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Abstract Functionally stable and robust interpersonal motor
coordination has been found to play an integral role in the
effectiveness of social interactions. However, the motion-
tracking equipment required to record and objectively mea-
sure the dynamic limb and body movements during social
interaction has been very costly, cumbersome, and impractical
within a non-clinical or non-laboratory setting. Here we ex-
amined whether three low-cost motion-tracking options
(Microsoft Kinect skeletal tracking of either one limb or whole
body and a video-based pixel change method) can be
employed to investigate social motor coordination. Of partic-
ular interest was the degree to which these low-cost methods
of motion tracking could be used to capture and index the
coordination dynamics that occurred between a child and an
experimenter for three simple social motor coordination tasks

in comparison to a more expensive, laboratory-grade motion-
tracking system (i.e., a Polhemus Latus system). Overall, the
results demonstrated that these low-cost systems cannot sub-
stitute the Polhemus system in some tasks. However, the
lower-cost Microsoft Kinect skeletal tracking and video pixel
change methods were successfully able to index differences in
social motor coordination in tasks that involved larger-scale,
naturalistic whole body movements, which can be cumber-
some and expensive to record with a Polhemus. However,
we found the Kinect to be particularly vulnerable to occlusion
and the pixel change method to movements that cross the
video frame midline. Therefore, particular care needs to be
taken in choosing the motion-tracking system that is best suit-
ed for the particular research.
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Functionally stable and robust interpersonal motor coordina-
tion, including both behavioral synchrony and imitation, has
been found to play an integral role in the effectiveness of
social interactions (e.g., Bernieri & Rosenthal, 1991;
Chartrand & Bargh, 1999; Marsh et al., 2013; Knoblich &
Sebanz, 2006; Sebanz & Knoblich, 2009). However, the
motion-tracking equipment required to record and objectively
measure the dynamic limb and body movements of children
(or even adults) during social interaction has been very costly,
as well as cumbersome and impractical within a non-clinical
or non-laboratory setting. Thankfully, over the last 5 years (or
so) an increasing number of low-cost motion-tracking systems
(e.g., Microsoft Kinect, Microsoft LTD), or alternative video-
based methods (e.g., Paxton & Dale, 2013) of motion capture
have become available to researchers and clinicians interested
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in investigating the behavioral dynamics of human motor con-
trol and social motor coordination. A result of the rapid ad-
vancements in the computational power of modern computers
that has occurred over the last decade and the increase in
consumer demand for more interactive-based video-game sys-
tems, many of these systems are able to track human move-
ments wirelessly (i.e., remotely), with few-to-no sensors at-
tached to the participant, and with nominal computer equip-
ment (i.e., can be performed using almost any modern laptop
computer). In addition to costing only a fraction of the price of
their high-end laboratory standard counterparts, these systems
are easy to replace, highly portable, and can be used almost
anywhere (i.e., both clinical/laboratory and non-clinical/non-
laboratory settings). Furthermore, they typically come with
companion open-source software or software development
kits that enable researchers to develop applications, testing
protocols, and data analysis systems that meet the specific
needs of the researcher or research population in question.

The degree to which these systems are able to replace more
expensive laboratory-grade motion-tracking systems for re-
search on social motor coordination in children, adults, and
special populations is therefore an important question that
needs to be addressed. It is likely that the use of such systems
will be task and behavior dependent, and that the difference in
their spatial and temporal accuracy compared to laboratory-
grade systems will significantly influence the types of meth-
odologies or research protocols that can be employed. Of par-
ticular interest is the degree to which research findings obtain-
ed with these low-cost systems can be considered reliable.

To explicate the viability of these low-cost systems for in-
vestigating social motor coordination, we conducted a study
investigating social motor control in typically developing chil-
dren (TD) and children with autism spectrum disorder (ASD),
using four methods of motion capture: (a) a high-end (yet
moderately affordable) laboratory-grade Polhemus Latus mag-
netic motion-tracking system, (b) theMicrosoft Kinect motion-
tracking sensor, which is a low-cost optical tracking system,
from which we extracted the limb movements, (c) Microsoft
Kinect from which we can extract whole body movement, and
(d) a video recording-based pixel-change method of whole-
body motion extraction. Additionally, we investigated three
different types of social movement tasks that vary in the kind
of motor coordination (in-phase, anti-phase) they exhibited as
well as how much a single limb or the whole body was used in
the task. Below, we provide a brief description of these differ-
ent methods and a detailed comparison of how these low-cost
methods of motion capture fared with respect to determining
the stability and patterning of the social coordination that oc-
curred across a range of interpersonal motor tasks. Of particu-
lar interest was how well the low-cost Microsoft Kinect and
video pixel-change methods performed in comparison to the
more expensive, laboratory-grade, Polhemus Latus system.
Specifically, we tested the degree to which these three methods

could be employed to (a) differentiate the type of coordination
that occurred in these tasks, and (b) capture the coordination
differences evident in participants with and without ASD.

Motion capture systems and methods employed

Polhemus Liberty Latus wireless

This motion-tracking system is a wireless motion-tracking sys-
tem developed by Polhemus LTD (Vermont, USA; http://www.
polhemus.com; Liberty Latus Brochure, 2012) that uses an
electromagnetic field to map the position (Euclidian x, y, and z
coordinates) and rotation (pitch, yaw, roll) of 1–12 small 79.4-g
sensors/markers. The system tracks these six-degrees-of-
freedom sensors within an electromagnetic capture volume that
is defined by a map of 1–16 receptors. Each receptor has an
optimal diametric capture volume of 6 f. and multiple sensors
can be aligned by the user (experimenter/clinician) to meet the
spatial demands of the behavior(s) performed or recording vol-
ume required. That is, the position and rotation of a sensor is
tracked so long as it is in range of at least one receptor within the
map of receptors that defines the capture volume setup by the
user – the more receptors, the larger the possible capture volume
(multiple systems can also be daisy-changed for even larger
volumes). The reliability and resolution of this equipment is
excellent, with a sampling rate of 188 Hz or 94 Hz (i.e., sam-
ples/s) and a positional and rotational resolution of approximate-
ly 0.25 cm and 0.5° (if a marker/sensor is no more than 4 f. from
a receptor). Although the system does require a significant
amount of time to set up the capture volume (i.e., the receptor
volume), once the capture volume has been defined the system is
easy to use and can be used with multiple participants with little
to no calibration. Unlike optical tracking systems (such as an
OptoTrak or Vicon systems), the Polhemus Latus is not suscep-
tible to occlusion and can therefore be used for almost anymotor
task and in any environment as long as it does not include metal
or electronic devices that might interfere with the electromagnet-
ic field defined by the receptors. The system costs approximately
US$12,500.00 for a one-marker/one-receptor system and ap-
proximately US$60,000.00 for a 12-marker/16-receptor system.

Microsoft Kinect

The Kinect sensor (version 1)1 combines a specialized video
camera and an infrared depth-sensing emitter to optically track
the Euclidian x, y, and z location (in coordinates relative to
sensor placement) of up to 21 skeletal/body joints (i.e., head,

1 Since completing this study, Microsoft released a new version of the
Kinect Sensor (i.e., version 2). Although this new version has improved
voice and person recognition features, the temporal and spatial resolution
of skeletal (motion capture) tracking has remained the same. Thus the
current results should generalize to the Kinect Sensor Version 2.
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left/right shoulders, elbows, wrists, the spine, left/right hips,
knees, feet,… etc.; Kinect for Windows Sensor Components
and Specifications, 2014). The device was originally devel-
oped byMicrosoft for their Xbox gaming console, but can also
be purchased for use on any PC or laptop computer running a
Windows XP operating system and above. The research ver-
sion costs approximately US$225.00 and is capable of captur-
ing skeletal/joint data and color BMP/video images at a max-
imum rate of 30 Hz (i.e., 30 frames/s), with a resolution of 1,
280 × 960 pixels. A free C/C++ and C# SDK is available
directly from Microsoft and can be used to develop non-
commercial applications and recording software. The Kinect
system is completely wireless and does not require any sensors
to be placed on the body of the individual being tracked (which
makes it especially useful when collecting data from children
with ASD). However, since the skeletal data is based on a
combined infrared/video process of depth and a machine-
learning algorithm trained extensively with the use of synthetic
depth images for its inference of motion tracking (Shotton et
al., 2011), it requires a constant line of sight of the limbs/bodies
being tracked and is especially susceptible to occlusion. It also
has a high noise-to-signal ratio (relative to the Polhemus Latus
system, for example), such that it is typically unable to reliably
capture small or subtle changes in limb or body position, es-
pecially when participants are wearing loose clothing or the
system is used in a high UV lighted environment.

Video pixel change motion extraction

This method of motion analysis involves calculating the amount
of pixels that change between adjacent video frames, which can
be taken to index the amount of activity of a participant if they
are the only source of movement in that part of the frame
(Kupper et al., 2010; Paxton & Dale, 2013; Schmidt et al.,
2012). This calculation process can be automated using simple
video analysis routines written in Matlab (Mathworks, Inc.,
Natick, MA) or similar data analysis and scripting software,
and can even be employed to extract the global movement of
two (or more) individuals so long as their movements or activity
are within the same recorded frame. That is, video frames can be
cropped to include the movements of only one person (i.e., the
left half or right half of the screen) and also the absolute differ-
ence of pixel change between the adjacent frames of the video
when calculated to form an image-change time series for each
participant in the interaction (see below for more details).

Experimental method

Participants

Thirty-eight children (seven female) between 6 and 10 years
of age were recruited to participate in the study. Nineteen

typically developing children (M age = 8.15, SD age = 1.34)
and 19 children that had been diagnosed with ASD (M age =
7.84, SD age = 1.46). The diagnosis of these children was
corroborated within 3 months of the experimental session as
part of the study with the administration of the Autism
Diagnostic Observation Schedule, Second Edition (ADOS-
2), which also provides a measure of severity. All of the
ASD participants were considered to be high functioning.
None of the children placed in the typically developing group
had ever received a psychological diagnosis.

Equipment setup

The study was conducted in a 10 × 12 f. laboratory room at
Cincinnati Children’s Hospital Medical Center (University of
Cincinnati, Cincinnati, OH, USA). Children came into the
laboratory room and were asked to sit at a 2-ft wide × 4-ft
long × 2-ft high table next to the seated experimenter (see
Fig. 1). Four Polhemus Latus receptors were attached to the
underside of the table top, one in each corner, to create a 10 ×
12 × 8 f. capture volume around the table. As soon as the child
was seated, the four Polhemus Liberty Latus wireless markers/
sensors were placed in wristbands and slipped over the child’s
and experimenter’s wrists (one marker on each wrist of the
child and experimenter). The motion of the Polhemus sensors
was recorded at 94 Hz on a Dell PC computer using a custom
software application written by the authors using the
Polhemus Latus C/C++ SDK Library.

The Microsoft Kinect sensor was placed at a height of 1.5
m, 3 m away from corner of the table top closest to the par-
ticipant and experimenter at approximately a 45° angle (see
Fig. 1e). A custom software application (www.xkiwilabs.
com) using the free Windows Kinect SDK version 1.5
(Microsoft LTD) was used to record the head, spine, and
upper body skeletal data (11 skeletal points in total; no hip,
leg, or foot data were recorded) of the seated child and
experimenter at an sample rate of approximately 30 Hz, as
well as the video images used for the pixel change analysis
(also at an approximate image rate of 30 Hz).

Coordination tasks

The data presented here were part of a larger project, in which
participants performed a variety of motor, social, and cogni-
tive tasks. Here, we selected three social motor coordination
tasks that were performed by all of the children. These tasks
were selected because they represent a range of movement
dimensions that varied in terms of the number of effectors
used (a single limb or the whole body) and the size of the
movements (small or large scale). The first coordination task
involved a sequence of tapping movements, which involved
children using a finger from one hand to tap/hit three drum-
like cylinders from left to right in synchrony with the
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experimenter (see Fig. 1a). Children repeated this left-to-right
drumming sequence six times with the experimenter in a con-
tinuous manner. This first task was done with a single limb
and involved small-scale movements. The second task in-
volved a sequence of pointing movements, in which children
were required to point at approximately shoulder height to the
right, center, and left of their body midline in synchrony with
the experimenter (see Fig. 1b). Again, children repeated this
pointing sequence six times with the experimenter in a con-
tinuous manner. The second task involved the use of only one
limb, but in this case the movements were larger scale. The
third task was an interpersonal hand clapping game (a version
of the pat-a-cake game), in which children completed a simple
repetitive sequence of clapping their left and right hands to-
gether and then with the experimenter (see Fig. 1c and d). The
hand clapping gamewas completed twice, with each sequence
consisting of six consecutive intrapersonal and interpersonal
clapping movements; however, the data presented here is only
from the second trial of the hand clapping game.2 This task in
turn involved whole-body, larger-scale movements.

Motion data reduction

All the data extraction and analysis methods presented be-
low were completed using custom MATLAB (Mathworks,
Inc., Natick, MA) applications and functions developed by
the authors. These MATLAB applications and functions,
as well as example time series can be downloaded from
www.xkiwilabs.com.

Polhmeus Latus The x-plane (left-right), y-plane (forward-
back), and z-plane (up-down) positional coordinates of the
sensors placed on the wrists of the experimenter and child
were recorded for each task. To best determine the stability
and pattering of the behavioral coordination that occurred be-
tween the child and experimenter, we first isolated the primary
plane of motion for each task. Since the primary plane of
motion for the drumming and pointing tasks was in the left-
right plane, the x-plane movement time series was used to
assess the behavioral coordination that occurred for these
two tasks (for a sample time series see Fig. 2a and b). For
the interpersonal hand clapping game, the largest amplitude
of movement was in the up-down, z-plane, with the intraper-
sonal clapping events occurring at a lower height than the
interpersonal clap events (for a sample time series see
Fig. 2c). Accordingly, this plane of motion was employed to
assess the behavioral coordination that occurred for this task.3

For the tapping and pointing tasks, we then performed a
coordination analysis (see below for details) using the primary
plane ofmotion time series of the experimenter’s right forearm
(the experimenter always used his right hand/arm for all the
tasks) and the primary plane of motion time series of the
forearm used by the child for analysis. Note that for the tap-
ping and pointing tasks the child was free to use either left or
right arm/hand. Although both arms/hands were employed by
the experimenter and child for the hand clapping game, we
only analyzed the right forearmmovements of the experiment-
er and child because the coordination that occurred between
the left forearm movements was completely redundant with
the right.

Microsoft Kinect The data recorded from the Kinect was
extracted for analysis using two different methods. The
first method, which will be referred to as the Kinect

2 Due to the experiment design, an experimenter walked in front of the
Kinect sensor before the start of the hand clapping game which led to a
lack of skeletal tracking through the Kinect for the first trial for some
participants. Consequently, we decided to use only the second trial. In
fact, skeletal tracking was completely missing for the second trial of two
participants. Hence, their data were excluded from the result section
below.

Fig. 1 Room set-up for (a) the object tapping, (b) the pointing, and (c, d) the hand clapping game. (e) Schematic representation of the experimental room

3 An analysis of secondary planes of motion for the different methods of
motion capture being discussed produced results that were consistent with
those reported here
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forearm method, was comparable to the method used for
the Polhemus Latus system described in the preceding
section. That is, the child’s and experimenter’s forearm
movements in the x-, y-, and z-planes were extracted for
the tapping, pointing, and hand clapping game, and an
additive time series was created (for examples of these
time series see Fig. 2d, e, and f). The same forearm-side
combinations identified for the Polhemus Latus analysis
were also employed.

The second method, which will be referred to as the Kinect
whole body method, involved creating a unified one-
dimensional movement time series for both the child and ex-
perimenter from the x-, y-, and z-plane motion of all of the
upper-body joints recorded by the Kinect sensor (i.e., the
spine, head, and the left and right shoulder, elbow, hand, and
wrist). This was achieved by simply creating a vector based on
the sum of the values of each movement/joint dimension at
each time-step (for examples of these time series see Fig. 3a,
b, and c). This method of normalization was chosen in order to
produce a Bcollective^ whole body motion time series for the
child and experimenter that would be similar to the collective
motion time series that was created using the pixel-change
method, which we detail next.

Pixel change motion time series Recall that the amount of
pixel change within a video frame can be taken to index the
amount of activity of a participant if they are the only source
of movement in that part of the frame (Kupper et al., 2010;
Paxton & Dale, 2013; Schmidt et al., 2012). To calculate the
absolute difference of pixel change between adjacent video
frames for both the child and the experimenter, we first split
all of the video images recorded using the Kinect sensor down
the middle into a child half and an experimenter half and then
extracted image change time series from these separate video
frame series (for examples of these time series see Fig. 3d and
e). This was done by simply counting the number of pixels
that changed color from one frame to the next. Because of the
nature of the hand clapping game, in which the participant and
experimenter crossed over their half of the frame repeatedly, it
was impossible to obtain separate time series for each of them
and therefore this task was excluded from the pixel change
analysis.

Data analyses

Prior to analysis all of the pre- and post-non-task relevant
movement transient periods were cropped from the different

Fig. 2 Sample movement time series from a child collected by the
Polhemus Latus in (a) the object tapping task, (b) the pointing task, and
(c) the interpersonal hand clapping game. Also, sample movement time

series from the same child collected by the Kinect forearm in (d) the
object tapping task, (e) the pointing task, and (f) the interpersonal hand
clapping game
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time series. For comparison purposes all the final motion time
series were then low-passed filtered using 10 Hz fourth order
Butterworth filter to remove system measure noise. The same
filter was used to investigate whether using the same analysis
techniques applied to the Polhemus can simply be transported
over to the Kinect or pixel change video analysis without
having to create a whole new set of data reduction techniques.

To determine the stability and patterning of the social motor
coordination that occurred between the children and the ex-
perimenter for each task and condition, one standard measure
of interpersonal coordination was employed: distribution of
relative phase (DRP) (see Schmidt & Richardson, 2008, for
a review of studies that have employed this measure).

Distribution of relative phase angles This measure evaluat-
ed the concentration of relative phase angles between the
movements of the child and experimenter (i.e., the relative
space-time angular location of the movements of the child
and experimenter) across nine 20° regions of relative phase
(0–20°, 21–40°, 41–60°, 61–80°, 81–100°, 101–120°, 121–
140°, 141–160°, and 161–180°). To determine these distribu-
tions, we computed the continuous relative phase of the two
time series between −180° and 180° using the Hilbert trans-
form (Pikovsky, Rosenblum, & Kurths, 2001). We then

computed the percentage of occurrence of the absolute value
of the relative phase angles across the nine 20° regions of
relative phase from 0° to 180°. Previous research has demon-
strated that stable social motor coordination is characterized
by a concentration of relative phase angles in the portions of
the distribution near 0° and 180° (e.g., Fitzpatrick et al., 2013;
Richardson, Marsh, Isenhower, Goodman, & Schmidt, 2007;
Schmidt, Richardson, Arsenault, & Galantucci, 2007).

Statistical analyses DRP was analyzed using separate 9
(phase region: 0°, 30°, 50°, 70°, 90°, 110°, 130°, 150°,
180°) × 2 (diagnosis: ASD, TD) mixed ANOVAs for each
task and motion-tracking method, with phase region as the
repeated measures factor (a Greenhouse-Geisser correction
was employed where necessary). Of particular interest was
the difference in the magnitude of in-phase (percentage of
time in 0° bin) and/or anti-phase (percentage of time in the
180° bin) for ASD and TD participants, and, therefore, when
the mixed ANOVA phase region by diagnosis interaction was
significant, planned t-tests were used to compare these two
relative phase regions.

Reliability analyses In order to measure the overlap between
the different measures, pairs of regressions were calculated

Fig. 3 Sample movement time series from a child collected by the Kinect
whole bodymovement in (a) the object tapping task, (b) the pointing task,
and (c) the interpersonal hand clapping game. Also, sample movement

time series from the same child using the Pixel change video analysis in
(d) the object tapping task and (e) the pointing task
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between the in-phase region occurrences of the Polhemus and
every other motion-tracking system for each task.

Results and discussion

Object tapping task

All the results for the object tapping task ANOVAs for each of
the motion capture methods can be found in Table 1.

Wrist movement A 9 × 2 mixed ANOVA on the data obtain-
ed through the Polhemus system revealed a significant main
effect of phase region and a significant phase region × diag-
nosis interaction (see Table 1). Planned t-tests revealed that
TD children had a significantly higher mean occurrence at 0
(M = 50.6, SD = 11.01) than children with ASD (M = 37.92,
SD = 15.38; t(36) = −2.92, p < .01, d = .95; see Fig. 4a). As
expected, both groups of children spent the majority of the
trial in the 0 phase region, indicative of in-phase coordination.

There were no significant main effects nor an interaction
for the DRP analysis of the Kinect forearm time series (see
Table 1 and Fig. 4b). For this specific task the Kinect system
did not have a good enough resolution to register the kinds of
single limb, small-scale movements performed in the object
tapping task used. Moreover, the drum-like cylinders used
introduced sources of noise as can be seen when comparing
the sample time series between the Polhemus and the Kinect
data on Fig. 2a and d. This noise injection in turn led to the
lack of differentiation between groups in DRP for the forearm
data captured by the Microsoft Kinect.

Whole body movement The 9 × 2 mixed ANOVA on the
Kinect whole body vector movement time series DRP mea-
sures revealed a significant main effect of phase region (see
Table 1). Planned t-tests showed that participants spent

significantly more time in the 180 phase region (M = 14.23,
SD = 7.49) than in the 0 phase region (M = 6.83, SD = 4.50;
t(37) = −4.17, p < .01, d = 1.20; see Fig. 4c). The phase region
× diagnosis interaction was not significant. No group differ-
ences were observed.

The 9 × 2 mixed ANOVA on the pixel change DRP also
revealed a significant main effect of phase region. As expect-
ed, both groups of children spent the majority of the trial in the
0 or in-phase region. Additionally, there was a significant
phase region × diagnosis interaction (see Table 1). Planned
t-tests revealed that TD children had a significantly higher
mean occurrence at 0 (M = 19.17, SD = 5.65) than children
with ASD (M = 5.22, SD = 15.38; t(36) = ×2.17, p = .04, d =
1.20; see Fig. 4d).

The Microsoft Kinect whole body measure therefore was
not as accurate at capturing the movement dynamics of single
limb, small scale movements such as those in this object tap-
ping task. In particular, we fail to see differences between
groups, and this method showed a significant difference in
type of coordination that was contrary to what the Polhemus
system showed. These results could be due to the level of
noise in this situation created by the presence of the cylinders,
which in turn led to skeletal tracking problems in parts of the
task (compare Fig. 3a to Fig. 2a). This suggests that very
careful planning is needed when designing the tasks being
studied if the use of the Kinect skeletal tracker is being con-
sidered. It is vital to highlight again that the Kinect’s skeletal
data is based on a combined infrared/video process of depth
and a machine-learning algorithm that has a high noise to
signal ratio. In this case, part of the motion being performed
may have been confused with the cylinders in the skeletal
tracker (this is true for both the forearm and the whole body
methods).

The pixel change motion time series was, on the other
hand, capable of capturing differences between the two groups
in terms of the DRP measure as well as the type of coordina-
tion detected by the Polhemus system. In this case, the pixel
change motion time series corresponded more closely to the
Polhemus results presented above, than the time series extract-
ed from the skeletal tracker data.

The reliability results corroborate the previous findings
showing a negative correlation between the in-phase occur-
rence in the Polhemus as compared to the Kinect whole body
(r = −.40) and the Kinect forearm (r = −.19) while showing a
positive correlation with the video analysis (r = .27; see
Fig. 5). However, the regression between the video analysis
in-phase occurrence and that measured by the Polhemus was
not significant (p = .10).

Pointing task

All the results for the pointing task ANOVAs for each of the
motion capture methods can be found in Table 2.

Table 1 Object tapping task ANOVA results

MSE F p pη
2

Polhemus Latus Phase region 32.49 237.36 < .01* .87

Diagnosis 0.001 0.75 .39 .02

P × D 32.49 6.67 < .01* .16

Kinect forearm Phase region 26.55 0.95 .47 .03

Diagnosis 0.001 0.0 1.00 0.0

P × D 26.55 0.68 .71 .02

Kinect whole body Phase region 29.22 11.76 < .01* .25

Diagnosis 0.001 0.11 .74 .003

P × D 29.22 0.69 .70 .02

Pixel change
video analysis

Phase region 13.00 51.30 < .01* .59

Diagnosis 0.001 1.70 .20 .05

P × D 13.00 5.96 < .01* .14
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Fig. 4 Distribution of relative phase in the object tapping task by group as measured by (a) the Polhemus Latus, (b) the Kinect: forearm movement, (c)
the Kinect whole body vector, and (d) the video analysis. The error bars represent standard errors of the mean
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Wrist movement The analysis of the Polhemus Latus data’s
DRP data showed a significant main effect of phase region distri-
bution and a significant phase region by diagnosis interaction (see
Table 2). Planned t-tests showed that the mean occurrence of a 0
relative phase was significantly higher for the children in the TD
group (M = 63.82, SD = 18.88) than those in the ASD group
(M=49.69, SD=16.51; t(36) =−2.46,p= .02, d= .80; see Fig. 6a).

The analysis performed on the Kinect forearm time series
DRP data also revealed a significant main effect of phase re-
gion (see Table 2). Planned t-tests showed that participants
spent significantly more time in the 0 phase region (M =
15.08, SD = 8.22) than the 180phase region (M = 8.26, SD =
4.79; t(37) = 3.53, p < .01, d = 1.01; see Fig. 6b). However, this
method failed to capture the phase region × diagnosis shown
with the Polhemus. No group differences were observed.

Compared to the previous tapping task, this tapping task
involved more large-scale motion, which permitted us to reg-
ister some of the differences in the Kinect skeletal forearm
data. However, this method was still unable to differentiate
between the groups. Again, it is vital to point out that the
Kinect’s skeletal data is based on a combined infrared/video
process of depth and a machine-learning algorithm that has a
high noise-to-signal ratio. In this case, part of the motion being
performed was in front of the torso of the participants, and
since the children sometimes wore long-sleeve shirts, which
were the same color as their torso, this in turn led to potential
skeletal tracking problems in parts of the task, (compare
Fig. 2b to Fig. 2e). Once more, this suggests that very careful
planning is needed when designing the tasks being studied to
avoid occlusion when using the Kinect skeletal tracker is be-
ing considered.

Table 2 Pointing task ANOVA results

MSE F p pη
2

Polhemus Latus Phase region 58.04 235.43 < .01 * .87

Diagnosis 0.001 0.21 .65 .006

P × D 58.04 5.14 .02 * .13

Kinect forearm Phase region 28.15 6.68 < .01 * .16

Diagnosis 0.001 1.50 .23 .04

P × D 28.15 0.79 .44 .02

Kinect whole body Phase region 18.64 18.02 < .01 * .33

Diagnosis 0.001 0.12 .73 .003

P × D 18.64 0.29 .97 .01

Pixel change
video analysis

Phase region 16.34 143.94 < .01 * .80

Diagnosis 0.001 0.41 .52 .01

P × D 16.34 0.24 .81 .01

Fig. 6 Distribution of relative phase in the pointing task by group as measured by (a) the Polhemus Latus, (b) the Kinect: forearm movement, (c) the
Kinect whole body vector, and (d) the video analysis. The error bars represent standard errors of the mean
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Whole body movements The analysis of the whole body
Kinect vector movement revealed a significant main effect
of phase region (see Table 2). Planned t-tests showed that
participants spent significantly more time in the 0 phase region
(M = 15.66, SD = 6.85) than in the 180phase region (M = 7.33,
SD = 3.43; t(37) = 5.63, p < .01, d = 1.54; see Fig. 6c). The
phase region × diagnosis interaction was not significant. No
group differences were observed.

The analysis of the pixel change data also showed a
significant main effect of phase region (see Table 2).
Planned t-tests showed that participants spent significantly
more time in the 0 phase region (M = 25.57, SD = 7.32)
than in the 180phase region (M = 3.71, SD = 2.18; t(37) =
15.48, p < .01, d = 4.05; see Fig. 6d). The phase region ×
diagnosis interaction was not significant. No group differ-
ences were observed.

With respect to the pointing task, therefore, all four mea-
surement methods were able to index the intended relative
phase coordination underlying the task. However, only the
Polhemus motion-tracking system was powerful enough to
differentiate the groups of children, indicating that for such
single limbmovements the low-cost Kinect and video analysis
methods may not be appropriate for detecting subtle differ-
ences in coordination stability.

The reliability analysis for the pointing task showed a pos-
itive correlation between the Polhemus and the Kinect whole
body (r = .14), the Kinect forearm ( r = .12), and the video
analysis (r = .44; see Fig. 7). In this case, the video analysis
was able to account for 19.3 % of the variance present in the
Polhemus data (t = 2.93; p = .01). The other two regressions
were not found to be significant ( all ps > .40). Therefore, if a

Polhemus system is not available to researchers in this type of
task, a pixel change video analysis would be more reliable
than using the Kinect skeletal tracker.

Interpersonal hand clapping game

All the results for the interpersonal hand clapping game
ANOVAs for each of the motion capture methods can be
found in Table 3.

Wrist movement Analysis of the Polhemus Latus data
showed a significant main effect of phase region and a signif-
icant phase region × diagnosis interaction (see Table 3).
Planned t-tests revealed a significantly lower occurrence for
TD children in the 0 region (M = 0.06, SD = 0.18) than chil-
dren in the ASD group (M = 0.96, SD = 1.61; t(35) = 2.36, p =
.02, d = .79). Additionally, the children in the TD group had a
higher mean occurrence in the 180 phase region (M = 59.79,
SD = 13.03) than those in the ASD group (M = 39.08, SD =
18.12; t(35) = −3.97, p < .01, d = 1.31; see Fig. 8a).

Analysis of the Kinect forearm data also revealed a signif-
icant main effect of phase region and phase region by diagno-
sis interaction (see Table 3). Planned t-tests showed a signifi-
cantly lower occurrence in the 0region for TD children (M =
3.00, SD = 2.91) than children in the ASD group (M = 7.85,
SD = 5.31; t(32) = 3.29, p < .01, d = 1.13). Additionally, the
children in the TD group had a higher mean occurrence in the
180phase region (M = 27.76, SD = 12.16) than those in the
ASD group (M = 15.37, SD = 9.32; t(32) = −3.34, p < .01, d =
1.14; see Fig. 8b).
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Whole body movement Analyses performed on the Kinect
whole body vector time series for the interpersonal hand clap-
ping task revealed a significant main effect of phase region
and a phase region by diagnosis interaction (see Table 3).
Planned t-tests showed a significantly lower occurrence in
the 0region for TD children (M = 3.51, SD = 4.57) than chil-
dren in the ASD group (M = 9.14, SD = 7.22; t(33) = 2.74, p =
.01, d = .93). Additionally, the children in the TD group had a
higher mean occurrence in the 180 phase region (M = 27.72,
SD = 11.39) than those in the ASD group (M = 16.61, SD =
27.72; t(33) = −3.16, p < .01, d = .52; see Fig. 8c).

In summary, the Kinect forearm and whole body vector
time series data were able to accurately capture the phase
differences as well as differentiate the ASD and TD groups

for the interpersonal hand clapping game. Accordingly, this
task seemed to be the most appropriate kind of task to be
employed when using the Kinect as a motion capture tracking
system. As can be seen when comparing Fig. 2c to Fig. 2f, the
noise introduced in the Kinect tracking did not influence the
shape of the time series as dramatically as it did with the
previous two tasks. This task involved larger scale movements
as well as movement of the torso and other body parts, while
posing lower noise-inducing issues (since the hands and arms
were not in front of the participants’ torso, but to the side),
leading to cleaner and more trustworthy results. This would
indicate that the Kinect skeletal tracker system might be more
suited to investigating movement coordination in tasks that
involve the use of more gross, large-scale movements, espe-
cially those that involve multiple limbs. The pixel change
method could not be used for this task because the hands of
the two individuals contacted at midline, making it impossible
to create separate time series of each individual. Additional
research is needed to explore the reliability of the pixel change
method in other gross, large-scale movements that do not in-
volve body contact between the two individuals.

The reliability results in the hand clapping game confirmed
the conclusions expressed above by showing a positive corre-
lation between the in-phase occurrence between the Polhemus
and the Kinect whole body (r = .50) and the Kinect forearm ( r
= .34; see Fig. 9). The Kinect forearm was able to capture 11.4
% of the variance present in the Polhemus in-phase occurrence
(t = 2.00; p =.055), while the Kinect whole body was able to

Table 3 Interpersonal hand clapping game ANOVA results

MSE F p pη
2

Polhemus Latus Phase region 49.88 210.92 < .01 * .86

Diagnosis 0.0005 2.27 .14 .06

P × D 49.88 12.79 < .01* .27

Kinect forearm Phase region 29.08 40.96 < .01 * .56

Diagnosis 0.001 2.22 .15 .07

P × D 29.08 12.06 < .01 * .27

Kinect whole body Phase region 38.43 31.52 < .01 * .49

Diagnosis 0.001 0.04 .85 .001

P × D 38.43 10.07 < .01 * .23

Fig. 8 Distribution of relative phase in the interpersonal hand clapping game by group as measured by (a) the Polhemus Latus, (b) the Kinect: forearm
movement, and (c) the Kinect whole body vector. The error bars represent standard errors of the mean
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account for 24.0 % of the variance present in the Polhemus
data (t = 3.18; p < .01).

General discussion

The goal of the current paper was to explicate whether low-
cost motion-tracking systems could be used instead of a
Polhemus Latus system when investigating social motor co-
ordination in general and in children with ASD specifically.
We used four methods of motion capture: (a) a high-end (yet
moderately affordable) laboratory-grade Polhemus Latus
magnetic motion-tracking system, (b) the Microsoft Kinect
motion-tracking sensor, which is a low-cost optical tracking
system, from which we extracted the limb movements as well
as the (c) whole body movement, and (d) a video recording
based pixel-changemethod of motion extraction. Of particular
interest was how well the two low-cost Microsoft Kinect
methods and the video pixel-change method performed in
comparison to the more expensive, laboratory grade,
Polhemus Latus system and the degree to which these three
methods could be employed to differentiate the coordination
that occurred in these tasks (in-phase, anti-phase) as well as
the differences between the TD and ASD participants.

The findings demonstrated that the Polhemus Latus system
did in fact provide a finer-grained measure of limb movement
than the low-cost motion-tracking systems and was more ro-
bust in differentiating the groups both in measures of pattern-
ing and in stability of social coordination. This was the case
across all three social motor tasks. This indicates, not surpris-
ingly, that the Polhemus Latus system is superior for tasks that
predominantly involve smaller-scale limb movements.
However, the use of the Polhemus comes at a cost, for

example the wireless sensors needed in this method must be
attached to the limbs in question, which can be problematic for
certain participants (e.g., children with ASD). In addition, the
system’s reliance on magnetic signals makes its use incompat-
ible with some other bio-behavioral measurement systems
(e.g., EEG). Furthermore, when the number of limbs of inter-
est increases above four, this method becomes cumbersome
and more expensive for more complex, whole-body, natural-
istic movements.

The use of the Kinect for measuring forearm movements
was less successful than the Polhemus. In the tapping task not
only did it fail to differentiate between the two groups, it also
did not show the expected in-phase coordination pattern, and
in the reliability analysis it also showed a negative correlation
to the Polhemus. For the pointing task, the forearm skeletal
tracker method was able to successfully measure the type of
coordination expected in the task, but was unable to differen-
tiate between the TD and ASD groups as measured by the
Polhemus system. In this task, it showed the expected positive
correlation to the Polhemus, but the regression failed to reach
significance. However, this method was able to both measure
the right type of coordination as well as differentiate the
groups in the whole-body, naturalistic interpersonal hand clap-
ping game and in the reliability analysis showed a positive
correlation as well as a marginally significant regression with
the Polhemus results. Furthermore, this method in cases in-
volving special populations and children poses an advantage
in future research because of its completely wireless set-up.
That being said, special care is needed in designing tasks and
setting up the data collection space to avoid occlusion if this
tool is to be used.

In terms of the two methods measuring whole body move-
ments, the current findings were mixed. The video pixel
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change method was able to successfully measure the differ-
ences in coordination type expected in the pointing and tap-
ping tasks and showed the expected positive correlations with
the Polhemus results in the reliability analysis. Additionally,
this method was able to detect differences between the two
groups in the tapping task as well as a significant regression
accounting for 19.3 % of the variance captured by the
Polhemus, but failed to do so in the pointing task. The
Kinect whole body method, on the other hand, found contra-
dicting evidence regarding the type of coordination expected
found by the Polhemus as well as the video pixel change
methods in the object tapping task. It was, however, successful
at differentiating the two coordination modes in the pointing
task and interpersonal hand clapping game. Even though the
whole body Kinect was unable to differentiate the groups in
the first two tasks involving single limb movements, it was
successful in the more naturalistic interpersonal hand clapping
game, and even reached a significant level of prediction when
regressed with the Polhemus in-phase results. As noted above,
the major advantage of these methods is the freedom that
researchers gain from completely wireless operation. While
the video pixel change method would be simple to implement
(since any video camera would be sufficient to use), it is worth
noting once again that designing tasks needs special consider-
ation since participants cannot cross over the middle of the
frame at any point.

What is apparent at this point is that when employing these
low-cost motion-tracking methods, particular care needs to be
taken when designing the data collection space and the inter-
action tasks to be employed. In general the current results
demonstrate that for both the Kinect sensor and pixel change
methods, tasks with larger scale movements, as well as the use
of more than just one or two limbs, provide the most accurate
and reliable results. Of particular importance when using the
Kinect is to choose tasks that have minimal occlusion issues
(i.e., when the arms are not placed in front of the torso and
when no props are used). When using the pixel change meth-
od the movements of the two people have to be in separate
parts of the video frame and may be best suited to tasks in-
volving less stereotyped movement as found, for example, in
conversation. Since concluding the study, we have also found
(through experimentation and also through literature) that if
participants face the Kinect directly, the level of noise in the
time series is reduced, therefore leading to better skeletal
tracking. Additionally, Dutta (2012) found that by pronounc-
ing the joints of interest simply by attaching B10cm wide
circular discs or squares made of brightly coloured cardstock
over a subject’s clothing^ the skeletal tracking improved sig-
nificantly. However, due to the reliance on the machine-
learning algorithm built into the Kinect system, the results
presented currently are preliminary. Accordingly, future work
could record participants’ movements with the Kinect while
recording their movement with Polhemus sensors (or other

motion capture systems) that correspond to the same skeletal
markers in the Kinect in order to measure if the differences
observed here are due to errors in the skeletal reconstruction or
simple occlusion. Additionally, research is needed to investi-
gate if the filtering methods used in the current paper are
appropriate for the Kinect methods or if there are other more
optimal solutions for the type of data recorded. Finally, it
would be helpful to conduct a study in the future in which
the data collection between the different methods is synchro-
nized, such that each time-series can be directly compared to
the others in order to fully understand how much each
method’s capture coincides with the others.

In conclusion, the current study has shown that certain low-
cost methods of motion tracking can be used to capture and
index the coordination dynamics that occur between a child
and an experimenter. More specifically, the results found the
Polhemus system to be better than the Kinect and Video anal-
ysis methods, but that the latter two methods were still able to
index motor coordination dynamics for tasks that involve larg-
er scale limb and body movements. In other words, the Kinect
cannot substitute a system like the Polhemus in small-scale,
precision tasks such as the tapping and pointing task, but it can
do so in a more whole-body naturalistic task such as the hand
clapping game. As for the pixel change method, it cannot be
used in tasks like the hand clapping game, but it can be suited
to some smaller-scale tasks, such as tapping. More generally,
the current study also validates previous research (e.g.,
Fitzpatrick et al., 2013) by demonstrating that children diag-
nosed with ASD show different social motor coordination
patterns when compared to their typically developing counter-
parts. The low cost and completely wireless motion capture
systems compared here can therefore provide researchers with
new tools to explore social motor coordination and the role it
plays not only in ASD, but also in other developmental delays
disorders and social functioning pathologies (i.e.,
schizophrenia) as well as developing innovative treatment
strategies with these tools (Chang, Chen, & Huang, 2011;
Chung, Huang, Yeh, Chiang, & Tseng, 2014), as long as care-
ful planning goes into designing the experimental tasks.
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