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Abstract The precision of an eye-tracker is critical to the
correct identification of eye movements and their properties.
To measure a system’s precision, artificial eyes (AEs) are of-
ten used, to exclude eye movements influencing the measure-
ments. A possible issue, however, is that it is virtually impos-
sible to construct AEs with sufficient complexity to fully rep-
resent the human eye. To examine the consequences of this
limitation, we tested currently used AEs from three manufac-
turers of eye-trackers and compared them to a more complex
model, using 12 commercial eye-trackers. Because precision
can be measured in various ways, we compared different met-
rics in the spatial domain and analyzed the power-spectral
densities in the frequency domain. To assess how precision
measurements compare in artificial and human eyes, we also
measured precision using human recordings on the same eye-
trackers. Our results show that the modified eye model pre-
sented can cope with all eye-trackers tested and acts as a
promising candidate for further development of a set of AEs
with varying pupil size and pupil–iris contrast. The spectral
analysis of both the AE and human data revealed that human
eye data have different frequencies that likely reflect the phys-
iological characteristics of human eye movements. We also
report the effects of sample selection methods for precision
calculations. This study is part of the EMRA/COGAIN Eye
Data Quality Standardization Project.
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High-quality eye movement data are a prerequisite for the
valid measurement of fixation durations, saccade amplitudes
and velocities, and many other behavioral measures in eye
movement research. Spatial accuracy and precision are two
of the most important aspects of eye data quality. Accuracy
is defined as the difference between the tracker-estimated gaze
position and the actual gaze position, whereas precision is
defined as the ability to reliably reproduce a measurement,
given a fixating eye (ideally, a stable eye)—see Fig. 1.
Accuracy and precision are two independent measurements
of eye-tracking data quality—that is, they can be both good
or poor, or one good and the other poor. The most commonly
used measures of precision in eye-trackers are the sample-to-
sample root mean square angular displacement [RMS(S2S)]
and the standard deviation (SD) of samples in a given time
window. These values will change not only dependent on the
actual precision level of the tracker but also on the calculation
used, and the samples or time period included in that calcula-
tion. Longer periods increase the probability of fixational eye
movements (tremor, microsaccades, and drift), which in turn
will increase imprecision. Holmqvist, Nyström, and Mulvey
(2012) showed that artificially increasing imprecision via the
addition of Gaussian noise from 0.03° to 0.30° results in an
increase of up to 200 ms in calculated fixation durations. If
this range of noise, as measured by RMS(S2S) precision, is
representative for current eye-trackers, it means that identical
eye movements recorded on different eye-trackers, or with
different levels of precision in recordings from the same eye-
tracker, can lead to different research results. This has a pro-
found effect on the replicability and valid comparison of re-
search results.
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The precision of an eye-tracker is known to vary with the
features of individual participants’ eyes, the recording envi-
ronment, the ability of the participant recorded to fixate, and
system specifics. For instance, Nyström, Andersson,
Holmqvist, and van de Weijer (2013) showed that when re-
corded using a SensoMotoric Instruments (SMI) HiSpeed
1250 tower eye-tracker, blue eyes result in data with a poorer
RMS(S2S) precision than brown eyes, and that data recorded
from participants with glasses are more imprecise than data
from uncorrected eyes in this particular eye-tracker. Increasing
the pixel resolution at the eye (e.g., by using a higher-
resolution camera or placing it closer to the eye) makes preci-
sion better [lower RMS(S2S) or SD]. Since all measures of
precision involve selecting samples or segments of time with-
in which to calculate, sample selection methods are also a
source of unknown variance in reported precision values.
Selecting samples within a time window, but removing spatial
outliers, will always result in a better precision value, as can
extensive loss during the sample period. Although this might
seem obvious, it is nonetheless common practice to remove
outliers before calculating precision, both in research on eye-
tracking methodology and in manufacturer-supplied values.
This study draws on methods developed for the purposes of
standardizing measures of eye-tracker data quality in examin-
ing the effect of sample selection, window size, artificial eye
properties, and noise components across 12 commercially
available eye-trackers.

When calculating precision for an individual on a particular
eye-tracker, the samples recorded when the eye is fixating a
stationary target are usually used. The intention is that the
samples’ spatial variation originating from eye movement is
minimized as much as possible. Generally, a reasonably short
period during fixation is chosen, but there is no consensus on
how long the period should be, or indeed whether the exclu-
sion of samples on the basis of outlier spatial extent is valid.
The only way to completely exclude human eye movements
from the calculation is to use an artificial eye (AE) positioned

in front of an eye-tracker (Abramov & Harris, 1984;
Holmqvist et al., 2011; Reingold, 2014). Most AEs used by
eye-tracker manufacturers are similar to doll’s eyes, with an
artificial pupil and a reflective surface that generates a first-
surface reflection (corresponding to the corneal reflection).
Some AEs are even simpler, and have only a dark circle to
represent the pupil and a ball bearing to create the glint. AEs
are designed according to how a human eye appears to the
particular eye-tracker to be tested, which may be more or less
complex, but are greatly simplified relative to a real eye.
Video-based eye-trackers generally rely on the recognition
of the pupil and corneal reflection(s) to track eye position,
sometimes relying on separate face detection to help locate
the eye in space. With these requirements, for some eye-
trackers, manufacturers use a printed image of a face with
two AEs stuck in place to test the quality of the data their
systems produce. It is a challenge for eye-trackers that require
a bright pupil reflection (elicited by on-axis illumination) to
find any AE model that produces the kind of image their
internal eye model recognizes. Bright pupil tracking is used
by several major eye-tracker manufacturers, including Tobii,
Applied Science Laboratory (ASL), SmartEye, and LC
Technologies; therefore, there is a need to develop AEs that
work with these systems, too. As a unique case, the dual-
Purkinje imaging (DPI) eye-tracker (Crane & Steele, 1985)
does not use any tracking of the pupil, but instead relies on
the fourth Purkinje reflection at the back of the crystalline lens,
along with the corneal reflection, to determine eye position
and orientation.

In principle, we may assume that noise in data from AEs
and human fixating eyes is different. Theoretically, the total
noise from human eye data, even during careful fixation,
would include both biological components and the system-
generated noise. Although this may suggest that precision
estimates are constant across samples for AEs, the exact im-
plementation of image recognition techniques in the various
eye trackers may result in trial-by-trial variations in the previ-
sion estimates, due to small vibrations, minor illumination
changes, or camera noise. A range of AEs have been devel-
oped by both manufacturers and researchers, but little is
known about how these models compare. We therefore set
out to compare four sets of AEs on a range of commercially
available eye-trackers, including tower-mounted and remote
video-based eye-trackers, and the DPI (12 trackers in total).
Three sets of AEs were provided by their manufacturers
(Tobii, SMI, and SR Research), whereas the fourth AE was
a modified version of a commercially available eye model
originally designed for ophthalmic imaging training (Ocular
Instruments, 2013). On the basis of what is known about how
human variations affect noise characteristics, we would expect
different precision measurements across the different AEs,
due to variations in iris color, pupil size, and reflectivity. To
establish how the precision measured in AEs compares to the
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Fig. 1 Definitions of accuracy and precision, from eye-tracking data
reproduced from Cleveland, Mulvey, and Pelz (2015). For a fixation,
accuracy is calculated as the difference between the mean measured gaze
position and the true fixation position. Note that the true fixation position
can only be ascertained by feedback from the participant. Precision is a
metric either of the sample-to-sample movement or of how spread-out the
raw gaze samples in the fixation are

948 Behav Res (2017) 49:947–959



precision from human eyes, we measured the precision of the
eye-trackers in a set of 20 human participants. We also exam-
ined the influence of the number of samples included in the
calculation to study how precision is affected by sample
selection.

Precision is influenced by noise, but it is unclear how dif-
ferent aspects of the noise contribute to precision. We there-
fore carried out an analysis of the spectral qualities of the noise
in the various eye-tracking systems. Previous work by Findlay
(1971), using eye movement signals recorded on magnetic
tape, suggests that although the methods of recording he used
are very different from current eye-trackers, the nature of the
system noise component described is the same random spatial
displacement reported from current trackers (Mulvey et al.,
2015). According to Findlay, the statistical characteristics of
the saccadic component allow its mean power to be estimated,
even below the system noise level. Biological tremor is de-
scribed as having similar characteristics to system noise, so
their power spectra add. A corrected tremor component is
estimated by subtracting the system-noise power from the
observed random-component power. Coey, Wallot,
Richardson, and Van Orden (2012) measured the noise of an
ASL eye-tracker, and through fractal analysis showed that
noise from humans had a fractal structure (i.e., pink or 1/f
noise), whereas noise from an AE was white—that is, it has
the same energy at all frequencies. The fractal structure is
characterized by a scaling relation between the power of
changes in the measured variable and the frequency with
which changes of that size occur. In more recent research from
Wallot, Coey, and Richardson (2015), eye movement spectral
characteristics were generalized via power-law scaling, and
the results indicated that this characteristic reflects a relative
demand for voluntary control during visual tasks. To validate
that these spectral characteristics are a pure effect of human
eye movement, we need to verify that the eye-trackers used in
such studies do not yield power-law scaling, which we can
measure with AEs. In our study, we analyzed the noise char-
acteristics from both human and AE data using power-spectral
density analyses to test whether the statements above hold for
a variety of trackers and AEs.

Procedure

AEs and eye-trackers

Four sets of AEs were used. Three of them were provided by
the manufacturers: SR Research, SMI, and Tobii, shown in
Fig. 2A, C, and D. They are regularly used by the above
manufacturers to test the precision of their eye-trackers. We
also used an ocular-imaging eye model modified from Ocular
Instruments (Model OEMI-7), shown in Fig. 2B. This AE has
not previously been used with eye-trackers. We tested and

modified this AE for our purposes, since its structure more
closely resembles the human eye—with an anterior chamber,
crystalline lens, fluid filled globe, reflective retina, and fun-
dus. However, since the original material of this eye model has
different refractive indices than the human eye, the reflectance
of the back surface of the lens (the fourth Purkinje image) and
the bright pupil reflection is much brighter than ideal. We
modified this AE as we describe in the Appendix to bring
the values closer to those in the human eye.

We tested 12 commercial eye-trackers in this study, includ-
ing three tower-mounted eye-trackers, eight remote eye-
trackers, and the DPI. Their sample rates and manufacturer-
provided precision values are shown in Table 1. Among the
video-oculography (VOG) systems, the EyeFollower is the
only bright-pupil system tested, whereas the others are dark-
pupil systems. Bright-pupil imaging is achieved with a differ-
ent illumination geometry, in which the eye camera illumina-
tor is coaxial with the eye camera, causing a bright reflection
from the retina in the eye image. Dark-pupil systems place the
illuminator off-axis, so the pupil appears dark. The eye-
trackers tested were either part of the equipment available
locally, or were on loan from manufacturers in support of
the standardization effort.

Calibration and data recording

To calibrate the eye-trackers before data recording, different
procedures were carried out on different types of systems. For
tower systems, we performed both (a) human calibration and
(b) AE calibration. For the first step, we calibrated the system
with a human participant, and then we replaced the human
with a single AE in the recommended geometry with the
tracker (using a tripod for the SMI tower systems, and mount-
ing it directly on the chinrest on the EyeLink). Next, the pupil
and CR thresholds were adjusted to work with the AE, and
recording began. When calibrating with AEs, we mounted the
eye model on a gimbal mount with a laser diode attached to
the top of the eye model, as is shown in Fig. 3. The brass
housing of the laser diode was hot-glued to the outside of
the gimbal’s inner ring so that the relative position between
the laser diode and the eye model was fixed. Note that we did
not do an optical alignment, so there might be a small angle
between the optical axis of the AE and the laser diode, which
is consistent like angle kappa (kappa is the angle between the
optical axis and the visual axis; Artal, Benito, & Tabernero,
2006). The distance from the exit pupil of the laser diode to the
center of the AE was 17.5 mm. We used a calibration target
sheet attached in front of the screen with a projection of each
calibration point for the laser to aim at. After the calibration,
the AE was rotated to a Bgaze^ point at roughly the center of
the screen, and the recording began.

For remote systems, we calibrated using human observers
only and recorded data using the AEs. Since all of the remote
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systems tested were binocular systems, we put two AEs of
each type on a printed face with an interpupillary distance of
65 mm and mounted the Bface^ on a tripod. For the AEs from
SMI, SR, and Tobii, the calibration distance from the human
eyes to the stimulus monitor was 60 cm, and the tripod was
positioned so that the distance between the AEs and the mon-
itor screen was also 60 cm, to comply with the manufacturer-
recommended setup. For the OEMI-7, we recorded at 70 cm,
because tracking at 60 cm was poor, which might have been
due to the large pupil size of the OEMI-7. All systems were
powered up for at least 10min (the DPI was powered up for 30
min) before the experiment, as some manufacturers
recommended.

The DPI data were recorded and calibrated offline after
recording. The Generation V DPI tracker is linear within the

central 5°, so calibration consisting of gain/offset was suffi-
cient (Crane & Steele, 1985).

Two recordings with independent calibrations were
made on each of the other systems using each AE. Each
recording contains 60 s of data. The workflow of the
experiment was as follows: The tracker’s native calibra-
tion routine was initiated at the beginning of the experi-
ment. Following calibration, the AE was manually aimed
at the center of the stimulus screen, and 60 s of static data
were recorded.

The ioHub (iSolver Software Solutions, 2013), a Python
library in PsychoPy (Peirce, 2007), was used to program the
experiment and record the data. We used ioHub instead of the
experiment software provided by the manufacturers, because
ioHub enables the user to run exactly the same experiment on
all eye-trackers with careful temporal control and replication
of stimulus properties, and to save the recordings into the
same HDF5 format (HDFGroup, 2014; iSolver Software
Solutions, 2013).

Precision calculation

With the recorded data, precision was calculated as a function
of the angular distances θi (in degrees of visual angle) between

Table 1 Sample rates and manufacturer-reported precisions of the eye-
trackers used in this study

Tracker Sample
Rate (Hz)

Manufacturer
Reported Precision
(Visual °)

Type

The EyeTribe 30 0.10 Binocular

Tobii X2-60 60 0.34 Binocular

Tobii T60XL 60 0.09 Binocular

EyeFollower 60 Not reported Binocular

SMI REDm 120 0.10 Binocular*

SMI HiSpeed 240 240 0.01 Monocular

SMI RED250 250 0.03 Binocular*

Tobii TX300 300 0.14 Binocular*

SMI RED500 500 0.03 Binocular*

EyeLink 1000** 1,000 0.01 Monocular

SMI HishSpeed 1250 1,250 0.01 Monocular

DPI 1,000*** <0.02 Monocular

Some trackers can operate under more than one sample rate, but we list
the sample rate we used. The reported precisions are from the manufac-
turer specification sheets and websites. The unit of precision is degrees of
visual angle. * For binocular systems in which eye data are averaged
across the eyes by default, this averaging was turned off in our study to
get a truemeasure of recording quality. ** The EyeLink 1000was set up in
tower mode for this study. *** The DPI system is an analog system, and
we sampled it at 1000 Hz.

Fig. 2 Artificial eyes tested. (A) Eye model from SR Research. (B)
OEMI-7 from Ocular Instruments. (C) Eye model from SMI. (D) Eye
model from Tobii. The eyes in panels A, C, and D have a pupil size of

about 5 mm, and the one in panel B has a pupil size of 7 mm and is
capable of bright pupil reflection and 4th-Purkinje reflection

Fig. 3 Gimbal mount used to record AEs with tower setups—where the
head would normally be in a fixed position via a chinrest or a bite bar. The
gimbal eye can rotate horizontally and vertically. A laser diode is attached
on top of the inner ring (17.5 mm away from the pupil center) to indicate
gaze direction
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successive data samples (xi, yi) to (xi + 1, yi + 1) (Holmqvist et
al., 2012), of the form

θRMS S2Sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

θ2i

vuut ; ð1Þ

and the SD was calculated as

θSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

xi − μxð Þ2 þ yi − μy

� �2

vuut ; ð2Þ

where μx and μy are the means of n sample locations. Both of
these metrics are used in the eye-tracking field. RMS(S2S)
tends to be sensitive to big sample-to-sample changes, but not
to a gradual drift, and the SD represents the overall spread of the
n data samples, so it is sensitive to both. Blignaut and Beelders
(2012) also showed that RMS(S2S) is biased toward data from
higher-sample-rate systems: With the same movement over
time, high-sample-rate system would have better-precision data
than low-sample-rate systems, as a result of the temporal prox-
imity (and, given the nature of the behaviors recorded, therefore
also spatial proximity) of successive samples.

For each tracker and each AE, 20 segments of 1,000 ms
were randomly selected (under the constraint that the seg-
ments could not overlap temporally) from the data. Each time
window was treated as a Bfixation,^ and the precision calcu-
lation was carried out within the time window. As the first
step, we calculated the precision using different lengths of data
samples (100, 175, 225, and 500ms), which wewill refer to as
the window size in the rest of the article. Having several sam-
ple window sizes, as is illustrated in Fig. 4, allowed us to see
the effects of sample rate and window size on RMS(S2S) and
on SD. On the basis of our investigations, we chose a window
size of 225 ms as the best compromise, providing a sufficient
number of data points at lower sample rates while minimizing
the probability of including fixational eye movements.

Comparison with human data

We also recorded human data with all listed trackers with 194
human participants in a separate study (Mulvey et al., 2015).
To be comparable with the data from the AEs, which was
directed toward the center of the screen, we only used the
human gaze data related to a target at the center of the stimulus
monitor from 20 participants. Since the participants of the
larger study had a variety of pupil occlusion, eye makeup,
and other quality-decreasing eye characteristics, we selected
20 from the original 194 participants for comparison with the
AEmeasures. The selected participants wore no contact lenses
or glasses, did not have laser surgery, did not take any medi-
cations or have any conditions known to affect fixational sta-
bility, did not have extensive loss during recording, wore no
eye makeup, and had a fully visible pupil when they looked
straight ahead. The minimum imprecision values of these 20
observers were treated as representative of good human pre-
cision. In the human eye data, the corresponding sliding win-
dows (shown in Fig. 4) ran from 200 to 1,200 ms after target
onset, to minimize the effect of saccade latency (Carpenter,
1988). Track loss of one or more sample in human data result-
ed in that window being excluded as a candidate for the pre-
cision calculation. The window with the lowest imprecision
was selected for the calculation of minimum RMS(S2S) and
SD across the 1,000-ms presentation time. We applied sliding
windows of the same temporal extent as the AE recordings:
100, 175, 225, and 500 ms. For the human data, we expected
window size and sample rate to have larger effects than would
be seen with the AEs—compounded by an increasing proba-
bility of including fixational eye movements.

We did not average the left and right eyes on the remote
systems, which is the default option for some eye-trackers. For
many practical applications of eye-tracking, averaging makes
very good sense (where an analysis is made with areas of
interest [AOIs], for instance), whereas for other types of ex-
periments, averaging invalidates certain measures (e.g.,

100ms: 0.02° 175ms: 0.03°
225ms: 0.04°

500ms: 0.06°

Fig. 4 Example of sample selection with a sliding window of varying
duration for SD calculation. The vertical axis is the horizontal gaze
position, and each point represents a gaze sample. The arrows at the top
of the figure show the windows that resulted in the smallest SDs at each
window size, with the SD value calculated in degrees of visual angle.
Different window sizes result in the selection of different time periods

for the minimum SD, and these periods do not necessarily overlap with
each other or with the periods that would be selected for the minimum
RMS(S2S). Shorter sliding windows selected for minimum SD or
RMS(S2S) tend to result in lower variation, due to the greater
probability of selecting brief periods that randomly have low variation,
due to the stochastic nature of the data
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saccadic velocity profiles, saccade and fixation durations, or
binocular coordination). We did not want the AEs to be aver-
aged, because our results would then only be appropriate for a
subset of studies that do not rely on the true dynamics of the
eye, and hence we turned off the default averaging for those
systems.

Power-spectral analysis

Coey et al. (2012) did a spectral analysis of eye data using an
AE and human data on anASL-D6 eye-tracker, and found that
the AE data produced white noise, whereas the human data
produced pink noise or 1/f noise, in which the power (P) is
inversely related to the frequency ( f ). The power-spectral
density of pink noise is in the following form:

S fð Þ∝ 1

f α
; ð3Þ

where f is the frequency and α is a scaling exponent. In a strict
definition of pink noise, α should be equal to 1, which means
that each frequency carries an equal amount of noise power. In
behavior and the neural science literature, the term is some-
times used more loosely, where 0 < α < 2.

Because of track loss and temporal imprecision in eye-
trackers, we could not assume that samples were regularly
sampled in time—a requirement for traditional spectral anal-
ysis methods. The Lomb–Scargle periodogram (Lomb, 1976;
Scargle, 1982) was developed specifically to allow spectral
analysis with uneven sampling, so we adopted this method
for the power-spectral density (PSD) analysis of the AE and
human data. Prior to the PSD analysis, we removed data ex-
ceeding three SDs from the mean, as was suggested by Coey
et al. (2012), but replacing missing samples with linear inter-
polation was unnecessary, because of the nature of the
periodogram analysis.

Results

Precision of AEs and human data

We calculated the precision using both RMS(S2S) and SD, as
is described in Eqs. 1 and 2, on 20 segments (1,000 ms per
segment) of data from each AE, on each eye-tracker, with a
sliding window across the entire segment, and report the
smallest value. This was repeated with window sizes from
100 to 500 ms. Figure 5 illustrates how, even in the absence
of any biological movement, the number of data points includ-
ed in the RMS(S2S) calculations—that is, the combined effect
of window size (number of samples being used in the calcu-
lation) and eye-tracker sample rate—had an effect on the cal-
culated precision values. Calculating from larger window

sizes had a large effect on the reported RMS(S2S) values,
especially in systems with low sample rates. SD values were
more stable over numbers of data points than RMS(S2S) up to
a window size of 500 ms, but the value was still affected by
the number of data points submitted to the calculation. In
panels a–f of Fig. 5, the Eyefollower and the DPI are not
included because the SRR, SMI, and Tobii eyes were not
recognized as eyes by these systems. In panels g and h, in
which OEMI was used, all 12 systems were included using
our modified OEMI, but both metrics increased when using
this eye model for remote systems. For almost all eye-trackers
and all window sizes up to 500 ms, the RMS(S2S) impreci-
sion was significantly larger than the SD calculation. The dif-
ference was most apparent in eye-trackers with lower sample
rates—for example, the Tobii X2 and the EyeTribe eye-
tracker. For shorter window sizes, the RMS(S2S)-calculated
imprecision was up to twice that calculated using SD for these
systems. However, the rankings of eye-tracker imprecision
were similar or identical across the two calculations.

We then compared precision under the two calibration
methods with data from the three tower systems, to see wheth-
er calibrating with a human and subsequently substituting an
AE for recording produced different results than calibrating
and recording from AEs. These results provide an indication
of the relative performances for human and AEs. For tower
systems, imprecision recorded from an AE following calibra-
tion with a human eye gives a different result than when cal-
ibrating using AEs. On the basis of an independent-samples t
test, when using the SMI eye model, human calibrated data
has significantly higher RMS(S2S) than the AE calibrated
data for all three systems, as we might expect [EyeLink:
t(59896) = 708.6, p = .02, d = 0.82; HiSpeed 240: t(14155)
= 661.7, p = .01, d = 1.10; HiSpeed 1250: t(73747) = 208.1, p
= .02, d = 0.73]; whereas when using the Tobii eye model,
only the EyeLink and HiSpeed 240 had a significantly higher
human calibrated RMS(S2S) [EyeLink: t(59893) = 186.47, p
= .02, d = 0.64; HiSpeed 240: t(14156) = 89.28, p = .01, d =
0.73]. When using the EyeLink eye model, the EyeLink sys-
tem actually had higher AE calibrated RMS(S2S) than did the
human eyes [t(59892) = 222.57, p = .01, d = 0.54]; For the
OEMI-7 eye, no significant difference was found between the
two calibration methods. Note that all precision calculations in
this case were from AEs, and only the initial calibration
methods (human vs. manually directed AE) differed.

We also calculated the RMS(S2S) and SD of the human
data from recordings on the same trackers using the same
sliding-window methodology as with AE data. The combined
effects of sample rate and window size are illustrated in Fig. 6.
With an increasing window size, the median as well as the
variation in both measurements increased. As with AE data,
the human data also showed an effect of sample rate on
RMS(S2S) and SD. The three highest-sample-rate trackers
(Eyelink, DPI, and SMI Hispeed1250) elicited lower
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Fig. 5 Minimum RMS(S2S) (left column) and SD (right column) for
sliding windows of various temporal extents on 20 × 1,000-ms
segments of AE recordings. The minimum from each sliding window is

reported; the horizontal axis is the window size, and the vertical axis is the
precision metric. Data are shown for ten compatible trackers in the SRR,
SMI, and Tobii panels, and the OEMI-7 results are for all 12 trackers
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RMS(S2S) than SD across the different window sizes, where-
as the lower-sample-rate trackers (EyeTribe, Tobii x2, Tobii
T60XL and EyeFollower) had lower SD than RMS(S2S),
which again demonstrated that RMS(S2S) is more biased to-
ward higher-sample-rate systems than SD is.

We then explored how precision across eye-trackers
compared between the AEs as a group and the group of
human eyes. For comparability of the two data sets, we
took five nonoverlapping temporal patches of 1,000 ms
from each AE recording on each eye-tracker and compared
these to 1,000-ms recordings of 20 humans fixating at the
center of the screen on each of the eye-trackers tested,
varying the sample window size and precision calculation
as before. Comparing RMS(S2S) and SD from AEs and 20
human participants, with varying window sizes as in
Fig. 7, we can see that as predicted, the difference between
AEs and human eyes becomes larger as the window size
increases. For lower-sample-rate systems—for example,
the EyeTribe—both the RMS(S2S) and SD calculations
showed rapidly decreasing precision with increasing win-
dow size. Higher-sample-rate systems generally had stable
RMS(S2S) and SD for a range of window sizes. As the
window size increased, SD produced a larger imprecision
value than RMS(S2S) for all systems. As we would expect,
the biological signal present from the small movements of
human eyes, but absent from AEs, yielded a much higher
imprecision value with increasingly large sampling periods
in all systems. We can also see that the difference in pre-
cision between eye-trackers is much greater for real human
recordings than for AEs. Part of the human Bimprecision^
(in this case, actually correct behavioral recordings rather
than Bnoise,^ per se) will be due to microsaccades and
other fixational eye movements.

PSD analysis

To assess spectral noise, we conducted a PSD analysis on
both the human and AE data for all the trackers. Figure 8

shows an example of the power spectrum from the same
tracker with human and with AE data. The logarithm of
the power and the logarithm of the frequency were plotted
against each other. The scaling exponent α, as in Eq. 3, is
defined as the negative of the slope of the regression line.
In this figure, it is evident that the human data have a
larger α value than the AEs, which aligns with the results
from Coey et al. (2012) and Wallot et al. (2015). The
same analysis was carried out on all AE and human data.
From Fig. 8, it is obvious that human eyes elicit larger αs
for all the trackers. All of the AEs elicited αs closer to 0,
which indicates white noise. Coey et al. (2012) found that
human data are described by a scaling exponent in the
range of 0.8 to 0.9, whereas our analysis produced scaling
exponents mostly around 1.5. A larger α means more
energy in lower frequencies, which would be expected
from human data. When α equals 2, the noise becomes
random-walk noise (Barnes & Allan, 1966). Figure 8 also
illustrates that AEs contained some nonstochastic signal
components, which could not be attributed to biological
noise and were not simply a result of either the system or
the AE model, but likely were a combination of both—
that is, how well the AE matched the system’s model of
an eye. Here, we can see that some systems did better
with human eyes than with AEs—most notably the
EyeFollower on human versus the OEMI-7. Due to its
reliance on bright pupil reflection, this system represents
a type that could not be measured with the three existing
simple AEs.

Effects on the ranking of eye-trackers

Table 2 shows the ranking of systems by measured precision.
The three manufacturer eyes give roughly the same rankings,
but with several exceptions, including that the SMI AE ranks
the EyeLink 1000 as the most precise eye-tracker tested,
whereas the SR Research eye puts the SMI HiSpeed 1250 at

Fig. 6 Minimum RMS(S2S) (left) and minimum SD (right) values
calculated from sliding windows of various temporal extent on 1,000-
ms segments of human eye recordings. Participants fixated at the center

of the screen on 12 eye-trackers with varying sample rates. For each
window size, from left to right, the trackers’ sample rates increase
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the top. In contrast, the rankings from the human data differ
much more.

Discussion

The main aim of the present study was to establish the reli-
ability of different AEs in the assessment of the precision of
different eye-trackers. Our results show that data from AEs
have a lower (better) precision value, as both RMS(S2S) and
SD, than human recordings for all of the eye-trackers tested
except the EyeFollower. This difference reflects the fact that
AE data do not include signal components of a biological
origin. However, the four AEs that we tested reported varia-
tions in precision among themselves, which indicates that data

from them contain not only system noise, but also a compo-
nent specific to each eye—most likely due to variation in iris
brightness and pupil size. For a specific eye-tracker, we might
take the smallest precision value from the four AEs as the
system noise, or consider the AE that produced the smallest
imprecision as the one that most closely modeled the internal
eye model for this particular system, but the reality of record-
ing varying human eyes or AEs from other manufacturers is
that the internal eye model will not match any given human
eye perfectly. When ranking the precision values from differ-
ent eye-trackers, the AE and human recordings agreed that
certain systems are better than others. They all ranked the
SMI HiSpeed systems and the EyeLink in the first four places,
and they all ranked the TobiiX2 and EyeTribe at the bottom,
but the variations in Table 2 show that all eye-trackers are, to a

a b

c d

e f

g
Fig. 7 Precision, calculated as RMS(S2S) (left) and as SD (right), from the group of 20 human participants and 20 comparable 1-s segments of AE
recordings
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greater or lesser extent, affected by properties of the (real or
artificial) eye. For example, all four AEs rank Tobii T60XL in
4th or 5th place according to both precision metrics, whereas
human data show a much lower ranking, at 10th with

RMS(S2S) and 7th with SD. Could this be a result of optimiz-
ing systems using artificial rather than human eyes? The AEs
we tested provide an estimate of the relative precision of an
eye-tracker, but the actual precision for a particular AE or eye

ba

PS
D

Frequency(Hz)

PS
D

Human

AE

Fig. 8 (a) Example of power-spectral density (PSD) functions from
humans and AEs. (b) Scaling exponents from AE and human data on
all trackers. In panel a, the upper figure is human data recorded with SMI
RED250, and the lower figure is the SMI AEs recorded with the same
machine. The horizontal axis is frequency in log scale and the vertical axis
is the PSD in log scale. The dashed lines represent the linear regression
that fit the PSD in log scale. The negative of the slope of the regression
line is the scaling exponent α. In panel b, the α level is an indication of

whether the signal shows stochastic noise (in which αwould equals to 0),
or pink/Brownian components with increasing value. Spatial-noise com-
ponents differ with type of AE, as well as with the system. There is no
repeating pattern in the AE values that can be attributed either to system
or to AE model, but are likely some combination of both—or a result of
system robustness to individual characteristics such as pupil size or pupil–
iris contrast

Table 2 System precision rankings with different AEs and human eyes, based on RMS(S2S) and SD and using a window size of 225 ms

Different trackers are printed in different colors to highlight variations
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will depend further on system robustness to eye variance. We
therefore conclude that the data recorded from currently
existing AEs were, as expected, more precise, and can rank
systems approximately, but not definitively, in terms of system
noise.

The existingAEs from SMI, SR Research, and Tobii can be
tracked by most video-based eye-trackers, but not by bright-
pupil systems or the DPI. The modified OEMI-7 can be
tracked on all of the eye-trackers we tested. If we were to
propose a standardized set of AEs, the OEMI-7 has unique
features that speak to its benefit. It provides a 1st and a 4th
Purkinje reflection, as well as a retinal reflection. However,
the material used to build the OEMI-7 (or any other AE cur-
rently in use) is fundamentally different from the human eye,
resulting in several important differences in the features proc-
essed by eye-trackers. First, the brightness of the corneal re-
flection differs from those in humans. The brightness of the
pupil under on-axis illumination also differs, which we could
correct to some extent but not completely, and this might
explain the poorer precision from the OEMI-7 on the
EyeFollower than the average from human recordings. Also,
the 4th Purkinje reflection’s brightness was far higher than
among humans, but our chosen solution for this is described
in the Appendix. Finally, the larger pupil size (7mm)may also
be a problem for some trackers, and although it was not mod-
ified here, it could be for a future set of AEs, with relevant
characteristics systematically varied.

Despite the differences described, the OEMI-7 performed
well when we compare the data from the tower-mounted eye-
trackers: All the AEs resulted in similar precision values, close
to the human precision values. For the noisier remotes, how-
ever, the AE data provided a broader distribution of precision
values. The OEMI-7 eye, in particular, was an outlier for sys-
tems with a high RMS(S2S), which suggests that its construc-
tion is more problematic in terms of noise in the eye-tracker
than the manufacturers’ AEs. Furthermore, precision differed
in the horizontal and vertical directions for some trackers
when tracking with the OEMI-7, which may have been due
to the large pupil size. The OEMI-7 has a 7-mm pupil, where-
as human pupil size range from 2 to 8 mm with adaption,
meaning that the OEMI-7 AE represents a model of a dark-
adapted eye. The average human pupil size under room light
viewing a monitor is about 5 mm, and perhaps the remote
trackers cannot accommodate a 7-mm pupil. The OEMI-7
potentially allows for variation in pupil size and iris bright-
ness, in that the iris is a single, detachable part of the model
(though we did not change it in this study), and the liquid can
be changed as a means of controlling the reflectivity of inter-
nal eye structures. A future customized version of the OEMI-7
with a different material and pupil size (or a 3-D-printed eye
model) is worth investigation.

The finding of relatively white noise (with only slight var-
iation in spectral qualities across systems) with the AEs versus

pink noise in the frequency domain in humans suggests a
further role for AEs. One purpose of AEs for precision mea-
surements might be to support investigations into the role of
spectral noise. We found that although the precision values in
RMS(S2S) and SD varied between eye-trackers, the results
from the spectral analysis were quite consistent: All AEs elicit
close to white noise on all eye-trackers. This result means that
although different systems produce different noise levels
[measured in terms of either RMS(S2S) or SD], they all pro-
ducemostly, but not exclusively, white noise, at least when the
AE is directed to the center of the stimulus screen. Our results
also clearly show that human data exhibit pink noise, as was
previously reported for a single eye-tracker (Coey et al.,
2012). We know that precision in terms of RMS(S2S) is of
great importance to the detection of events such as fixations,
saccades, and microsaccades, but the possible importance of
PSD characteristics to the processing of eye movement data is
less well-explored.

It is interesting, however, that the scaling exponent we
found from human fixational data is much larger than in the
study by Coey et al. (2012). A larger scaling exponent would
indicate more energy in lower frequencies. One possible ex-
planation is the presence of intrafixational eye movements.
Ocular drift is smaller in amplitude than saccades and
microsaccades, and much more frequent, and it provides a
reference to support this claim. Another explanation might
be that we had saccades of varying amplitudes to our central
target in all human recordings, and the amplitude of the pre-
ceding saccade might have affected the subsequent fixational
stability. In addition, the remote eye-trackers in our study are
not usually used for recording microsaccades, because of their
poorer precision and low sampling frequency. Another result
is that the two eye-trackers with the poorest precision (the
EyeTribe and the Tobii X2) also had the lowest scaling expo-
nents—indicating the largest relative stochastic noise compo-
nent. This suggests that in these trackers, the contribution of
fixational eye movement to the spectral qualities was dimin-
ished, presumably due to relatively more system-based noise
being present. Further studies will be needed to clarify the
effects of spectral noise in event detection, and the relationship
between the scaling component, eye properties, and precision.

Other than precision measurements, AEs are also the basis
of robotic eye models that simulate human eye movement and
test the spatial accuracy of eye-trackers recording the eye in
motion, particularly in terms of faithful representation of sac-
cade or smooth-pursuit dynamics. Measuring system latencies
also requires AEs that can function with different systems and
provide some kind of reproducible motion. Building AEs that
vary in their eye shape, color, and pupil size will also be useful
for testing the robustness of eye-trackers to varying eye
characteristics.

As a general methodological remark, we note that the cal-
culation of precision as RMS(S2S) values should be used with
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caution, because they are biased toward higher sample rates,
as was previously pointed out by Blignaut and Beelders
(2012). SD measures of precision depend less on sample rate.
Our results show that increasing window sizes lead to higher
values of both RMS(S2S) and SD. This holds especially true
for human data, for which both values increase up to five
times when the window size increases from 100 to 500 ms.
Therefore, it is important for reports of precision to describe
the window size. Preferably, a standard window size would be
defined for the comparison of systems.

Finally, our data also show how calibration with one eye
model and recording with another can affect precision. In five
out of 12 cases, tower-mounted trackers calibrated to a human
eye before recording the AE had significantly higher (poorer)
RMS(S2S) and SD values than recordings based on calibrat-
ing with the same AE, indicating that a change in eye image
properties between calibration and recording affects precision
in addition to accuracy. When we measured the precision of
the EyeLink system with the AE supplied by SR Research,
calibrating to the human eye elicited lowerRMS(S2S) and SD
values (better precision) than calibrating with the AE. In the
remaining six cases, we found no significant difference in the
precisions recorded from the AEs, whether calibration had
been performed using it or a human eye. This variation may
be due to the mapping functions, which map the pupil–corneal
reflection vectors to the corresponding gaze locations. When
recording using different eyes (whether artificial or real), the
mapping function created for the eye calibrated is suboptimal
for the eye used during subsequent recording, and small errors
can be amplified, leading to decreased precision. If, however,
the mapping functions are simply offset, there would be no
significant effect on precision, only on accuracy.

We conclude that developing a standard set of complex
AEs, in which pupil size and pupil–iris contrast would be
systematically varied, is a promising approach toward the
comparative measurement of system performance.

Author note The authors acknowledge the collaboration and input of
members of the EMRA/COGAIN Eye Data Quality Standardization
Committee at all stages of this research, www.eye-movements.org/eye_
data_quality.

Appendix: Modification of OEMI-7

The OEMI-7 is a commercially available eye model that is
designed for ophthalmic imaging training. It can be purchased
online (Ocular Instruments, 2013) for approximately $600.
The cornea and lens of the OEMI-7 eye model is made of
para-methoxy-N-methylamphetamine (PMMA). The refrac-
tive index of PMMA is 1.485 at 750 nm. The posterior and
anterior chamber as shown in Fig. 9, are filled with distilled
water. Given the refractive index of lens cortex and vitreous

humor (Hecht, 1987), the reflectance at normal incidence at
the back surface of the human lens can be calculated using the
Fresnel Equation (Hecht, 1987, p. 100):

R ¼ n2−n1
n2 þ n1

� �2

¼ 1:337−1:406
1:337þ 1:406

� �2

¼ 0:000632;

where n1 and n2 are the refractive index of the two media,
respectively. The reflectance at the back surface of the lens
of the eye model equals to 0.00346 using the same formula,
which means the eye model has a much brighter 4th Purkinje
image than a real human eye, reflecting more than five times
as much light. To render the eye model more similar to a
human eye to the eye-trackers, we replaced the liquid with a
solution with a refractive index of 1.412 filling the posterior
and anterior chambers. A 60% glycerine–water solutions has a
refractive index of 1.413 at 20°, so we carefully changed the
liquid to a 60% glycerin–water solution.

References

Abramov, I., & Harris, C. M. (1984). Artificial eye for assessing corneal-
reflection eye trackers. Behavior Research Methods, Instruments, &
Computers, 16, 437–438.

Artal, P., Benito, A., & Tabernero, J. (2006). The human eye is an exam-
ple of robust optical design. Journal of Vision, 6(1), 1–7.
doi:10.1167/6.1.1

Barnes, J., & Allan, D. (1966). A statistical model of flicker noise.
Proceedings of the IEEE, 54, 176–178.

Blignaut, P., & Beelders, T. (2012). The precision of eye-trackers: A case
for a newmeasure. In Proceedings of the symposium on eye tracking
research and applications (pp. 289–292).

Carpenter, R. H. (1988).Movements of the eyes (2nd rev.). London, UK:
Pion.

Cleveland, D., Mulvey, F., & Pelz, J. B. (2015, August). Revisiting
eyetracker noise estimators. Paper presented at the ECEM 2015
Conference, University of Vienna, Austria.

Coey, C. A., Wallot, S., Richardson, M. J., & Van Orden, G. (2012). On
the structure of measurement noise in eye-tracking. Journal of Eye
Movement Research, 5(4), 1–10. doi:10.16910/jemr.5.4.5

Crane, H. D., & Steele, C. M. (1985). Generation-V dual-Purkinje-image
eyetracker. Applied Optics, 24, 527–537.

FUNDUS CRYSTALINE LENS

ANTERIOR CHAMBER
Fig. 9 Structure of OEMI7. (Picture from Ocular Instruments, 2013)

958 Behav Res (2017) 49:947–959

http://www.eye-movements.org/eye_data_quality
http://www.eye-movements.org/eye_data_quality
http://dx.doi.org/10.1167/6.1.1
http://dx.doi.org/10.16910/jemr.5.4.5


Findlay, J. (1971). Frequency analysis of human involuntary eye move-
ment. Kyberteknik, 8, 207–214.

HDFGroup (2014). Hdf5-1.8.14. Retrieved 2014-11-13, from www.
hdfgroup.org/HDF5/

Hecht, E. (1987). Optics (2nd ed.). New York, NY: Addison-Wesley.
Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R.,

Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A
comprehensive guide to methods and measures. Oxford, UK:
Oxford University Press.

Holmqvist, K., Nyström, M., & Mulvey, F. (2012). Eye tracker data
quality: What it is and how to measure it. In Proceedings of the
Symposium on Eye Tracking Research and Applications (pp. 45–
52). New York, NY: ACM Press. doi:10.1145/2168556.2168563

iSolver Software Solutions (2013). Io-hub 0.7. Retrieved 2014-10-10,
from www.isolver-solutions.com/iohubdocs

Lomb, N. R. (1976). Least-squares frequency analysis of unequally
spaced data. Astrophysics and Space Science, 39, 447–462.

Mulvey, F., Landwehr, N., Borah, J., Cleveland, D., Joos, M., Latorella,
K., … Wang, D. (2015). How reliable is my eye-movement data?
Results of system comparison and participant characteristics-based
prediction of data quality from the EMRA/Cogain Eye Data Quality

Standardisation Committee. Paper presented at the ECEM 2015
Conference, University of Vienna, Austria.

Nyström, M., Andersson, R., Holmqvist, K., & van de Weijer, J. (2013).
The influence of calibration method and eye physiology on
eyetracking data quality. Behavior Research Methods, 45, 272–
288. doi:10.3758/s13428-012-0247-4

Ocular Instruments (2013). Ocular imaging eye model and bracket.
Retrieved 2014-10-10, from www.ocularinc.com/

Peirce, J. W. (2007). Psychopy—Psychophysics software in Python.
Journal of Neuroscience Methods, 162, 8–13. doi:10.1016/j.
jneumeth.2006.11.017

Reingold, E. M. (2014). Eye tracking research and technology: Towards
objective measurement of data quality. Visual Cognition, 22, 635–
652.

Scargle, J. D. (1982). Studies in astronomical time series analysis: II.
Statistical aspects of spectral analysis of unevenly spaced data.
Astrophysical Journal, 263, 835–853.

Wallot, S., Coey, C. A., & Richardson, M. J. (2015). Cue predictability
changes scaling in eye-movement fluctuations. Attention,
Perception, & Psychophysics, 77, 2169–2180. doi:10.3758/s13414-
015-0983-5

Behav Res (2017) 49:947–959 959

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://www.isolver-solutions.com/iohubdocs
http://dx.doi.org/10.3758/s13428-012-0247-4
http://www.ocularinc.com/
http://dx.doi.org/10.1016/j.jneumeth.2006.11.017
http://dx.doi.org/10.1016/j.jneumeth.2006.11.017
http://dx.doi.org/10.3758/s13414-015-0983-5
http://dx.doi.org/10.3758/s13414-015-0983-5

	A study of artificial eyes for the measurement �of precision in eye-trackers
	Abstract
	Procedure
	AEs and eye-trackers
	Calibration and data recording
	Precision calculation
	Comparison with human data
	Power-spectral analysis

	Results
	Precision of AEs and human data
	PSD analysis
	Effects on the ranking of eye-trackers

	Discussion
	Appendix: Modification of OEMI-7
	References


