
computational capabilities. Contributing substantially to

perimetric complexity’s measures of inside and outside perim-
eters are graphemes’ simple features and their junctions.
Indeed, the number of simple features and the number of con-
nected points together account for over 88% of the variance in
perimetric complexity.

Finally,we note the practical value ofGraphComas a research
tool. Researchers can access the dimension-specific complexity
values of the 21,550 graphs from 131 written languages in the
graphic complexity database, available at https://dl.
dropboxusercontent.com/u/28768192/GraphemeAll/
GraphDataset_131_languages.zip. The database can be used in
various applications, depending on the research goals. For
example, within a single language, graphic complexity
measures can be applied to the graphs a child encounters in
reading instruction; across languages, graphic complexity in
one language can be compared with those of another. For some
research aims, specific complexity dimensions can be applied to
within-language and between-languages comparisons; for other
aims, researchers can create composite scores at the level of
individual graphs, the language using them, or thewriting system
towhich the language belongs.More generally, data at the graph,
grapheme, written language, or writing system level can be use-
ful for a wide range of applications from comparative writing
studies to learning to read tomodels of graph processing; in short,
for studies that take account of visual factors in written language.

Summary and conclusion

We introduced GraphCom, a multidimensional measurement
system for quantifying the visual complexity of graphs across
the world’s writing systems. Starting with perimetric complexity,
a well-validated single measure of complexity, GraphCom adds
three dimensions that reflect the ways that graph forms differ in
their composition over simple features, their connection points,
and their discontinuities. These four dimensions were validated
by their abilities to predict human perceptual judgments on
graphs that varied in complexity as measured by GraphCom.
As a tool for research, the GraphCom measures are available
online for 131 written languages and 21,550 graphs. In addition,
its measures are defined precisely, in order to allow application to
any of the world’s writing systems. This provides a practical
research tool for constructing studies of perception and ortho-
graphic learning by children and adults, and also cross-language
studies of reading and writing.
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Learning Center (PSLC) and BAim for the Top University Project^ of the
National TaiwanNormal University and theMinistry of Education, Taiwan,
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the University of Pittsburgh for their assistance with various tasks, and all
observers for their participation. Moreover, the authors acknowledge the
insightful comments of David Share and other, anonymous reviewers.

Table 9 A summary for four model comparisons, using dimensions to
predict human similarity ratings (n = 180)

The FULL model AIC BIC

Model with PC, DC, CP, SF 71,452 71,606

Model comparison AIC BIC χ2 df p

FULL without PC vs. FULL 71,809 71,898 372.88 8 <.001

FULL without DC vs. FULL 71,575 71,664 138.44 8 <.001

FULL without CP vs. FULL 71,826 71,916 390.07 8 <.001

FULL without SF vs. FULL 71,995 72,084 558.83 8 <.001
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Appendix

Table 10 Detailed information for 131 written languages

Languages by Writing System Font for Creating Graph Images GI PC Mean DC Mean CP Mean SF Mean

Alphabet

Albanian (Elbasan) Arial 40 7.73 1.08 1.45 2.53

Albanian (Todhri) Arial 53 7.18 1.13 2.08 2.92

Armenian (Eastern) Arial 38 7.43 1.03 1.55 2.63

Asomtavruli Arial 38 7.53 1.00 2.00 2.97

Avestan Ahuramazda 54 9.83 1.00 2.11 3.52

Bassa Arial 30 7.66 1.02 1.43 2.68

Belarusian Arial 32 7.35 1.17 1.83 2.74

Bosnian Arial 30 7.59 1.37 1.52 2.63

Bulgaria Arial 30 7.40 1.03 2.05 2.85

Celtiberian Arial 28 6.59 1.11 2.61 3.39

Cyrillic (Abkhaz) Arial 56 9.41 1.33 2.68 3.68

Danish Arial 29 7.25 1.05 1.62 2.38

Deseret Code 2000 38 6.65 1.00 1.71 2.61

Dutch Arial 26 6.85 1.04 1.44 2.25

English Arial 26 6.85 1.04 1.44 2.25

Enochian Enochian 22 7.41 1.14 1.59 2.68

Finnish Arial 28 7.00 1.20 1.41 2.34

Fraser Arial 40 7.82 1.00 1.68 2.43

French Arial 26 6.85 1.04 1.44 2.23

Glagolitic Arial 42 10.13 1.02 4.81 5.07

Gothic (Wulfila) Alphabetum Unicode 25 7.11 1.08 1.16 2.36

Greek Arial 24 7.09 1.06 1.43 2.27

German Arial 26 6.85 1.04 1.44 2.25

Hungarian Runes Arial 46 9.09 1.00 2.85 3.70

Icelandic Arial 32 7.11 1.28 1.47 2.45

Italian Arial 21 6.74 1.02 1.45 2.17

Kazakh Arial 42 7.31 1.11 1.94 2.85

Korean (Hangeul) MS Mincho 40 14.71 1.38 2.15 3.40

Kyrgyz Arial 36 7.48 1.11 2.04 2.89

Latin (ancient) Alphabetum Unicode 21 6.12 1.00 1.86 2.71

Latin (modern) Arial 41 8.41 1.49 1.61 2.71

Macedonian Arial 31 7.27 1.08 1.89 2.81

Marsiliana Arial 26 9.97 1.00 2.27 2.88

Mkhedruli BPG Glaho 38 7.80 1.00 1.32 2.39

Mongolian Arial 35 7.49 1.11 2.01 2.87

Montenegrin Arial 33 7.65 1.39 1.47 2.64

N’Ko JG Nko 27 5.50 1.00 2.11 2.96

Norwegian Arial 29 7.25 1.05 1.62 2.38

Nuskhuri BPG Nino Khutsuri U 38 7.12 1.00 3.97 5.08

Old Church Slavonic Arial 45 8.42 1.21 2.26 3.24

Old Permic (Abur) Arial 38 9.16 1.05 2.39 3.42

Pahawh Hmong Naadaa 166 11.05 1.80 2.16 4.02

Pollard Miao Ahmao 85 7.19 1.61 1.31 2.87

Portuguese Arial 26 6.85 1.04 1.44 2.25
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Table 10 (continued)

Languages by Writing System Font for Creating Graph Images GI PC Mean DC Mean CP Mean SF Mean

Romanian Arial 31 6.96 1.19 1.45 2.34

Runic (Danish Futhark) Code 2000 16 6.55 1.00 1.88 2.75

Runic (Elder Futhark) Code 2000 24 7.20 1.04 2.50 3.25

Russian Arial 33 7.51 1.12 2.05 2.89

Santali (OlCemet’) Arial 30 10.27 1.07 2.43 3.40

Serbian Arial 30 7.34 1.02 2.02 2.83

Somali (Osmanya) MPH 2B Damase 30 11.52 1.00 1.47 2.63

Sorang Sompeng Arial 24 10.55 1.00 3.13 4.25

Spanish Arial 27 6.93 1.07 1.48 2.31

Swedish Arial 29 7.14 1.19 1.47 2.40

Tajik Arial 35 7.48 1.14 1.94 2.90

Theban Theban 25 10.49 1.12 3.56 4.56

Ukrainian Arial 33 7.16 1.11 1.89 2.79

Varang Kshiti Arial 30 6.62 1.00 2.27 3.23

Yupik Arial 44 7.84 1.25 2.19 3.18

Zhuyin Fuhao DFKai-SB 37 10.51 1.11 2.35 3.51

Abjad

Ancient Berber (Vertical) Tamalout Standard Unicode 25 9.64 2.00 2.20 4.00

Arabic Arial 28 8.78 1.82 1.36 3.07

Aramaic (Early) Aramaic Early Br Rkb 22 6.31 1.00 2.32 2.91

Hebrew Arial 22 4.90 1.07 0.89 1.96

MiddlePersian (Pahlavi) Arial 22 4.95 1.00 1.64 2.82

Nabataean Arial 22 5.99 1.09 1.59 2.68

Neo Tifinagh Hapax Berbère 33 9.82 1.18 2.12 3.15

Parthian Arial 22 5.37 1.05 1.64 2.82

Pashto Arial 40 9.14 2.03 1.43 3.35

Phoenician MPH 2B Damase 22 7.55 1.00 2.32 2.95

Psalter Arial 21 4.94 1.00 1.38 2.29

Sabaean Minean Sabaen44 29 6.09 1.00 2.83 3.62

Samaritan Samaritan 22 9.02 1.00 3.05 3.82

South Arabian Arial 28 7.95 1.00 2.46 3.18

Syriac Estrangelo Edessa 22 5.74 1.09 1.55 2.64

Tifinagh MPH 2B Damase 33 10.81 1.24 1.97 3.09

Alphasyllabary

‘Phags-pa BabelStone Phags-pa Book 41 9.87 1.00 4.44 5.17

Ahom Ahom 45 11.00 1.51 2.04 3.42

Amharic GF Zemen Unicode 282 7.47 1.03 2.74 3.50

Balinese JG Aksara Bali 84 23.32 1.64 2.56 4.13

Batak Arial 32 5.19 1.41 0.72 2.09

Bengali Akaash Normal 57 14.60 1.21 4.26 5.51

Brahmi Brahmi TTF 52 4.89 1.12 1.56 2.67

Buhid (Mangyan) Arial 48 8.03 1.46 3.29 4.60

Burmese Myanmar1 62 13.72 1.53 2.27 3.68

Dehong Arial 30 4.00 1.03 2.43 3.03

Devanagari Sanskrit 2003 62 9.41 1.03 2.98 4.27

Dives Akuru Arial 46 10.45 1.15 1.70 3.09

Ethiopic (Ge’ez) Code 2000 234 7.63 1.00 2.56 3.32

Gujarati Shruti 64 9.23 1.28 1.47 2.81

Gurmukhi Anmol Uni 60 11.81 1.22 3.32 4.68
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Table 10 (continued)

Languages by Writing System Font for Creating Graph Images GI PC Mean DC Mean CP Mean SF Mean

Hanuno’o(Mangyan) Arial 48 11.05 1.48 2.52 4.13

Hindi Sanskrit 2003 66 9.25 1.14 2.91 4.27

Inuktitut Aboriginal Serif Regular 112 7.65 1.61 1.28 2.88

Kannada Tunga 50 12.55 1.42 2.40 3.84

Kharosthi MPH 2B Damase 39 8.57 1.05 1.33 2.44

Khmer Khmer OS 130 10.42 1.44 6.02 7.12

Lao Saysettha Web 78 13.40 1.63 2.90 4.71

Lepcha_Rong JG Lepcha 77 9.13 1.06 2.71 3.74

Limbu MPH 2B Damase 45 8.60 1.16 1.98 3.16

Malayalam ML-NILA01 69 14.13 1.13 1.97 3.64

Manipuri Akaash Normal 57 11.98 1.19 3.21 4.42

Marathi Sanskrit 2003 65 8.53 1.29 2.94 4.22

Meroitic (non-hieroglyphic) Arial 23 6.89 1.30 2.30 3.48

Oriya Raghu Oriya 66 16.25 1.11 2.30 3.27

Redjang (Kaganga) Arial 36 6.12 1.17 1.83 2.97

Sindhi Bahij Nassim-Regular 51 9.86 1.31 3.37 4.63

Sinhala Potha 71 14.71 1.51 3.20 3.93

Soyombo JG Soyombo 86 10.79 1.76 5.16 6.87

Syloti-Nagri Arial 38 10.49 1.11 3.37 4.79

Tagalog Tagalog Stylized 45 14.87 1.78 1.53 3.02

Tagbanwa Arial 42 12.18 1.64 2.07 3.93

Tamil Code 2000 47 14.58 1.15 3.19 4.68

Telugu NATS 70 11.41 1.33 2.68 4.10

Thaana Free Serif 49 6.20 1.71 1.63 3.41

Thai Angsana New 102 14.88 1.68 4.54 6.24

Tibetan Arial 34 11.79 1.00 3.44 4.38

Syllabary

Carrier Dene Code 2000 195 10.27 1.22 2.93 4.14

Cherokee Aboriginal Sans 85 7.07 1.01 1.87 2.86

Cree (Woodland) Aboriginal Serif 80 7.00 1.53 1.33 2.68

Cypriot Alphabetum Unicode 55 11.60 1.87 1.55 3.58

Japanese (Hiragana) MS Mincho 48 23.32 1.29 2.75 4.19

Japanese (Katakana) MS Mincho 48 16.06 1.38 1.56 2.96

Kpelle JG Kpelle A 86 22.26 3.14 4.43 9.01

LinearB Penuturesu 71 30.20 2.31 2.89 5.17

Ndjuka’ Arial 57 8.34 1.04 2.39 3.05

Ojibwe Aboriginal Serif 88 7.04 1.48 1.11 2.43

Vai Dukor 208 13.07 1.82 2.88 4.86

Morphosyllabary

Chinese (Simpified) DFKai-SB 6097 29.47 4.01 9.54 10.60

Chinese(Traditional) DFKai-SB 6097 32.47 4.55 11.64 12.50

Japanese (Kanji) DFKai-SB 1006 28.62 3.84 9.65 10.43

Note.GI = graph inventory, PC = perimetric complexity, DC = number of disconnected components, CP = number of connected points; SF = number of
simple features
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Table 11 Graph pairs per list used in the similarity rating
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Appendix A lme4 (Bates, Maechler, & Dai, 2010)
model formulae for fitting models and comparing
the four models

Fitting five models

Full <- lmer(Response ~ 1 + dPC * dDC * dCP * dSF +
(1|Subject) + (1|Item), data = rating)

FullwoPC <- lmer(Response ~ 1 + dDC * dCP * dSF +
(1|Subject) + (1|Item), data = rating)

FullwoDC <- lmer(Response ~ 1 + dPC * dCP * dSF +
(1|Subject) + (1|Item), data = rating)

FullwoCP <- lmer(Response ~ 1 + dPC * dDC * dSF +
(1|Subject) + (1|Item), data = rating)

FullwoSF <- lmer(Response ~ 1 + dPC * dDC * dCP +
(1|Subject) + (1|Item), data = rating)

Comparing the full model with the other four models,
respectively

anova(Full, FullwoPC)
anova(Full, FullwoDC)
anova(Full, FullwoCP)
anova(Full, FullwoSF)

1 denotes the intercept, * denotes an interaction plus main
effects between two predictors, and (x|a) denotes random ef-
fects of x by a.
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