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Abstract This study examined whether the inclusion of covar-
iates that predict class membership improves class identification
in a growth mixture modeling (GMM). We manipulated the
degree of class separation, sample size, the magnitude of covar-
iate effect on class membership, the covariance between the
intercept and the slope, and fit two models with covariates and
an unconditional model. We concluded that correct class identi-
fication in GMM requires large sample sizes and class separa-
tion, and that unconditional GMM performs better than GMM
with covariates if the sample size and class separation are suffi-
ciently large. With small sample sizes, GMM with covariates
outperformed unconditional GMM, but the percentage of correct
class enumeration was low across different fit criteria.
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Growth mixture modeling (GMM; Muthén, 2001, 2002;
Muthén & Muthén, 2000; Muthén & Shedden, 1999) has been
increasingly used to separate individuals into unknown sub-
groups characterized by their distinct growth trajectory over time

(Bauer, 2007). GMM is similar to latent class growth modeling
(LCGM; Nagin, 1999), but LCGMs set the variances and co-
variances of growth factors within class to zero (Muthén, 2004).
Regardless of its popularity, class enumeration in GMM has
remained an active topic of research (Li & Hser, 2011; Liu &
Hancock, 2014; Peugh & Fan, 2012; Peugh & Fan, 2014;
Tofighi & Enders, 2007;). One topic still needing additional
research is in which conditions including covariates in GMM
facilitates the identification of the correct number of classes (Li
& Hser, 2011; Liu & Hancock, 2014, Peugh & Fan, 2014;
Tofighi & Enders, 2007).

There have been a few recommendations in the literature
about incorporating covariates in GMM for class enumeration:
Muthén (2004) suggested that properly selected covariates may
facilitate GMM class enumeration, estimation of class
proportions and class membership; Lubke and Muthén (2007)
studied covariate effects in factor mixture modeling and sug-
gested that covariate incorporation is beneficial for parameter
recovery and class assignment in the case of covariates only
predicting latent class membership. Using continuous
normally-distributed covariates, Tofighi and Enders (2007) con-
cluded that covariates hampered GMMclass enumeration unless
the sample size was 200. Peugh and Fan (2014) added more
nuance to the knowledge about inclusion of covariates in
GMM by finding that the effect of adding covariates into
GMMvaried across model selection criteria with smaller sample
sizes (i.e., 300, 500), but with larger sample sizes (i.e., N=3,000)
the addition of covariates decreased correct class enumeration
rates with most fit criteria. However, using binary and non-
normally distributed covariates, Li and Hser (2011) found it is
beneficial to include covariates for GMM class enumeration.
Therefore, there is evidence that the effect of including covariates
on class enumeration in GMM is complex. The purpose of this
paper is to add to current knowledge about GMM by examining
whether the way covariates are included in the model affects
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class enumeration. More specifically, we examine GMM with
covariates added as predictors of intercept and slope and GMM
with covariates as direct predictors of the outcome as compared
with unconditional GMM. In particular, direct-effect GMM,
which is an extension of the direct-effect latent growth model
discussed by Stoel, Van den Wittenboer, and Hox (2004), has
never been examined to improve class enumeration in GMM.
These model specifications are compared across variations of
class separation, sample size, covariate effect, and magnitude
of covariance between intercept and slope. The structure of this
paper is the following: We first describe the three GMM speci-
fications that are the focus of this paper, then present model fit
indexes commonly used for class enumeration. Next, we review
previous studies of class enumeration in mixture modeling.
Finally, we present two Monte Carlo simulation studies examin-
ing class enumeration with three GMM specifications with sev-
eral fit indices across a variety of conditions.

Growth mixture models

GMM can be used to describe a variety of linear and
nonlinear growth trajectories. In this paper, we will focus
on the linear growth pattern that has been widely used in
applied research (e.g., Abroms, et al, 2005; Greenbaum,
et al, 2005; McDonough, Sacker, & Wiggins, 2005;
Stoolmiller, Kim, & Capaldi, 2005). We assume that co-
variates are antecedents of class membership (Muthén,
2004), which implies that they may affect class member-
ship and can be used as auxiliary variables for class
enumeration.

Unconditional growth mixture model

An unconditional growth mixture model (U-GMM, Muthén,
2002) can be represented by the following equations:

yki j ¼ ηkiI þ ηkiSt j þ εki j ð1Þ

ηkiI ¼ γk00 þ ξki0 ð2Þ

ηkiS ¼ γk01 þ ξki1 ð3Þ

Equation 1 presents the measurement part of the U-
GMM where yij

k is the value of the outcome variable for
participant i at occasion j in class k, tj is a time code
assumed here to be the same for all individuals, ηiI

k is
the random intercept, ηiS

k is the random slope, and εij
k is

the residual. Equations 2 and 3 are the structural part of
the growth mixture model, where γ00

k and γ01
k are the

mean intercepts and slopes as latent factors across all par-
ticipants and occasions ξi0

k and ξi1
k are residuals of the

latent growth factors at the between level.

In
P cik ¼ 1ð Þ
P ciK ¼ 1ð Þ

� �
¼ λk

cik ¼ 1 if subject i belongs toclassk
0 otherwise

� ð4Þ

Equation 4 is the unconditional multinomial logit part of
the U-GMMwhere cik is one if participant i belongs to the kth
class or zero otherwise, and λk is the log odds of belonging to
class k instead of reference class K (Lubke & Muthén, 2007).

Growth mixture models with covariates

Previous studies about the effects of covariates on class enu-
meration in GMM (i.e., Li & Hser, 2011; Tofighi & Enders,
2007) investigated a conditional GMM where covariate(s)
predict the growth factors and class membership. With such
a model, it is assumed that the growth factors fully mediate the
relationship between predictors and the outcome variables
(Stoel, Van den Wittenboer, & Hox, 2004). We will refer to
this conditional GMM as growth predictor growth mixture
model (GP-GMM), because it is an expansion of the growth
predictor latent growth model discussed by Stoel, Van den
Wittenboer, and Hox (2004) to characterize models with co-
variates predicting the latent growth factors. The GP-GMM
can be represented by the following equations:

yki j ¼ ηkiI þ ηkiSt j þ εki j ð5Þ

ηkiI ¼ γk00 þ
XP

p¼1

γkp0xip þ ξki0 ð6Þ

ηkiS ¼ γk01 þ
XP

p¼1

γkp1xip þ ξki1 ð7Þ

While the GP-GMM assumes that the growth factor fully
mediates the relationships between predictors and outcomes,
the direct effect growth mixture model (DE-GMM) relaxes
this assumption, and is an expansion of the direct effect latent
growth model (Stoel, Van den Wittenboer, & Hox, 2004) to
characterize GMM with covariates predicting the observed
variables directly. The DE-GMM can be represented by the
following equations:

yki j ¼ ηkiI þ ηkiSt j þ
XP

p¼1

βk
jpxip þ εki j ð8Þ

ηkiI ¼ γk00 þ ξki0 ð9Þ

ηkiS ¼ γk01 þ ξki1 ð10Þ

In Equation 8, βjp
k is the effect of predictor xip on the out-

come at time j for class k. Equation 11 can be used with both
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the GP-GMM and DE-GMM to describe the relationship be-
tween the log odds of class membership and predictors:

In
P cik ¼ 1 xi…xp

��� �
P ciK ¼ 1 xi…xp

��� �
" #

¼ λk þ
XP

p¼1

δkpxip ð11Þ

where xip is the pth covariate used as the predictor of the latent
class. γp0

k and γp1
k are direct effects of xip on the intercept and

slope factors, respectively. In Equation 8, the covariates xip
predict the log odds of the probability of belonging to class
k with effects equal to δp

k (Lubke & Muthén, 2007).
Both the GP-GMM and the DE-GMM assume that the

within-class model is correctly specified. Because the full me-
diation assumption of the GP-GMM may not hold, the use of
the DE-GMM could protect against the effect of
misspecification of the relationship between predictors and
outcomes in the within-class model.

Research about the effect of covariates on class enu-
meration in GMM has focused solely on the GP-GMM.
Muthén (2004) suggested taking a first glance at the num-
ber of classes without covariates then adding covariates to
help make a final decision about the number of classes.
However, Muthén (2006) warned that researchers should
not be surprised if the class formation changed after
adding covariates. This is because adding covariates
might change the normality of the latent intercept and
the latent slope factor within class. The task of selecting
the number of classes is further complicated by the avail-
ability of several model selection indices and statistics,
which differ in the sensitivity to model complexity, sam-
ple size, the presence of covariates and the presence of
covariance between the intercept and the slope in the
model. No agreement has yet been reached regarding
which index works best as indicator of the number of
classes (Lubke & Muthén, 2007; Tofighi & Enders,
2007; Yang, 2006). In the next section, we review fit
indices and statistics commonly used for class enumera-
tion in mixture modeling as well as studies comparing
their performance.

Class enumeration in growth mixture modeling

In this study, we will focus on the following model
information-based fit indices: Akaike’s Information Criterion
(AIC; Akaike, 1987), Bayesian information criterion (BIC;
Schwartz, 1978), adjusted BIC (ABIC, Sclove, 1987).We will
also examine the following likelihood ratio tests: Lo-Mendell-
Rubin likelihood ratio test (LMR; Lo, Mendell, & Rubin,
2001), and the bootstrapped likelihood ratio test (BLRT;
McLachlan, 1987; McLachlan & Peel, 2000).

The AIC, the BIC and the ABIC can be calculated with
Equations 12 to 14, and they are all functions of the log-

likelihood (LL) of the fitting model and number of parameters
(p):

AIC ¼ −2LLþ 2p ð12Þ

BIC ¼ −2LLþ pLn Nð Þ ð13Þ

ABIC ¼ −2LLþ pLn
nþ 2

24

� 	
ð14Þ

As an alternative to information-based indices, the likeli-
hood ratio test (LRT) compares the fit of models that are
nested in each other (Bollen, 1989).

LR ¼ −2 LLk−1−LLkð Þ ð15Þ

where LLk − 1 is the log-likelihood of the model with k-1 clas-
ses and LLk is the log-likelihood of the model with k classes.
LR is a function of the difference of these two likelihoods and
assumes a chi square difference distribution. However, with
mixture models, the standard LRT presented above cannot be
used because the LR is not asymptotically distributed as chi-
square (McLachlan & Peel, 2000). Lo, Mendell, and Rubin
(2001) solved this problem by proposing an approximation of
the chi-square distribution in the mixture context that is a
weighted sum of chi-squares. The LMR statistic compares
the fit of the k-1 class model versus the k class model. A
significant p value rejects the k-1 class model in favor of the
k class model. A bootstrap version of the LRT (BLRT) is to
use bootstrap samples as the distribution of the log-likelihood
ratio test statistic rather than the assumed chi-square distribu-
tion (Nylund et al., 2007). The BLRT statistic is similar to
LMR, but only compares the statistics against the bootstrap
empirical sampling distribution. A significant p value of
BLRT rejects the k-1 class model in favor of the k class model
(Tofighi & Enders, 2007). Yang (2006) examined the class
enumeration performance of the information indices with la-
tent class analysis models. The results showed that ABIC was
more accurate in detecting the correct number of latent classes
than the AIC. The BIC was very sensitive to sample size and
performed well at a sample size of 1,000, while the AIC was
consistent but sample size did not improve its accuracy
substantially. Tofighi and Enders (2007) recommended the
ABIC. Nylund et al. (2007) found that the BLRT had the best
performance, followed by BIC and ABIC, for class
enumeration. However, Nylund et al. (2007) only investigated
unconditional GMM. Lubke and Muthén (2007) concluded
that covariates helped correct assignment of classes especially
when class separation was large. However, in their study, the
covariate was only predicting class membership and had no
effect on the factor mean, which was not common inGMM. Li
and Hser (2011) found that it was beneficial to include covar-
iates in GMM to assist in the identification of correct number
of class when sample size was equal to or larger than 400.
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They also found that the BIC performed best across sample
sizes, the ABIC performed well when sample size was larger
than 400, and the AIC had the poorest performance. BIC
outperformed LRTs in general.

Peugh and Fan (2014) found that a sample size of 3,000 was
needed to optimize class identification. Under conditions of larg-
est sample size (N = 3,000), large class separation (MD = 2),
maximum variance explained (25 %), and equal class propor-
tion, BIC, LMR, and BLRT were able to identify the correct
number of classes. With a sample size of 500, all fit criteria
performed poorly. By comparing their results with a previous
study by Peugh and Fan (2012) that did not include covariates
in the GMM, Peugh and Fan (2014) concluded that adding co-
variates decreased the detection rate of BIC and BLRT under
large sample size, large class separation, and large variance
explained.

Li and Hser (2011), Peugh and Fan (2014), and Tofighi and
Enders (2007) have studied the effect of covariate inclusion in
GMM and class enumeration performance of fit indices and
statistics when the generating model had covariates, but these
studies used the GP-GMM for class enumeration with covari-
ates. The current study expands the existing GMM literature by
further investigating the performance of two different types of
GMM with covariates and GMM without covariates on class
enumeration. Our research questions are: (a) Is there any differ-
ence in performance between the U-GMM, GP-GMM and DE-
GMM with respect to accuracy of class enumeration? (b) How
do commonly used indices and statistics for class enumeration
perform across different GMM specifications?

GMM can differ with respect to which parameters are
allowed to vary between classes. We conducted two studies to
address the research questions above, each with a different de-
gree of model complexity with respect to allowing parameters to
vary between classes. Study 1 compared versions of the U-
GMM, GP-GMM and DE-GMM where intercept means were
allowed to vary between classes. Study 2 compared versions of
these models where intercept and slope means, residual vari-
ances and covariance were allowed to vary between classes.
By comparing the results of Study 1 and Study 2, we were able
to examinewhether class enumeration performance depended on
which parameters were allowed to vary between classes.

Method

Population model

Both Study 1 and Study 2 used a two-class linear GP-GMM
with one covariate as a populationmodel, because it is popular
in applied research (e.g., Abroms et al, 2005; Greenbaum et al,
2005; McDonough, Sacker, & Wiggins, 2005; Stoolmiller,
Kim, & Capaldi, 2005) and has also been used in previous
simulation studies (e.g., Lubke & Muthén, 2007; Nylund

et al., 2007):

γki j ¼ ηkiI þ ηkiSt j þ ξki j ð16Þ

ηkiI ¼ γk00 þ γk10xi1 þ ξki0 ð17Þ
ηkiS ¼ γk01 þ γk11xi1 þ ξki1 ð18Þ

Population parameters for Equations 16 to 18 used in the
Monte Carlo simulations in Studies 1 and 2 are shown in
Table 1. Data were simulated for a normally distributed outcome
measured at five equally spaced time intervals and one normally
distributed standard covariate. In a simulation study with 4 and 7
waves, Tofighi and Enders (2007) found that the number of
repeated measures had only a minor impact on class enumera-
tion.We chose five waves because it is within the range ofwaves
examined by Tofighi and Enders (2007). The number of classes
was set at two through reviewing previous LCA and GMM
simulation studies (e.g., Li & Hser, 2011; Lubke & Muthén,
2007; Nylund, et al., 2007). Lubke and Muthén (2007) stated
that unequal class proportions do not have a noticeable effect on
model selection. Therefore, we chose to set population class
proportions at .50. Following previous studies (e.g., Li & Hser,
2011; Lubke & Muthén, 2007; Nylund, et al., 2007; Yang,
2006), we defined effects of the covariate on the growth factors
that were invariant across classes. We selected population coef-
ficients for the covariate such as that it explains 15 % of the
variance of the intercept and 5% of the slope. In turn, population
residual variances for the intercept, slope and outcome were
chosen so that the intercept and the slope together account for
20 % of the variance of the outcome at each measurement occa-
sion. These targets are similar to Li and Hser (2011), who sim-
ulated a covariate that explained 20 % of the growth factors’
variance, and Tofighi and Enders (2007), who generated covar-
iates accounting for 15 % of the variance of the intercept and
slope.

Manipulated conditions in Study 1

In study 1, we manipulated three conditions: class separation
(multivariate Mahalanobis Distance (MD) of 1.3, 2.6, and 3.9),
sample size (N = 400, 1,000, and 2,000) and covariate’s effect on
class membership (pseudo R2 = 0.1 and 0.3). The variables ma-
nipulated resulted in a total of 3 × 3 × 2=18 unique conditions.
For each condition, 100 datasets were generated using the R
statistical package.

The three levels of class separation (MD = 1.3, 2.6, and 3.9)
manipulated correspond to differences of 1, 2, and 3 standard
deviations between the means of the intercept factors of the two
classes. Lubke and Muthén (2007) simulated class separation of
0, 1, 1.5, and 2 standard deviations but mentioned that real data
could have higher levels of class separation than simulated in
their study. In Study 1, the separation between classes was
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determined solely by the population mean difference on the
intercept factor.Tofighi and Enders (2007) performed a review
of GMM applications and found a large range of sample sizes
(i.e., 110–5,833) in applied studies. In this simulation, we gen-
erated datasetswith sample sizes of 400, 1,000, and 2,000,which
are approximately between the 25th and 75th percentiles of the
sample sizes in studies identified by Tofighi and Enders (2007).

None of the previous studies about class enumeration in
GMM manipulated the strength of the effect of covariates on
class membership. The McKelvey and Zavoina Pseudo-R2

(Hu et al. 2006; McKelvey & Zavoina, 1975) can be used to
manipulate this effect. TheMcKelvey and Zavoina Pseudo-R2

can be interpreted as the proportion of the variance of a hypo-
thetical continuous variable underlying the latent class vari-
able that is explained by the covariate. Covariate effects cor-
responding to pseudo-R2 of 0.1 and 0.3 were manipulated in
this study.

Manipulated conditions in Study 2

We varied the intercept mean and slope mean differences in the
population model so that the two classes have unique mean
intercept and mean slope. In addition to the three conditions
(class separation, sample size, and covariate effect) manipulated
in Study 1, we manipulated whether the residual covariance
matrix of intercept and slope were allowed to vary between
classes. The variables manipulated resulted in a total of 3 × 3 ×
2 × 2 =36 unique conditions. For each condition, 200 datasets
were generated using the R statistical package.

Analysis procedure

For each simulated dataset, the U-GMM as shown in
Equations 1–4, the GP-GMM shown in Equations 5, 6,
7, and 11 and DE-GMM shown in Equations 8–11 with
one to three latent classes were fit using the MPLUS 7.1
software with maximum likelihood estimation. In Study 1,
these models were fitted once to each simulated dataset,
allowing means of intercepts to vary between classes. In
Study 2, these models were fit twice to each simulated
dataset, once allowing factor means to vary between clas-
ses, and another time allowing factor means, residual var-
iances and covariance of growth factors to vary between
factors. The covariate’s effects on the growth factors in
the GP-GMM and on the outcomes in the DE-GMM were
set to be invariant across classes. Similarly to Peugh and
Fan (2014), we fit GMM to each simulated dataset with
the correct number of classes (i.e., two classes) and incor-
rect but neighboring number of classes (i.e., one and three
classes), because a review of previous GMM studies in-
dicated that class enumeration procedures resulted in class
counts that were close to the correct number of classes
regardless of simulated condition. For example, in Li
and Hser (2011), the number of classes selected using
different criteria across all conditions fell mostly within
one to three classes even though the authors fit models
with one to five classes.

Class enumeration was compared across information indi-
ces (i.e., AIC, BIC, and ABIC) and likelihood ratio tests (i.e.,

Table 1 Population values for
Monte Carlo simulation studies Parameter MD Study 1 Study 2

Class 1 Class 2 Class 1 Class 2

Mean of intercept (γ00) 1.3 0 1.3 0 0.79

2.6 0 2.6 0 1.13

3.9 0 3.9 0 1.28

Mean of slope (γ01) 1.3 1 1 1 1.79

2.6 1 1 1 2.13

3.9 1 1 1 2.38

Effect of covariate on intercept (γ10) 0.15 0.15 0.15 0.15

Effect of covariate on slope (γ11) 0.05 0.05 0.05 0.05

Residual variances:

Intercept (var(ξ0) ) 1.42 1.42 1.42 1.42

Slope (var(ξ1)) 0.19 0.19 0.19 0.19

Y1 (var(ε1) ) 6.68 6.68 6.68 6.68

Y2 (var(ε2)) 7.48 7.48 7.48 7.48

Y3 (var(ε3)) 9.88 9.88 9.88 9.88

Y4 (var(ε4)) 13.88 13.88 13.88 13.88

Y5 (var(ε5)) 19.48 19.48 19.48 19.48

Residual covariance (cov(ξ1ξ2)) 0 0 0 0

Note. Notation in parenthesis refers to Equations 16 to 18; MD = Mahalanobis Distance
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LMR and BLRT). The outcome of theMonte Carlo simulation
study was a dichotomous indicator of whether the correct
number of classes, two classes in this case, was identified
using each class enumeration criterion. For the AIC, BIC,
and ABIC, if the model with two classes produced a smaller
value than the models with one and three classes, an outcome
of 1 was assigned to indicate correct class enumeration. For
the LMR and BLRT, a significant p value (p ≤ .05) indicates
that the model with k classes fits better than the model with k-1
classes. Therefore, the number of classes was determined by
the following criterion: if p ≤ .05 for the comparison between
models with one and two classes and p >.05 for the compar-
ison between models with two and three classes, a value of 1
was assigned to the outcome and regarded as correct class
enumeration. This is a strict criterion given that the LMR
and BLRT not only had to indicate better fit of two class
model over three class model (as in Nylund et al., 2007), but
also had to indicate better fit of the two class model over the
one class model.

Mixture models are known for high frequency of conver-
gence problems, local maxima, and improper solutions (Li &
Hser, 2011; Lubke & Muthén, 2007; Nylund et al., 2007). To
eliminate these problems, we set starting values at 400 random
sets in the initial stage and 100 optimizations in the final stage.
These numbers are much larger than the default MPLUS set-
tings of 20 and 4 for the initial and final stages respectively,
and previous research has obtained adequate results by just
doubling the MPLUS defaults (e.g., Peugh & Fan, 2014).

Results

In this section, the performance of model fit indices and sta-
tistics for selecting correct number of classes with three dif-
ferent GMM are reported for both Study 1 and Study 2. To aid
in the interpretation of results of the Monte Carlo simulation
study (Bandalos & Leite, 2013) a mixed-design ANOVA table
was calculated with the dichotomous indicator of each of the
fit indexes selecting the correct model as the outcome. This is
a linear probability model (Agresti, 2002) that is in general not
recommended for dichotomous outcomes, but it is useful here
because our goal is to simply compare effects across manipu-
lated conditions rather than to interpret parameter estimates.
Furthermore, as Agresti (2002) pointed out, this model is valid
over a restricted range of predictors, and in our simulation all
of our predictors are categorical variables. Class separation,
sample size, and covariate effect on class membership were
between-iteration effects in both Studies 1 and 2, because
these factors were manipulated across different simulated
datasets. GMM type was a within-iteration effect in Study 1,
both GMM type and whether the residual covariancematrix of
the intercept and the slope was allowed to vary between clas-
ses were within-iteration effects in Study 2. Generalized eta

squared (η2) (Olejnik and Algina 2003) was used to quantify
the effects of the manipulated factors. We considered effects
equal or larger than 0.01 to be substantial and focused inter-
pretation on them, because the large number of replications in
simulation studies results in high levels of power and only
those effects reaching some pre-specified level of effect size
should be interpreted for practical significance (Bandalos &
Leite, 2015). These effects are shown in Table 2 (all results
were available upon request to the first author).

Study 1

Table 3 presents a comparison of class enumeration with AIC,
BIC, ABIC, LMR, and BLRT across simulated conditions.
With correct classes enumeration with the AIC as the out-
come, GMM type (η2 = .018), and the interaction of GMM
type by class separation (η2 = .018) had the largest effect sizes,
followed by the interaction of class separation and sample size
(η2 =.010). GMM type, class separation and sample size had
significant main effects. The two GMM with a covariate per-
formed better than the GMM without covariate only when
class separation was small (MD = 1.3) and sample size was
1,000 or less. For these conditions, the DE-GMM
outperformed the GP-GMM.

For class enumeration with the BIC, we observed signifi-
cant main effects of class separation, sample size, and covar-
iate effect. Class separation (η2 =.604) had the largest effect
size, followed by sample size (η2 =.131) and covariate effect
(η2 =.027). However, there were two three-way interactions
present: Interaction of class separation by sample size (η2 =
.110) and interaction of class separation by covariate effect (η2

= .010). The two GMM with a covariate only outperformed
GMMwithout covariates when the covariate effect was stron-
ger (R2= .3) and class separation was 2.6. We found that class
enumeration with the BIC was very sensitive to class separa-
tion and sample size. In these conditions, the GP-GMM per-
formed slightly better than the DE-GMMwhen the pseudo-R2

was 0.1 but slightly worse when the pseudo R2 was 0.3.
For class enumeration with the ABIC, we observed a sub-

stantial main effect of all four manipulated factors: class sep-
aration, sample size, covariate effect, and GMM type. Class
separation (η2 =.530) had the largest effect size, followed by
the interaction of class separation by sample size (η2, =.041),
sample size (η2 =.014), and covariate effect (η2 =.014).
However, three-way interactions were also present: class sep-
aration by sample size by GMM type, sample size by covar-
iate effect by GMM type. The two GMM with a covariate
performed better than GMM without a covariate when class
separation was 1.3, or when class separation was 2.6 in com-
bination with a sample size of 1,000 or smaller. The DE-
GMM resulted in higher accuracy of class enumeration than
the GP-GMM in these conditions.
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For class enumeration with the LMR, there were substan-
tial main effects of class separation and sample size, as well as
two-way interactions. Class separation (η2 =.328) had the larg-
est effect size, followed by sample size (η2 =.043), the inter-
action of class separation by GMM type (η2 =.025), the inter-
action of class separation by sample size (η2 =.015). The two
GMM with a covariate performed better than GMM without
covariate when class separation was 1.3, or when class sepa-
ration was 2.6 in combination with a sample size of 1,000 or
smaller. In most conditions, the DE-GMM outperformed the
GP-GMM.

The BLRT performed similarly to LMR. Class separation
had the largest effect size (η2 = .385), followed by interaction
of class separation by sample size (η2 = .023), interaction of
class separation by GMM type (η2 = .011), and sample size
main effect (η2 = .010). The GP-GMM and DE-GMM per-
formed better than the U-GMM when class separation was
1.3, or when class separation was 2.6 in combination with a
sample size of 1,000 or smaller, and DE-GMM outperformed
GP-GMM except when the sample size was 400.

In summary, the GMM with covariates were the best
models for class enumeration, with the DE-GMM
outperforming the GP-GMM most of the time, when sample
sizes and Mahalanobis Distances were at the smallest levels
simulated, but the U-GMMworks better than both GMMwith

Table 3 Percentage of correct model identification of fit indices in Study 1

Study 1 U-GMM GP-GMM DE-GMM

Cov R2 MD N AIC BIC ABIC LMR BLRT AIC BIC ABIC LMR BLRT AIC BIC ABIC LMR BLRT

No 0.1 1.3 400 0.15 0 0.07 0.03 0.03 0.26 0 0.21 0.2 0.11 0.31 0 0.27 0.29 0.17

1000 0.2 0 0.02 0.07 0.02 0.15 0 0.09 0.18 0.17 0.23 0.01 0.11 0.21 0.2

2000 0.28 0 0.02 0.09 0.18 0.1 0 0.03 0.17 0.15 0.09 0 0.02 0.19 0.16

2.6 400 0.32 0.04 0.21 0.09 0.07 0.27 0.02 0.35 0.31 0.2 0.3 0 0.31 0.23 0.14

1000 0.53 0.07 0.2 0.25 0.22 0.32 0.02 0.18 0.27 0.27 0.49 0.02 0.36 0.37 0.38

2000 0.84 0.08 0.48 0.68 0.75 0.19 0.04 0.2 0.26 0.22 0.32 0.06 0.29 0.35 0.34

3.9 400 0.8 0.37 0.81 0.69 0.43 0.54 0.29 0.78 0.49 0.49 0.51 0.24 0.65 0.45 0.38

1000 0.87 0.85 0.93 0.89 0.93 0.64 0.9 0.93 0.76 0.84 0.68 0.75 0.96 0.81 0.89

2000 0.89 1 0.99 0.93 0.97 0.7 1 0.99 0.84 0.91 0.75 1 0.99 0.83 0.9

0.3 1.3 400 0.16 0 0.1 0.11 0.06 0.22 0 0.25 0.27 0.16 0.27 0.01 0.29 0.17 0.12

1000 0.18 0 0.03 0.07 0.04 0.16 0 0.05 0.18 0.15 0.33 0 0.19 0.28 0.25

2000 0.12 0 0.02 0.07 0.1 0.2 0 0.05 0.21 0.2 0.15 0 0.06 0.22 0.15

2.6 400 0.42 0.05 0.25 0.19 0.11 0.34 0.06 0.45 0.27 0.25 0.3 0.03 0.4 0.28 0.23

1000 0.62 0.06 0.29 0.36 0.35 0.31 0.09 0.3 0.32 0.35 0.49 0.08 0.52 0.45 0.47

2000 0.75 0.24 0.69 0.74 0.79 0.44 0.42 0.62 0.52 0.6 0.57 0.47 0.83 0.69 0.74

3.9 400 0.84 0.71 0.89 0.81 0.71 0.38 0.5 0.67 0.56 0.57 0.49 0.45 0.72 0.52 0.56

1000 0.86 0.99 0.97 0.9 0.96 0.69 0.95 0.93 0.81 0.83 0.61 0.95 0.92 0.75 0.77

2000 0.89 1 0.99 0.95 0.97 0.64 1 0.97 0.74 0.83 0.65 1 0.99 0.75 0.83

Note. MD = Mahalanobis Distance class separation, N = sample size, GMM = growth mixture models, R2 = class separation pseudo R2 , U-GMM =
unconditional GMM, GP-GMM = growth predictor GMM, DE-GMM = direct effect GMM, Cov= whether the residual covariance matrix of growth
factors was allowed to vary between intercept and slope

Table 2 Effect sizes of manipulated factors in Study 1 and Study 2

AIC BIC ABIC LMR BLRT

Study 1

MD - .604 .530 .328 .385

N - .131 .014 .043 .010

R2 - .027 .014 - -

GMM type .018 - - - -

MD × N .010 .110 .041 .015 .023

MD × R2 .010 - - -

MD × GMM type .018 - - .025 .011

Study 2

MD .057 .574 .473 .184 .441

N .015 .325 .055 .079 .193

R2 - .034 .014 - .016

Cov - .028 .013 - .014

GMM type .058 .025 .012 - .024

MD × N - - .075 .022 -

Cov × GMM type - .019 .012 - -

MD × N × GMM type - .017 .021 - .018

Cov × GMM type × MD × N - .011 - - -

Note.MD =Mahalanobis Distance class separation. N = sample size. R2

= class separation pseudo R2 . Cov=whether covariance matrix of growth
factors was allowed to vary between classes. Only η2

equal to or greater than 0.01 are shown
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covariates when sample sizes and distances increase. Among
fit indices and statistics, the AIC was consistently the best
index for class enumeration when sample sizes and
Mahalanobis distances were at the smallest levels simulated.
The BIC showed very a high detection rate but only at high
class separation (MD = 3.9) and larger sample size (1,000 or
larger). ABIC had a similar pattern with BIC but performed
better than BIC at smaller class separation of 2.6 or smaller, or
at class separation of 3.9 and sample size of 400. At the most
favorable condition of class separation of 3.9 and sample size
of 1,000 or larger, ABIC and BIC had similar detection rates.
LMR and BLRT shared similar performances. Comparing
across ABIC and the LRTs, under favorable conditions like
class separation of 3.9 and sample size of 1,000 or above,
ABIC performed better than LRTs in that ABIC had a higher
detection rate and ABIC performed well in both GMM with
and without covariates. Under the same conditions, the LRTs
worked better for GMM without a covariate.

Study 2

Table 4 presents a comparison of class enumeration with AIC,
BIC, ABIC, LMR, and BLRT across simulated conditions.
For class enumeration with the AIC, GMM type (η2 =.058),
class separation (η2 =.057), and sample size (η2 =.015) had
effect sizes larger than .01. In general GMM without covari-
ates performed better thanGMMwith a covariate, and the DE-
GMM outperformed the GP-GMM by small differences.

For BIC, class separation (η2 =.574) had the largest effect
size, followed by sample size (η2 =.325), covariate effect (η2

=.034), whether the residual covariance of intercept and slope
was allowed to vary between classes (η2 =.028), model (η2

=.025), interaction of model and residual covariance allowed
to vary between classes (η2 =.019), interaction of model, class
separation, and sample size (η2 =.017), and four-way interac-
tion of model, class separation, sample size, and whether the
residual covariance was allowed to vary between classes (η2

=.011). The BIC did not achieve a correct enumeration rate
above 0.8 until class separation was at 2.6 in combination with
a sample size of 2,000, or class separation at 3.9 with a sample
size of 1,000 or larger. With the BIC, the GMM without co-
variates performed better than the two GMMwith a covariate.
When class separation and sample size were at the largest
levels (MD=3.9, N=2,000), all growth mixture models had
the same 100 % detection rate on BIC. GMM not allowing
the residual covariance matrix to vary between classes result-
ed in slightly better class enumeration than when the residual
covariance matrix was allowed to vary.

For ABIC, class separation (η2 =.473) had the largest effect
size, followed by the interaction of class separation by sample
size (η2 =.075), sample size (η2 =.055), the interaction of class
separation by sample size by model (η2 =.014), covariate ef-
fect (p <.001,η2 =.014), whether the residual covariance

matrix of growth factors was allowed to vary between classes
(η2 =.013), type of model (η2 =.012), and the interaction of
model and whether the residual covariance varied between
classes (η2 =.012). The U-GMM resulted in higher accuracy
of class enumeration than both the DE-GMM and GP-GMM
except when class separation and sample size were small
(MD=1.3, N=400). When class separation was 3.9 and sample
size was 2,000, detection rate for ABIC was almost all 100 %.

For the LMR, class separation (η2 =.184) had the largest
effect size, followed by sample size (η2 =.079), the interaction
of class separation by sample size (η2 =.022). In general,
GMM without covariates performed better than GMM with
a covariate except when class separation and sample size were
really small (MD = 1.3, N = 400). The DE-GMM resulted in
better or equal class enumeration than the GP-GMM in most
conditions. When class separation is large (MD=3.9) in com-
bination with a sample size of 1,000 or larger, all three models
detected the correct number of classes in at least 72 % of
iterations.

For BLRT, class separation had the largest effect size
(η2 = .441), followed by sample size, interaction of class
separation by sample size (η2 = .023), interaction of class
separation by model (η2 = .011), and sample size (η2 =
.010). The U-GMM produced better class enumeration
than the two models with covariates, but the DE-GMM
outperformed the GP-GMM. However, when class sepa-
ration is 3.9 in combination with a sample size of 1,000 or
larger, all models had correct class enumeration of 92 %
or higher.

In summary, the AIC only worked better than the other fit
indices and statistics with small sample sizes and small dis-
tances. BIC was very sensitive to sample size and class sepa-
ration, and showed very high detection rate at only high class
separation (MD = 3.9) and larger sample size (1,000 or above).
ABIC performed better than BIC especially when class sepa-
ration was small (MD = 1.3). LMR performed slightly better
than BLRT at small class separation (MD = 1.3) and small
sample size (N = 400), while BLRT showed much higher
and accurate detection rate than LMR at large class separation
and sample size (MD = 3.9, N = 1,000 or above). The ABIC
performed slightly better than BLRT at small sample size of
400. The GMM without covariate performed better than the
GMM with covariates in general, and only when class sepa-
ration and sample size were small (MD = 1.3, N = 400) do
GMM with a covariate slightly outperform GMM without
covariates. Allowing the residual covariance matrix of
intercept and slope to vary between classes had no or little
effect on the accuracy of class enumeration. In both studies,
an interaction of sample size and class separation was
observed, which supported the finding of Lubke and Neale
(2006) that the smaller class separation can be partially com-
pensated for by increasing the sample size to get a correct
model. There were only small differences between GP-
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GMM and DE-GMM in terms of identifying the correct num-
ber of classes. Comparing the data simulating in Study 1 and
Study 2, we found that allowing intercept and slope residual
covariance matrix differences between two classes increased
the detection rate of the AIC and ABIC under unfavorable
conditions (MD = 1.3 N = 400) only slightly.

Discussion

While some methodological studies about class enumeration
in growth mixture models did not include covariates in the
generating model (e.g., Liu & Hancock, 2014; Nylund et al.
2007; Peugh & Fan, 2012; Yang, 2006), other studies such as

Table 4 Percentage of correct model identification of fit indices in Study 2

Study 2 U-GMM GP-GMM DE-GMM

Cov R2 MD N AIC BIC ABIC LMR BLRT AIC BIC ABIC LMR BLRT AIC BIC ABIC LMR BLRT

No 0.1 1.3 400 0.24 0 0.16 0.12 0.02 0.28 0 0.22 0.2 0.07 0.24 0 0.26 0.23 0.07

1000 0.42 0 24 0.33 0.3 0.24 0 0.04 0.26 0.08 0.24 0 0.1 0.25 0.13

2000 0.64 0.04 0.42 0.49 0.57 0.25 0 0 0.24 0.08 0.26 0 0.04 0.33 0.12

2.6 400 0.6 0.01 0.52 0.37 0.28 0.34 0.02 0.52 0.26 0.18 0.35 0.04 0.49 0.23 0.21

1000 0.73 0.52 0.9 0.75 0.92 0.31 0.12 0.32 0.34 0.32 0.41 0.14 0.73 0.53 0.73

2000 0.78 0.96 1 0.9 0.99 0.4 0.62 0.75 0.63 0.72 0.5 0.6 0.94 0.77 0.94

3.9 400 0.68 0.56 0.85 0.73 0.74 0.38 0.25 0.7 0.52 0.58 0.4 0.28 0.7 0.44 0.6

1000 0.8 0.99 0.97 0.88 0.96 0.52 0.9 0.98 0.8 0.95 0.47 0.78 0.98 0.76 0.97

2000 0.78 1 1 0.86 0.99 0.53 1 1 0.84 0.96 0.52 1 1 0.86 1

0.3 1.3 400 0.34 0.02 0.2 0.16 0.08 0.28 0 0.32 0.34 0.13 0.31 0 0.3 0.22 0.12

1000 0.58 0.04 0.42 0.4 0.52 0.2 0 0.04 0.2 0.06 0.28 0 0.21 0.28 0.21

2000 0.74 0.16 0.7 0.7 0.79 0.22 0 0.04 0.25 0.1 0.32 0.02 0.16 0.36 0.23

2.6 400 0.57 0.21 0.66 0.5 0.44 0.3 0.1 0.52 0.34 0.32 0.36 0.08 0.56 0.34 0.39

1000 0.68 0.76 0.94 0.83 0.94 0.35 0.3 0.63 0.54 0.6 0.42 0.3 0.79 0.58 0.79

2000 0.77 1 1 0.88 0.98 0.4 0.9 0.98 0.76 0.91 0.46 0.9 1 0.84 0.98

3.9 400 0.77 0.77 0.94 0.85 0.88 0.4 0.4 0.72 0.55 0.64 0.42 0.38 0.77 0.58 0.68

1000 0.78 1 0.97 0.88 0.95 0.48 0.96 0.98 0.79 0.94 0.56 0.96 0.98 0.8 0.96

2000 0.78 1 0.99 0.88 0.98 0.55 1 1 0.78 0.96 0.68 1 0.99 0.84 0.98

Yes 0.1 1.3 400 0.22 0 0.13 0.14 0.04 0.28 0 0.22 0.2 0.07 0.22 0 0.25 0.24 0.08

1000 0.32 0 0.06 0.2 0.08 0.24 0 0.04 0.26 0.08 0.23 0 0.09 0.25 0.08

2000 0.42 0.01 0.04 0.22 0.12 0.25 0 0 0.24 0.08 0.22 0 0.03 0.31 0.1

2.6 400 0.42 0 0.36 0.24 0.14 0.34 0.02 0.52 0.26 0.18 0.32 0.02 0.34 0.22 0.15

1000 0.65 0.12 0.58 0.55 0.6 0.31 0.12 0.32 0.34 0.32 0.4 0.04 0.52 0.44 0.5

2000 0.77 0.44 0.82 0.78 0.94 0.4 0.62 0.75 0.63 0.72 0.48 0.24 0.76 0.68 0.79

3.9 400 0.57 0.22 0.66 0.53 0.5 0.38 0.25 0.7 0.52 0.58 0.38 0.12 0.59 0.35 0.42

1000 0.74 0.76 0.95 0.81 0.94 0.52 0.9 0.98 0.8 0.95 0.46 0.5 0.92 0.72 0.92

2000 0.82 0.79 1 0.86 0.98 0.53 1 1 0.84 0.96 0.52 0.94 1 0.88 0.98

0.3 1.3 400 0.22 0.01 0.11 0.12 0.06 0.28 0 0.32 0.34 0.13 0.32 0 0.3 0.22 0.12

1000 0.29 0 0.1 0.18 0.12 0.2 0 0.04 0.2 0.06 0.3 0 0.16 0.28 0.18

2000 0.48 0 0.1 0.28 0.24 0.22 0 0.04 0.25 0.1 0.28 0.02 0.14 0.32 0.22

2.6 400 0.44 0.06 0.42 0.32 0.23 0.3 0.1 0.52 0.34 0.32 0.34 0.06 0.56 0.3 0.26

1000 0.7 0.25 0.71 0.64 0.77 0.35 0.3 0.63 0.54 0.6 0.38 0.18 0.69 0.57 0.66

2000 0.76 0.74 0.95 0.85 0.97 0.4 0.9 0.98 0.76 0.91 0.48 0.74 0.98 0.79 0.98

3.9 400 0.74 0.4 0.82 0.59 0.7 0.4 0.4 0.72 0.55 0.64 0.36 0.26 0.73 0.51 0.58

1000 0.75 0.92 0.98 0.88 0.96 0.48 0.96 0.98 0.79 0.94 0.49 0.86 0.98 0.78 0.95

2000 0.75 1 0.99 0.86 0.98 0.55 1 1 0.78 0.96 0.66 1 0.99 0.84 0.98

Note. MD = Mahalanobis Distance class separation, N = sample size, GMM = growth mixture models, R2 = class separation pseudo R2 , U-GMM =
unconditional GMM, GP-GMM = growth predictor GMM, DE-GMM = direct effect GMM, Cov= whether the residual covariance matrix of growth
factors was allowed to vary between intercept and slope
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Li and Hser (2011) and Tofighi and Enders (2007) studied the
GMM performance when the generating model had a covari-
ate and compared performance of different growth mixture
models. However, these papers only examined the GP-
GMM but not the DE-GMM. Therefore, the purpose of this
study was to conduct further evaluation on whether the inclu-
sion of covariates in GMM was beneficial to class enumera-
tion. Two GMM with covariates (i.e., the GP-GMM and DE-
GMM) and an unconditional GMM were fit to the data gen-
erated based on the GP-GMM. Commonly used fit indices and
test statistics for class enumeration were compared.

In our studies, we found that the inclusion of a covariate
only helps with class enumeration when class separation and
sample size are small (i.e.,MD = 1.3 and N = 400) and in this
case, it is better to fit the DE-GMM and the GP-GMM.
However, the inclusion of a covariate in this case makes little
practical difference because the percentages of correct class
identification are low across all fit criteria. We consider that
the difference between models is only of practical significance
in conditions where using the unconditional model allows a
percentage of correct identification above 70 % but the other
models do not. Therefore, we conclude that under favorable
conditions, such as class separation of 3.9 or class separation
of 2.6 with a sample size of 2,000, GMM without covariates
performs better than GMMwith covariates. We found that our
results are supported by the existing literature: Peugh and Fan
(2014) concluded that adding covariates decreased the detec-
tion rate of BIC and BLRT under large sample size (i.e., N =
3000), large class separation (MD = 2), and large variance
explained. Yet Peugh and Fan (2014) did not compare the
performance of different GMM with and without covariates
in the same paper with the same population model. Tofighi
and Enders (2007) simulated a GP-GMMwith covariates and
concluded that the inclusion of covariates hampered GMM
class extraction capability. However, it is worth noting that
Tofighi and Enders (2007) reached this conclusion under the
most favorable conditions in their study (i.e., sample size
=1,000, largest class separation of 3 standard deviations which
was equivalent to MD = 3.9 in our study; normal distribution
within class; mixing percentages of 20: 33: 47 %), and there-
fore their conclusion is similar to the results of our study.

Li and Hser (2011) concluded that inclusion of a covariate
was beneficial to GMM class enumeration when GMM
misspecification was minor (i.e., defined as GMM without
covariate fit to data generated by GMM with covariate and
the same covariate mean). They simulated GMM with covar-
iates and fixed the class separation as a class mean difference
equivalent to 3 standard deviations, yet they varied the covar-
iate mean difference between classes. Their results were dif-
ferent from our results, and this difference might be due to the
fact that in Li and Hser’s study (2011) covariates were binary
or non-normally distributed, while the covariate was normally
distributed in our study. Lubke and Muthén (2007) concluded

that including a covariate helped the class assignment of factor
mixture models. They concluded that correct class assignment
increased as covariate difference between classes increased
(MD of covariate increased from .5 to 2). In our study, the
covariate effect was defined as the variance that covariate
explained the intercept and the slope as well as the effect on
class membership, which was manipulated through the pseu-
do R2. In Lubke and Muthén’s study (2007) the covariate in
the simulation model only predicted the class membership but
not the intercept and the slope. These differences may explain
why our results contrast with Li and Hser (2011) and Lubke
and Muthén (2007), but agree with Tofighi and Enders (2007)
and Peugh and Fan (2014).

On the performance of the fit indexes, the ABIC was the
best indicator followed by the LRTs when class separation
was large and sample size was large (MD = 3.9, N = 1,000
or larger). Peugh and Fan (2014) also found that sample size
adjusted BIC performed better than LMR and BLRTwhen the
class-mixing proportion was equal. Specific to our studies,
ABIC showed higher detection rate and worked well under
both GMM with covariate and the GMM without covariate.
Under the same conditions, LMR and BLRT performed better
in GMM without covariates. This conclusion is consistent
with the findings of Peugh and Fan (2014), who found that
adding covariates decreased the detection rate of BLRT com-
paring to GMM without covariates. We found that the BIC
was sensitive to sample size and class separation, and only
achieved satisfactory performance when class separation was
3.9 in combination with a sample size of 1,000 or larger.
Under these conditions, GMM type did not impact the BIC’s
performance. Liu and Hancock (2014) also found BIC per-
formed well in linear GMM with MD = 2 or larger, and large
sample size. The AIC performed consistently especially in
unconditional GMM, but did not show substantial improve-
ment with increase of class separation conditions, as other
indices did.

Our comparison of fit indices resulted in conclusions that
are similar to previous studies: On the performance of ABIC,
Yang (2006) also concluded that the ABICwas accurate in the
context of latent class analysis. Tofighi and Enders (2007)
concluded that ABIC detected the correct number of classes
even when sample size was 400. Nylund et al. (2007) also
concluded that the ABIC performed well in GMMwhen sam-
ple size was 500 or larger. On the performance of BIC, Yang
(2006), Tofighi and Enders (2007), Nylund et al. (2007), and
Liu and Hancock (2014) all reached the same conclusion that
the BIC performed adequately when sample size was above
1,000. These conclusions about the sensitivity of BIC to sam-
ple size are not surprising since BIC is a function of sample
size. On the performance of AIC, our results mirrored those of
Yang (2006) and Nylund et al. (2007), who concluded that
AIC performs poorly because it does not improve much as
sample size increases.
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The LRTs performed very well in class enumeration par-
ticularly with unconditional GMM when class separation was
3.9. LMR performed almost as well in class identification as
BLRT. Our results about the performance of LMR supported
the conclusion of Tofighi and Enders (2007), Nylund (2007),
and Liu and Hancock (2014). Our results about the BLRT’s
performance are consistent with Nylund (2007). The poor
performance of LRTs on GMM with covariates might be
due to the model complexity of GMM with covariates.

Conclusion

The evaluation of inclusion of covariates in GMMunder various
specifications, the difference betweenDE-GMMandGP-GMM,
and the performance of model fit indexes was the focus of this
paper. Consistent with previous studies, we concluded that
GMM depends on larger sample sizes and is difficult to imple-
ment with small sample sizes.When class separation is large and
a sufficient sample size is available (e.g., 1,000), the ABIC,
LMR, and BLRTcan be employed together to detect the correct
number of classes. Based on the findings of this study, the prac-
tice we recommend is to assess the class separation without
covariates if the sample size is large. However, if the sample size
is small (e.g., 400) and the class separation is not clear, we
recommend including a covariate to improve class enumeration
accuracy, with the awareness that class enumeration is frequently
inadequate with small sample sizes. Covariates should be select-
ed based on substantive theory and empirical analysis (Muthén,
2004). Also, when selecting covariates, care must be given to
whether the predictor merely predicts the latent class member-
ship or whether the predictor predicts the latent growth factor
within class as well, or both (Bauer, 2007). If a predictor is to be
included, the DE-GMM is recommended because it performs
slightly better than GP-GMM on most occasions.

The findings of this study are limited by the fact that
only linear growth models were examined. Furthermore,
only one level of class proportions and number of waves
was examined, and we simulated data where the covariate
had effects on the intercept and slope but not direct effects
on the outcome (i.e., the full mediation assumption
discussed by Stoel, Van den Wittenboer, and Hox (2004)
was held in the simulated data). Future research could fo-
cus on population models with nonlinear growth and mul-
tilevel levels of number of waves. We also restricted our
study to only the most commonly used fit criteria, but a
comprehensive evaluation of fit criteria, including the con-
sistent AIC (C-AIC), Hannan and Quinn (HQ), Hurvich
and Tsai AIC, normalized entropy criterion (NEC), classi-
fication likelihood criterion (CLC), integrated completed
likelihood criterion (ICL), and adjusted Lo-Mendell-
Rubin (aLMR), which were not examined in this study,
can be found in Peugh and Fan (2014). We only analyzed

conditions where growth trajectory was correctly specified,
so it remains an open question whether class identification
with large sample sizes using different fit criteria are robust
to some degree of misspecification of the growth
trajectory.

A separate but related area of research is about how to
include covariates in GMM when the interest is in either esti-
mating the effect of covariates on class membership or esti-
mating the effects of class membership on distal outcomes. In
this area of research, several multiple-step alternatives to
fitting a single GMM with covariates have been proposed,
such as the pseudo class (PC) method (Clark & Muthén,
2009), Vermunt’s three-step method (Vermunt, 2010), and
the Lanza, Tan, and Bray (2013) method, and comparisons
across these methods, such as the recent study by
Asparouhov and Muthén (2014), is an area of active research.
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