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Abstract The objective measurement of physical activity
using accelerometers is becoming increasingly popular.
There is little consensus, however, about how to analyze ac-
celeration data. One promising approach is the use of refer-
ence measurements in which the subjects conduct specific
activities. This makes it possible to identify data patterns that
indicate these activities for each subject. The drawback of this
approach is its rather high cost, in terms of both time and
money. We propose a new approach in which a group of
children conduct the reference measurements at the same time.
We trained support vector machine models on the accelerom-
eter data of 70 children (ages 8-11 years) to predict their
activities during those reference measurements. We correctly
classified activities with an accuracy of 96.9 % when fitting
the individual models for each subject, and 87.5 % when
fitting general models for all subjects. The obtained accuracies
were comparable to results reported in previous reference
measurement studies, in which each subject was measured
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individually. They were higher than the accuracies obtained
by the traditional approach, which transfers accelerometer da-
ta to counts and classifies those on the basis of predefined cut
points. We concluded that our approach can yield a valuable
contribution, particularly to studies with larger samples.
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The positive influence of physical activity (PA) on cognitive
performance as well as psychological and physiological well-
being has been established in numerous studies and meta-
analyses (e.g., Ahn & Fedewa, 2011; Pasco et al., 2011;
Ploughman, 2008; Reed & Buck, 2009; Sibley & Etnier,
2003; Strong et al., 2005; Tomporowski, Davis, Miller, &
Naglieri, 2008; Trost, Blair, & Khan, 2014). For a better un-
derstanding of these relations, it is important to investigate
them in real-life settings. To do so, ways to assess the habitual
PA of people have to be found. This can be done either with
subjective measures, like self-report questionnaires, or with
objective measures. Objective measurements have the advan-
tage that they can assess PA continuously and without the
inaccuracies that come with self-report measurements (e.g.,
Baumeister, Vohs, & Funder, 2009; Ebner-Priemer et al.,
2006). Objective measurements of PA can be collected with
various devices, of which accelerometers are among the most
popular (for an overview of objective activity measurement
techniques, see Butte, Ekelund, & Westerterp, 2012).

Until now, researchers have not reached a consensus about
the proper way to transfer acceleration data into meaningful
measures of activity (cf. Lee & Shiroma, 2014). In the present
article, we try to aid approaching such a consensus in three
ways. In short, we are concerned with the questions of, first,
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whether raw data or counts should be used; second, whether
data should be classified into activities based on an individual
model for each subject or the same model for all subjects; and
third and most importantly, whether individual models can be
obtained in an economical way that is reasonably applicable to
real-life research. To answer the last question, we proposed to
obtain individual models from reference measurements done
in groups, rather than individually.

Traditionally, accelerometer data are interpreted with the
help of movement counts (e.g., Freedson, Pober, & Janz,
2005). Those counts are an expression of the amplitude of
movement in a given time interval. The activity in this inter-
val, usually 1 min, can then be expressed as counts per minute,
a unit that can in principle be translated to meaningful mea-
sures of PA with the use of established cut points. PA is often
described in terms of the time in which people conduct mod-
erate to vigorous physical activity (MVPA) and the time in
which they are in sedentary behavior (e.g., Aznar et al., 2011;
Basterfield et al., 2011; King et al., 2011; Puyau, Adolph,
Vohra, & Butte, 2002; Reilly et al., 2008). It has become
popular to express recommendations for how much PA is
beneficial for mental or physical health, in terms of time per
day spent in MVPA (e.g., Strong et al., 2005; Wong et al.,
2012). The strength of the approach of measuring PA with
movement counts lies in its apparent simplicity, yielding an
easy-to-understand measure of physical activity. However, it
has several shortcomings. First, the counts are calculated by
the manufacturer’s software. This means that researchers lose
control over data processing. They cannot influence how the
counts are calculated, nor can they readily calculate the counts
themselves. This forces researchers to take the produced
counts as granted. Second, data processing differs across de-
vices (Butte et al., 2012; Chen & Bassett, 2005), which is
especially problematic in combination with the first problem.
Accordingly, different devices produce significantly different
numbers of counts for the exact same movements (Rothney,
Apker, Song, & Chen, 2008). One possible reason for that is
the so-called plateau phenomenon (cf. John, Miller, Kozey-
Keadle, Caldwell, & Freedson, 2012), which stems from the
way in which counts are calculated in the widely used
ActiGraphs (ActiGraph, LLC, Fort Walton Beach, FL). It de-
scribes the phenomenon that beyond a certain intensity of
activity, the activity counts actually decrease when the inten-
sity of activity increases. This means that activities of very
different intensities can produce the same count data. Third,
appropriate cut points for the interpretation of counts have to
be used. Counts in themselves are not a very informative mea-
sure. To interpret them, the activities that correspond to certain
values of, for example, counts per minute must be established
in so-called calibration studies (e.g., Evenson, Catellier, Gill,
Ondrak, & McMurray, 2008; Puyau et al., 2002), which are
often rather expensive and time-consuming. Furthermore,
their results are not extendable to different subpopulations,
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meaning that in principle, different studies are needed for peo-
ple of different ages, genders, and other relevant characteris-
tics (Strath, Pfeiffer, & Whitt-Glover, 2012). However, even
within a single subpopulation, the results from these studies
vary greatly (e.g., Sherar et al., 2011). When comparing the
results of different studies, Corder, Ekelund, Steele, Wareham,
and Brage (2008) found that the cut points for MVPA varied
between 615 and 3,200 counts per minute, even when they
were specifically derived for use with young people. It has
been demonstrated that the use of the different cut points can
lead to vastly different descriptions of children’s PA
(Guinhouya et al., 2006). An additional problem with cut
points is that there is no universal consensus about which
exact activities correspond to the intensities PA is classified
into. The intensity of an activity is usually described in terms
of the metabolic equivalent of task (MET; e.g., Harrell et al.,
2005). One MET is defined as the metabolic rate while sitting,
called the resting metabolic rate (e.g., Harrell et al., 2005).
Extensive research has been conducted to identify the energy
expenditures of different activities in children (e.g., Harrell
et al., 2005; Ridley, Ainsworth, & Olds, 2008). The results,
however, are not always in agreement (cf. Janssen et al.,
2013). For example, Harrell and colleagues (2005) found the
MET for slow walking to be 3, whereas Ridley et al. (2008)
found it to be between 2.9 and 3.6. At the same time, the cut
points for important distinctions between different intensities
of PA fall right in this area. For example, light PA is defined as
an activity with less than three METs by Freedson and col-
leagues (2005), and less than four METs by Trost, Loprinzi,
Moore, and Pfeiffer (2011). The definition of running as vig-
orous PA is clearer: Running is found to have an MET be-
tween 7.7 and 9.3, a much higher value than the usually used
boundary of 6. It can, however, be argued that fast running
should be considered very vigorous PA, defined as anything
with an MET higher than 9 (Freedson et al., 2005). Fast walk-
ing is found to have METs between 3.8 (Harrell et al., 2005)
and 4.6 (Ridley et al., 2008), and should thus be considered to
be PA with moderate intensity.

Fourth, even if the most appropriate cut points for a given
population were known, the same cut points would have to be
used for each individual of this population. It has been stated
that motion patterns differ considerably between individuals
(Bussmann, Ebner-Priemer, & Fahrenberg, 2009), and even
more so in children (Corder, Ekelund, Steele, Warecham, &
Brage, 2008). A general model for all subjects does not ac-
count for these individual differences and can therefore be
assumed to lack the necessary flexibility. The deduction of
measures of PA from raw acceleration data might benefit high-
ly from techniques that are individually tailored to each sub-
ject of a study (Bussmann et al., 2009; Foerster & Fahrenberg,
2000).

Despite the awareness of these problems, in the past, re-
searchers had little choice but to use counts and general cut
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points, due to a lack of alternatives. Only with recent devel-
opments in accelerometers has it become possible to get raw
acceleration data as output. This enables researchers to work
independently of derived counts and gives them the opportu-
nity to take full control over the data and their analyses (cf.
Peach, van Hoomissen, & Callender, 2014). It is thus not
surprising that using raw acceleration data for investigating
PA has been strongly recommended (e.g., Corder et al.,
2008; Freedson, Bowles, Troiano, & Haskell, 2012;
Freedson et al., 2005; John & Freedson, 2012; Wijndaele
etal., 2015). The potential to take full control over all analysis
steps, from the raw acceleration data to a measure of PA, also
entails the obligation to find the optimal means to do so. An
important part of this is the development of algorithms to
transform raw data into measures of activity individually for
each subject. This can be done with the use of reference
measurements.

Reference-pattern-based classification (e.g., Foerster &
Fahrenberg, 2000) does provide a way to deal with the diver-
sity of motions of different individuals. For reference-pattern-
based classification, accelerometer data are connected to dif-
ferent types of activities individually for every single subject.
To do that, reference measurements have to be conducted,
much like the aforementioned studies to determine cut points.
The difference is that data are not collected with an indepen-
dent sample, but with the same one that is to be investigated in
the actual study. Subjects wear accelerometers while
conducting a number of predefined activities. From these
measurements, it is possible to find connections between the
data and different (intensities of) activities. In principle, dif-
ferent methods are suited for classification (for an extensive
overview of classification techniques, see Preece et al., 2009).
The methods used include k-nearest neighbor (e.g., Bao &
Intille, 2004; Zhang, Rowlands, Murray, & Hurst, 2012), hid-
den Markov models (e.g., Pober, Staudenmayer, Raphael, &
Freedson, 2006), and artificial neural networks (e.g.,
Hagenbuchner, Cliff, Trost, van Tuc, & Peoples, 2015;
Staudenmayer, Pober, Crouter, Bassett, & Freedson, 2009).
The “state-of-the-art” method that has proven effective for
such tasks is the use of support vector machines (SVMs;
e.g., He & Jin, 2009). This is the method we used to classify
the acceleration data in the present empirical study.

Despite all the advantages of conducting one’s own refer-
ence measurements with each subject of a study, they do have
one major disadvantage: They are time-consuming, and can
thus also be rather expensive in studies with large samples.
Every subject has to be supervised individually and guided to
conduct the activities according to the protocol. In the present
study, reference-pattern-based classification was conducted
for children. This made it possible to try out a—to our knowl-
edge—entirely new approach in which the reference data were
collected for whole school classes of children at a time, during
a single physical education lesson. If this approach turns out to

be successful, it would create great opportunities for the mea-
surement of the PA of children in larger studies. The possible
sample size would be much less restricted by a limited time for
the reference measurements. In our study, we were able to
conduct the reference measurements for 70 children in a total
time of only four and a half hours. Of course, this approach
also bears potential problems regarding the accuracy of the
reference measurements. When conducting these measure-
ments with only one person at a time, it is relatively simple
to make sure that the activities are executed as required. It is
much harder to exert this control over a whole class of 20 to 30
children. Consequently, it would not be surprising, should the
acquired data be less precise than data acquired in individual
reference measurements. The main goal of the present study
was to investigate whether data collected in this way would
still allow for classification with reasonable precision.
Additionally, the generalizability of the estimated models is
of interest. Generalizability denotes the ability of a model to
predict activities from the data of different children. This is
important when some children miss the physical education
lesson in which the reference measures are conducted. A good
generalizability of the models would allow for a classification
even for the data of the children for whom no reference data
are available.

The usefulness of the approach presented here can be
assessed better when the obtained results are compared to
those that would be obtained if data were analyzed with the
traditional approach of using counts and cut points. Thus, we
also translated the data into counts and classified them on the
basis of the cut points provided by the ActiLife software
(Wyatt, 2012, Version 6.9.0). These cut points are based on
the recommendations from calibration studies, specifically for
children (Butte et al., 2012; Evenson et al., 2008; Freedson
etal., 2005; Mattocks et al., 2007; Pulsford et al., 2011; Puyau
et al., 2002). Most research that uses accelerometers to mea-
sure PA in children uses one of these sets of cut points.

We expected our approach to yield better results than a
classification based on counts and commonly used cut points,
for two reasons. First, transforming raw acceleration data into
counts inevitably leads to a loss of information. In the case that
this information is more than just random noise, its loss should
lead to less accurate classifications. Second, commonly used
cut points are always derived for, and applied to, a whole
sample and not individual subjects. Analyzing the data of
single subjects, thereby taking individual differences in move-
ments into account, should also lead to better results.

Most importantly, we expected our approach to conducting
reference measurements in groups to yield a good trade-off
between classification accuracy and time-efficiency. This
means that, given the inherent time-efficiency of our ap-
proach, it should still allow for a reasonably accurate classifi-
cation of accelerometer data, thereby being a feasible alterna-
tive to using predefined cut points.
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Materials and method
Design and subjects

The present study was part of the FLUX (Assessment of
Cognitive Performance FLUctuations in the School
ConteXt) project, which aims at investigating daily fluctua-
tions in children’s cognitive performance in the school context
and their potential correlates. A total of 110 children received
a smartphone on which they solved working memory tasks
and answered self-report questionnaires several times a day
for four weeks. Additionally, 80 of these children wore accel-
erometers for the time of the study, which was approved by a
local ethics committee. For their participation, the subjects
received a reward in the form of money or a gift coupon.
The present article reports the results of PA reference measure-
ments conducted during the pretesting of the FLUX study. Out
of the 80 children with an ActiGraph, 70 (43 boys and 27
girls) were present in the physical education lesson during
which the reference measurements were conducted. The chil-
dren were in third or fourth grade, with their ages ranging from
8to 11 years (M = 9.77, SD = 0.62 years). In total, three third
grade and three fourth grade classes took part in the study. The
average size of the classes was 22.3 (SD = 1.4). All children in
the classes performed the activities for the reference measure-
ments, but only those whose parents had signed an informed
consent wore an ActiGraph at the time. On average, 11.7 (SD
= 2.6) children per class wore an ActiGraph attached to the
waist on their nondominant side. The measurements were
done during a physical education lesson by three trained staff
members. Each lesson lasted 45 min, resulting in a total mea-
surement time of 4.5 h in six classes.

Accelerometers

In the present study, we used the ActiGraph GT3X+
(ActiGraph, LLC, Fort Walton Beach, FL). The GT3X+ is a
triaxial accelerometer that measures acceleration in a range
from —6 to +6 g. As is usual for children, the devices were
worn on the waist (Strath et al., 2012). The sampling rate was
set to 30 Hz. This sampling rate was chosen because the pro-
posed method was developed for use in a long-term study. A
higher sampling rate would require too much maintenance and
coordination with the subjects, due to limited memory space
and battery life.

Reference measurements

We based the decision of which activities should be conducted
in the reference measurements on the protocol recommended
by Foerster and Fahrenberg (2000). This protocol was adopted
according to specific requirements and limitations of our study
design, ensuing from the fact that the reference measurements
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were done for all children simultaneously and during a phys-
ical education lesson. For example, climbing stairs could not
be included, due to a lack of stairs in the gym of the school.
Taking these limitations into account, while trying to stay as
close as possible to the protocol of Foerster and Fahrenberg
(2000), we came up with a protocol of six activities: lying
down, sitting, standing, slow walking, fast walking, and
running.

Ideally, each of these activities should be conducted for
90 s. The only exception was running. Since it may be hard
for children to run for 90 s straight, they were allowed to stop
whenever they felt they could not keep their pace much lon-
ger. In that case, the children were instructed to run to the
middle of the gym and high-five one of the research assistants,
at which point the time was stopped for that child. This as-
sured the availability of detailed information about the run-
ning time of each child. The time was taken from a stopwatch,
the starting time of which was synchronized with the starting
time of the ActiGraph measurements. Because we carefully
recorded the start and stop times of each activity, it was later
possible to assign the collected reference data to the activities.

Nonwear time

The described approach has the problem that it forces the
acceleration data to be classified into one of the activity cate-
gories of the reference measurements. Periods of time in
which the accelerometer was not worn can thus not be identi-
fied, which is a serious problem when one wants to take this
approach to real-life studies. We addressed this problem by
introducing the accelerometer data of not-worn devices into
the analyses. A recording ActiGraph was placed on a table in
three different positions for 90 s each. Those three positions
were the most likely positions for a device to lie on a flat
surface, due to the shape of the device. The data recorded in
this time were added to the classification. In this way, we
attempted to find the patterns of acceleration on the different
axes that would indicate that a device was not worn.

Feature extraction

Probably just as important as the classification technique was
the proper preprocessing of the data. Usually, data are col-
lapsed into time frames, and certain key values are extracted
per frame for the classification of the data. We classified the
data in nonoverlapping frames of 2.5 s. With a sampling rate
of 30 Hz, this meant that each frame consisted of 75 acceler-
ation measurements on each of the three axes. This informa-
tion was further processed on the basis of techniques that have
proven successful in previous studies (e.g., Bao & Intille,
2004; Ravi, Dandekar, Mysore, & Littman, 2005; Wu, Pan,
Zhang, Qi, & Li, 2009). More specifically, for each of the
three axes, the mean, variance, and energy, as well as the
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correlations between the raw acceleration data of the three
axes, were computed. We did not preprocess (e.g., square or
take absolute values) the mean acceleration values to take out
influences of gravity. Information about how gravity works on
the different axes allows for inferences on the inclination of
the device, and thus the posture of a person. This information
is useful for distinguishing between the different sedentary
activities—that is, lying down, sitting, and standing—as well
as recognizing nonwear times. Different activities differ in the
magnitudes of the acceleration values, and thus in their possi-
ble range. To distinguish between physical activities, the var-
iance of the acceleration value is also useful. However, there
can be an overlap in the variance values if a person is walking
or running slowly (Chung, Purwar, & Sharma, 2008). In this
case, additional information that can help distinguish between
activities is the energy in the frequency domain. To calculate
the energy, the data first have to be Fourier-transformed,
which was done by a discrete fast Fourier transformation
(FFT). Energy (i.e., spectral energy; cf. Bao & Intille, 2004;
Murugappan, Murugappan, & Gerard; 2014) is calculated as
the sum of the squared discrete FFT component magnitudes of
the signal over the entire frequency range. Furthermore, the
sum is divided by the length of the frame for normalization.
The correlation between the acceleration data of the axes can
further improve the recognition of activities (Bao & Intille,
2004). With these four features for each axis, a total of 12
values described the data in each frame. These 12 features
were used to train the SVMs on the reference data and, ac-
cordingly, to predict activities from the data.

Support vector machines

SVMs were introduced by Boser, Guyon, and Vapnik (1992)
and further developed to the version used here by Cortes and
Vapnik (1995). SVMs can be used for classification based on
high-dimensional data and to find patterns in nonlinear infor-
mation. They are thus perfectly suited for the present task to
categorize acceleration data into the activities in the reference
measures. Since SVMs were developed for binary classifica-
tion—that is, for distinctions between two classes—a one-
against-one classification method was used. In this method,
every possible pair of activities was compared and the data
were classified as reflecting the activity that was chosen in
most of these comparisons. It has been shown that this method
produces good results for practical use in categorizing data
into multiple classes (Hsu & Lin, 2002). SVMs separate dif-
ferent classes of data by a hyperplane. This is done by maxi-
mizing the margin between the closest points of the classes
(see Fig. 1), which are called support vectors. The middle of
the margin is the hyperplane that optimally separates the two
classes. The problem with data like these is that they are often
not linearly separable. SVMs circumvent this problem by
projecting the data points into a higher-dimensional space, in

Support

Margins
Vectors

Hyperplane

Fig. 1 Schematic representation of support vector machine (SVM) clas-
sifications in two dimensions. The conceptually most important aspects of
SVMs are labeled (see the text for details)

which the points become linearly separable, corresponding to
a nonlinear separation in the observed data space. This makes
SVMs very flexible, and thus well-suited for very complex,
nonlinear classification problems.

We conducted SVMs with the “svm™ function from the
el071 package (Version 1.6-7; Dimitriadou, Hornik, Leisch,
Meyer, & Weingessel, 2005) for the open-source statistical
software R (R Development Core Team, 2012). Regarding
the specific settings of the function, we followed the recom-
mendations of the authors (Meyer, 2012). This means that we
used C-classification with the radial basis function kernel. The
C and y parameters were determined using a grid search over
all reasonable parameters, which was automatically done by
the “tune.svm™ function. The so-called soft-margin parameter
C determines the punishment for data points on the wrong side
of the hyperplane. This is important for cases in which no
hyperplane can be found that separates all cases of the classes.
Possible values for C ranged from 1 to 1,000, whereas possi-
ble values for v ranged from .0001 to 10. The ~ parameter
determines the flexibility of the SVM in fitting the data. We
constrained this parameter to be no larger than 10 to prevent
overfitting (Ben-Hur & Weston, 2010). For each subject, a
unique pair of C and y was obtained. The “svm” function
automatically normalizes the input data, which is important
to obtain a reasonable accuracy in the classification (Ben-Hur
& Weston, 2010).

Individual versus general models

An SVM model was estimated for each child individually,
using tenfold cross-validation. In this process, a model is
trained on 90 % of the data of a child in order to predict the
activities corresponding to the remaining 10 % of the data.
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This process is repeated ten times, so that each data point (i.e.,
frame of 2.5 s) is predicted from training once. The classifica-
tion accuracy, defined as the percentage of correctly classified
frames, is calculated for each model and averaged over the ten
repetitions. Additionally, the generalizability of the reference
data to different children was assessed with a leave-one-out
cross-validation. This means that, for each child, an SVM
model was trained with the combined data of all other chil-
dren. This model was then used to classify the activities of the
child whose data were left out in the training process. Again,
the percentage of correct classifications was used as a measure
of accuracy.

Comparison to ActiLife results

The classification accuracies that were obtained in the de-
scribed way were then compared to the classification accura-
cies of the standard procedure (i.e., translating the data into
counts and classifying them with the use of cut points). Counts
were calculated for 1-s intervals. The cut points we used were
the ones that are recommended by the manufacturer of the
ActiGraph devices (Butte et al., 2014; Evenson et al., 2008;
Freedson et al., 2005; Mattocks et al., 2007; Pulsford et al.,
2011; Puyau et al., 2002) and are readily available in the
ActiLife software. Existing cut points for children usually
classify activities as either “sedentary,” “light,” “moderate,”
or “vigorous” (Butte et al., 2014; Evenson et al., 2008;
Mattocks et al., 2007; Pulsford et al., 2011; Puyau et al,,
2002), and optionally with an additional “very vigorous” cat-
egory (Freedson et al., 2005).

For the reasons discussed in the introduction, it is difficult
to assign the activities used (walking slow, walking fast, run-
ning) to the different categories (light, moderate, vigorous) in
a definitive way (cf. Janssen et al., 2013). Most importantly,
whether slow walking should be considered light or moderate
PA cannot be definitively decided, because different studies
have found different MET values for this activity. To guaran-
tee a fair comparison, analyses that include a distinction be-
tween different (intensities of) PAs were conducted twice (i.e.,
once with slow walking considered as light PA, and once with
it considered as moderate PA).

Research describing the activities of subjects or relating the
amounts of activity to other variables usually describes PA in
terms of the time that is spent in MVPA. In line with this, the
WHO expresses recommendations about the amount of PA in
terms of time per day that should be spent in MVPA.
Accordingly, we first classified the data into time spent in
MVPA and inactive time (including sedentary behavior and
nonwear time), using the cut points that are provided by the
ActiLife software (i.e., Comparison 1). The accuracy of these
classifications was then compared to the accuracy of our ap-
proach based on using SVMs to classify raw data. This was
done twice. In one analysis, slow walking was considered
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moderate PA, and thus part of MVPA, and in another analysis
it was considered /ight PA, and thus not part of MVPA.

The measurement accuracy of ActiGraphs does also allow
for a classification of activities that is more detailed than just
the distinction between sedentary behavior and MVPA. For
the next comparison (2), the data were classified as either
sedentary behavior (or inactivity), light PA, moderate PA, or
vigorous PA. As before, slow walking was considered light PA
in one analysis and moderate PA in the other. This means that
in the second analysis, there was no light PA category. Since
these analyses were only concerned with the ability to distin-
guish between different activities, all nonactive categories
were considered as one.

Another advantage of the ActiGraph is its ability to distin-
guish between different postures, and thus between different
types of sedentary (or inactive) behavior. Specifically, the an-
gle of the device is calculated from the acceleration values on
the three axes. From this, the posture of the person wearing the
device is deduced. The ActiLife software is able to differenti-
ate between standing, sitting, lying down, and nonwear—that
is, times when the device is not worn. This feature is particu-
larly important for real-life research, because it allows for an
assessment of the times when an inactive device is not due to
an inactive subject, but rather to the device not being worn.
The next analysis (3) thus addressed the ability to discriminate
between the three inactive behaviors (i.e., standing, sitting,
and lying down) and nonwear time. Whether standing should
be seen as sedentary behavior is still up for debate. Since the
MET of standing quietly is slightly higher than that of sitting
or lying down (1.5 vs. 1.2-1.4; Ridley et al., 2008), it can be
argued that standing should not be considered sedentary, but
rather inactive behavior. However, since this distinction was
not reflected in the cut points used here, we considered stand-
ing as sedentary behavior.

For all intents and purposes, the analyses described can
give a good insight into the performance differences of the
two analysis techniques. Practically relevant distinctions are
covered, the main ones being the distinctions between differ-
ent (intensities of) activity and between nonactive behavior
and times that the device is not worn. For the sake of com-
pleteness, the abilities to distinguish between all categories
(lying down, sitting, standing, walking slowly, walking fast,
running, and nonwear) were finally compared between the
two analysis techniques (Comparison 4). It is important to
keep in mind that the SVMs can differentiate between nine
categories, since nonwear data were recorded in three different
ways, but in the classical approach using the angle of the
device, only one nonwear category can be identified. This
means that differentiation can only be done between a total
of seven categories.

For any performance differences found in the previous
analyses, one might argue that they are not due to a difference
in the analysis techniques, or to the fact that transferring raw
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data into counts reduces the amount of available information,
but rather to the fact that the same cut points are used for the
whole sample, whereas each subject has a distinct SVM mod-
el. If this was the reason for performance differences, they
could be eliminated by calculating a separate SVM for each
subject, but using counts instead of the raw data. This is what
we did in the last analysis. Since counts can only be used to
differentiate between activities and not between postures, only
the three active categories were considered in this analysis.
For better results, the classification was done with the counts
from the x-axis, from all three axes, and from vector magni-
tudes, respectively. Any remaining performance differences in
this comparison would strongly indicate the usefulness of
using raw data instead of counts.

Results
Classification with raw data and SVMs

The classification of physical activities achieved high accura-
cy. Table 1 displays the activities predicted by the individual
models against the actual activities. The table shows the sums
of all classifications of all 70 children. With individual models
for each child, the data could be classified into nine categories
with an average accuracy of 96.9 %; with the general models,
the data of each child could be classified into nine categories
with an average accuracy of 87.5 % (see Table 2).

It can be seen that even misclassified activities usually re-
semble the actual activity. Most misclassifications happened
between slow and fast walking. Almost never did the predict-
ed activity deviate strongly from the actual activity. For exam-
ple, lying down and sitting were only very rarely classified as
walking or running. Since there were virtually no misclassifi-
cations of the nonwear time, collapsing all three nonwear time
categories into one did not have a noticeable influence on
these results.

Table 1

Comparison to ActiLife classifications

The proposed method for classifying physical activity pro-
posed in this article was compared to the traditional approach
(i.e., converting the raw data into counts and classifying them
with predefined cut points). As we explained before, this com-
parison should not be done in one step. To achieve a fair and
thorough comparison, several steps, as detailed in the Method
section, are necessary.

It can be seen in Table 2 that the proposed method outper-
forms the traditional one on all comparisons. The difference in
accuracy was largest when the data were classified into all
available categories (4). Our achieved classification accuracy
of 96.9 % was much higher than the accuracies of approxi-
mately 57 % to 62 % that result from classifications with the
traditional approach. From Comparisons 2 and 3, we can see
that this discrepancy was due to two reasons. First, our ap-
proach was able to differentiate between activities with an
accuracy of 95.9 %, and thus was better at distinguishing
activities than were counts and cut points (2). This was true
regardless of whether slow walking was considered light PA
(accuracy around 80 % to 84 %) or moderate PA (accuracy
around 87 % to 91 %). Second, our approach could distin-
guish active behavior, inactive behavior, and nonwear time
(3) with an accuracy of 96.3 %. Thus, it was better able to tell
inactive behavior from nonwear time than were inferences
drawn from the inclination of the device (accuracy around
82 % to 83 %). Since all active behaviors were treated as
one, this difference was not due to differences in the abilities
to tell apart activities. Rather, it was either due to differing
abilities to tell inactive behavior from nonwear time, or dif-
fering abilities to generally distinguish activity from
nonactivity. From Comparison 1, we can see that the general
abilities to distinguish activity from nonactivity did not differ
greatly between the two techniques. This means that the dif-
ferences in Comparison 3 were due to differences in the abil-
ity to tell inactive behavior from nonwear time, which is a

Predicted and actual activities, summed over all 70 subjects: Predictions by support vector machines, based on raw data

True Activities

Sit Stand Lie Walk Fast walk Run Nonwear 1 Nonwear 2 Nonwear 3

Predicted activities Sit 2274 6 0 1 0 0 0

Stand 35 2,299 0 14 0 0 0

Lie 1 0 2,304 0 0 0 0 0 0

Walk 0 4 0 2,256 138 10 0 0 0

Fast walk 0 1 0 38 2,159 18 0 0 0

Run 0 0 0 1 11 2,062 0 0 0

Nonwear 1 0 0 2 0 0 0 2,520 0 0

Nonwear 2 0 0 4 0 0 0 0 2,520 0

Nonwear 3 0 0 0 0 0 0 0 0 2,520
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Table 2 Accuracies of activity predictions by raw data and SVMs and by counts and cut points

Raw Data and SVMs Count and Cut-Point Data From

Individual General Freedson Puyau Mattocks Evenson Pulsford Butte  Butte (Vector
Models Models (x-Axis) Magnitude)

(4) All categories Slow walk as light PA 96.9 87.5 59.1 56.9  60.0 61.6 61.4 61.4 61.9
Slow walk as moderate PA 67.9 645 68.0 67.9 67.6 67.0 68.9
(1) PA vs. inactivity 98.3 96.2 959 96.1 96.1 96.1 94.5 96.2
(2) Different activities Slow walk as light PA 95.9 81.4 79.7 823 83.9 83.6 83.0 84.2
and inactivity Slow walk as moderate PA 90.2 873 903 90.1 898 886 912
(3) PA vs. nonwear 96.3 83.4 83.1 833 83.3 83.3 81.8 83.4

vs. sedentary

All numbers are the percentages of correctly classified frames.

very important distinction when real-life accelerometer data
are to be analyzed.

Table 3 shows the accuracies of classifying counts with
SVMs, as compared to the accuracies of classifying counts
with cut points and classifying raw data with SVMs. It has
to be kept in mind that this classification only contains a dis-
tinction between the three activities (i.e., slow walking, fast
walking, and running). It can be seen that SVMs were able to
classify counts more accurately than almost all cut points. At
the same time, all classifications based on counts were much
less accurate than the ones based on raw data. Interestingly,
classifications based only on the counts from the x-axis were
less accurate than both the classifications based on all three
axes and the classifications based on vector magnitudes.

Discussion

Overall, the results demonstrate that SVMs can classify raw
accelerometer data with great precision. More importantly, our
new approach of using group assessment for reference data
was time-efficient, and thus avoided a major obstacle for ap-
plying reference measurements in large-scale research. The
accuracy with which activities could be classified was com-
parable to, or even higher than, that reported in similar studies
using various classification techniques (e.g., 84 % in Bao &
Intille, 2004; 89 % in Ermes, Piarkka, Mantyjarvi, &
Korhonen, 2008; 96.8 % in Foerster & Fahrenberg, 2000;
73 %-91 % in Hagenbuchner et al., 2015; 70 %—80 % in
Pober et al., 2006; >99 % in Ravi et al., 2005; 98.7 % in
Zhang et al., 2012). These numbers are meant to give a rough
impression of the results of other studies. However, due to
methodological differences between the studies, accuracy
values should be compared with care. Studies differ in various
aspects. For example, in some studies each subject wore mul-
tiple devices (e.g., Bao & Intille, 2004; Ermes et al., 2008),
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which is an advantage in terms of classification accuracy, but a
disadvantage if a method is to be used in real-life research.
Other sources of diversity include the performance of a wide
range of different activities; different settings in which the
measurements were done (e.g., laboratory vs. free-range), du-
rations of the measurements, and numbers of subjects; and the
use of many different methods for classification. A good and
detailed review was done by Preece and colleagues (2009).

One of the assumptions that underlies all of these studies is
that there are better ways to analyze accelerometer data than
with the use of counts and cut points. Accordingly, as we
mentioned, it has been recommended to use the raw acceler-
ation data (e.g., Corder et al., 2008; Freedson et al., 2012;
Freedson et al., 2005; John & Freedson, 2012). However, to
the best of our knowledge, until now no study has directly
compared the accuracies of classifications based on counts
and raw data with the same dataset." The present research
contributes to this question by providing empirical evidence
for the superiority of raw data over counts.

The results indicated that it is possible to collect reference
data from many subjects at the same time. Although we only
measured an average of about 12 children at a time, more than
22 children were present during the reference measurements,
on average. If more of them had agreed to participate in our
study, we could have gathered even more reference data with-
out needing additional time. Furthermore, if reference mea-
surements in groups can be done with children, it should also
be possible with adults, since they tend to comply much better
with instructions.

! Pober et al. (2006) did compare the use of cut points to more advanced
methods. However, they used counts, and not raw data, for all analyses.
Furthermore, for the analyses with cut points, they only reported an esti-
mate of the overall time that a subject had spent at a certain activity level.
As they stated themselves (see p. 163 1), this means that different activities
might consistently be confused with each other, making it hard to assess
the actual accuracy of the classification.
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Table 3  Accuracies of activity predictions by raw data and SVMs, counts and SVMS, and counts and cut points

Counts and SVMs Counts and Cut-Point Data From
Raw Data x-Axis x-,y-, Vector Freedson Puyau Mattocks Evenson Pulsford Butte Butte (Vector
and SVMs and Magnitude (x-Axis) Magnitude)
z-Axis
Three activities Slow walk as  92.7 709 790 712 52.8 463 558 61.2 60.4 63.8 62.0
light PA
Slow walk as 79.2 32.0 343 553 55.2 54.3 61.5

moderate PA

All numbers are the percentages of correctly classified frames.

In addition to being as accurate as other techniques that
have used reference measurements, our approach was more
accurate than the traditional approach of converting data to
counts and classifying them with predefined cut points.
Interestingly, these differences in performance were bigger
when the data were classified into many as opposed to a few
categories. When one only wants to tell any activity from
nonactivity, it does not really matter which technique is used.
However, if one wants to achieve a distinction between many
different categories, the disadvantages of counts and cut points
become more and more pronounced. In other words, if one
wants to make full use of the advantages of greatly accurate
devices, the use of counts is arguably not appropriate. Today,
techniques such as the one presented here are able to utilize
the full complexity and precision of modern accelerometer
devices.

Some additional details can be inferred from the results. We
can see that the movement patterns of children do indeed
differ, which is reflected in the fact that the individual models
classified activity more accurately than the general models.
However, even the general models did a rather satisfactory
job. For many applications, the general model is probably
accurate enough to be used for classification for subjects that
are not present during the reference measures. This makes our
approach of measuring many subjects at the same time even
more practical for use in larger studies with children, even
when their ages show a considerable range. As long as chil-
dren attend school, they can be measured in large groups at the
same time. Also, even children who miss the reference mea-
surements can still participate in a study, due to the reasonable
generalizability of the patterns found in the data. These find-
ings make the method employed here very well-suited for
large-scale field research.

From Table 1, it can be seen that even misclassified activ-
ities are usually still in the right category (i.e., sedentary be-
havior, PA, or nonwear). For instance, fast walking is some-
times classified as running, whereas the classification of, for
instance, lying down as running is scarce. Also, nonwear time
was classified correctly in virtually all cases. On those rare
occasions when nonwear was not detected, it was classified

as lying down, which is indeed the closest category to not
wearing the device. These more detailed considerations fur-
ther emphasize the usefulness of the chosen approach. To the
best of our knowledge, the approach of collecting data that
represent nonwear time and including these data in the analy-
ses is new. The fact that nonwear time was correctly classified
with great accuracy makes this approach promising for field
studies, in which it is important to correctly identify periods in
which a device was not worn.

The use of raw data also leads to much better detection of
nonwear time than does the use of inclination for deducing
posture. The latter method often leads to confusion between
standing and nonwear time, as well as between sitting and
lying down (see Table 4). The mix-up of standing and
nonwear time can be explained by the fact that in one of the
recorded nonwear time categories, the device was placed on a
table “upright,” thus resembling the position the device would
be in when someone who wore it at the waist was standing
upright. Although this distinction was mostly lost when only
the inclination was considered, the use of raw data made it
possible to distinguish between those two perfectly. This is
probably due to the fact that the raw data still contain infor-
mation about slight movements that helps distinguish between
a standing person and a not-worn device. An algorithm that
only relies on the inclination does not have a way to detect
such subtleties in the data. Accordingly, it is less suited for use
in real-life research.

In real-life research, information about nonwear time is
usually processed further (cf. Choi, Liu, Matthews, &
Buchowski, 2011). A period of time is only considered
nonwear time if the device is not moved for a certain period
oftime (e.g., 1 h), allowing for only very short interruptions of
this lack of motion. This is done to separate nonwear time
from times when a subject is just lying or sitting very still.
In doing so, the accuracy of detecting nonwear time is in-
creased. For reference measurements this cannot be done, be-
cause only a few minutes of data are available, so all available
postprocessing techniques do not apply. This means that it
could be argued that our comparison is not completely fair,
because it does not take the complete calculation process of
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Table 4 Predicted and actual intensities of activities, summed over all 70 subjects: Predictions by inclination with cut points, based on count data

True Activities

Sit Stand Lie Walk Fast walk Run Nonwear

Predicted activities Sit 3,230 2,125 0 178 38 10 369

Stand 2,709 2,986 0 108 11 66 0

Lie 209 80 4317 512 210 165 387

Walk 135 75 0 2,554 2,596 520 0

Fast walk 74 18 1 1,127 3,244 1,416 0

Run 11 19 0 28 754 4,515 0

Nonwear 0 6,090 2 93 236 71 12,340

Cut points are taken from Butte et al. (2014), since they yielded the highest accuracy of all discussed sets of cut points.

nonwear time into account. However, we argue that all
postprocessing can just as well be done with the information
that is obtained by our suggested method. The only difference
is the accuracy of the information that stands at the beginning
of this process. Arguably, feeding more accurate information
into a process will lead to more accurate results.

Comparison 2 gives further insight into possible sources of
performance differences between the two methods. First, the
classification accuracy rose from around 80 % to 90 % when
slow walking was considered moderate instead of light PA.
This shows that, for a considerable part, inaccuracies in the
classification stem from the uncertainty of how to interpret
slow walking. The ambiguity of this interpretation also be-
comes clear from Table 3. The cut points by Freedson et al.
(2005), Puyau et al. (2002), and Mattocks et al. (2007) all led
to a classification accuracy of around 50 % when slow walk-
ing was considered light PA. However, when it was consid-
ered moderate PA, the accuracy of the Freedson et al. (2005)
cut points rose to almost 80 %, whereas the accuracy of the
Puyau et al. (2002) and Mattocks et al. (2007) cut points fell to
almost 30 %. This shows the differing underlying interpreta-
tions of slow walking when the cut points were calculated and
emphasizes the huge impact that the choice for a certain set of
cut points can have on the interpretation of accelerometer data.
Our approach does not have the same problem, since slow
walking will always be recognized as slow walking. Second,
when interpreting slow walking as moderate PA, the accura-
cies of the classifications with cut points come close to the
accuracy of the SVM. This shows that cut points are much less
problematic when it comes to distinguishing between moder-
ate and vigorous PA.

For most comparisons we have discussed, it could be ar-
gued that performance differences were due to the fact that our
approach uses an individual model for each subject, whereas
cut points are the same for all subjects. Behind the tackled
question of whether it is better to use SVMs to classify raw
data or cut points to classify counts lic two more basic ques-
tions. First, is it important to use an individual model for each
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subject, rather than general cut points? Second, is it generally
better to use raw data rather than counts? Two results relate to
these questions. First, the general SVM models that were
trained on the data of all children but one and were used to
predict the activities of the remaining child could still classify
the activities with an accuracy of almost 90 %, and were thus
much more accurate than the use of cut points. This shows
that, whereas individual models were always more accurate,
the use of one and the same model for all subjects can still lead
to satisfactory results. Second, as Table 3 shows, the individ-
ual SVM models using counts to differentiate between activ-
ities reached an accuracy between those of the other two ap-
proaches. This shows that with individual models, the use of
counts can yield higher accuracies than their classification
with cut points would suggest. However, the accuracies were
still much lower than those obtained by using raw data. This
shows that the transformation of raw data into counts elimi-
nates meaningful information that can help to correctly clas-
sify accelerometer data. Using the counts of only the x-axis led
to the least accurate results (cf. Howe, Staudenmayer, &
Freedson, 2009). Interestingly, this is exactly the information
that the great majority of cut points rely on. In sum, we can
infer that the performance differences we have found are not
only due to the fact that we used an individual model for each
child, but also to the fact that we used raw data rather than
counts.

It should be kept in mind that, on their own, the results
presented here are somewhat limited by the fact that all data
were gathered in the same setting (i.e., a physical education
lesson at school). It would be useful to further validate the
described method in a different study. This can be done in
different ways. Data could be gathered in a range of settings
(e.g., laboratory, school, home). The accuracy of the classifi-
cations could then be assessed by comparing them to either a
carefully made protocol by the subjects or, given the problems
with self-report measures of activity (e.g., Baumeister, Vohs,
& Funder, 2009; Ebner-Priemer et al., 2006), a protocol by a
researcher who is present in these settings. Although such a



Behav Res (2017) 49:685-697

695

study could give strong proof for the accuracy of the proposed
method, it would require a very high time investment and/or
very compliant subjects. Another, more straightforward way
to validate the proposed method would be to assess its face
validity when applied to real-life data. Although this does not
allow for a precise assessment of its accuracy, it does provide
information on its usability. In line with this, we were already
able to successfully apply the described method to the real-life
data collected in the FLUX study (see Kiihnhausen,
Leonhardt, Dirk, & Schmiedek, 2013), indicating that it does
indeed generalize to, and is useable in, real-life research.

In conclusion, we have shown that researchers should seri-
ously consider conducting reference measurements prior to an
actual study. They are a requirement for obtaining individual
models that allow for a much more accurate recognition of
physical activities than existing general cut points do.
Furthermore, reference measurements enable researchers to
work independently from counts, which have proven to be
inferior to raw data when it comes to differentiating between
activities. Most importantly, we have shown that the high
costs that have been associated with reference measurements
so far do not have to be a reason not to conduct them.
Reference measurements can be done in groups with relative-
ly little effort, while still allowing for very accurate classifica-
tions of accelerometer data.
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