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Abstract The movements that we make with our body vary
continuously along multiple dimensions. However, many of
the tools and techniques presently used for coding and analyz-
ing hand gestures and other bodymovements yield categorical
outcome variables. Focusing on categorical variables as the
primary quantitative outcomes may mislead researchers or
distort conclusions. Moreover, categorical systems may fail
to capture the richness present in movement. Variations in
body movement may be informative in multiple dimensions.
For example, a single hand gesture has a unique size, height of
production, trajectory, speed, and handshape. Slight variations
in any of these features may alter how both the speaker and the
listener are affected by gesture. In this paper, we describe a
newmethod for measuring and visualizing the physical trajec-
tory of movement using video. This method is generally ac-
cessible, requiring only video data and freely available com-
puter software. This method allows researchers to examine
features of hand gestures, body movement, and other motion,
including size, height, curvature, and speed. We offer a de-
tailed account of how to implement this approach, and we also
offer some guidelines for situations where this approach may
be fruitful in revealing how the body expresses information.
Finally, we provide data from a small study on how speakers
alter their hand gestures in response to different characteristics
of a stimulus to demonstrate the utility of analyzing continu-
ous dimensions of motion. By creating shared methods, we

hope to facilitate communication between researchers from
varying methodological traditions.
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Continuous analysis

The human body affords a multitude of movements, andmany
of these convey meaning or information. For example, people
gesture when they talk, nod their head when they agree and
shake their head when they do not, sit up straight when they
are attentive, and bounce their leg when they are bored or
nervous. Although it is often the presence of a particular be-
havior that is of interest, movements can vary in a continuous
fashion in ways that might also be informative. Hand gestures
may be raised higher when the information is new to the
listener (Hilliard & Cook, 2015), a nod may be larger when
the listener vehemently agrees with something, and leg bounc-
ing may become slower as the speaker becomes less anxious.
Movements of the body are of interest to researchers across
psychology, linguistics, anthropology, dance, communication,
and other fields. Despite this robust interest in the movements
of the human body, many systems that code or measure move-
ment group movements into categories and thus may not cap-
ture the richness present in movements. For example, gesture
researchers have focused on categorical coding systems with-
out developing ways of measuring continuous variation, even
though theoretical approaches in gesture research have em-
phasized the potential of gesture for analog and iconic repre-
sentation that would depend on continuous variation
(Hostetter & Alibali, 2008; McNeill, 1992; De Ruiter, 2000).
Here, we motivate and describe a method for coding body
movements from video that is applicable to coding a wide
range of movements along continuous dimensions, and we
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illustrate the utility of this approach for gesture research in a
small experiment.

The need for capturing movement continuously

Speech-accompanying gestures as one example for body
movement

Hand gestures are extremely prevalent during language pro-
duction. When people speak, they also gesture with their
hands. Hand gestures are typically produced rhythmically
along with the speech that they accompany and they are relat-
ed in meaning to the accompanying speech (Kendon, 2004;
McNeill, 1992). Gestures are produced in precise temporal
coordination with speech, with the stroke of the gesture typi-
cally slightly preceding and overlapping the word or phrase
that it represents or emphasizes (McNeill, 1992a, b). Speech
and gesture can be considered an integrated system for com-
munication, from both a speaker and a listener perspective
(Kelly, Ozyürek, & Maris, 2010; Kendon, 2004; McNeill,
1992).

Despite the tight coupling of gesture with speech, the way
that spontaneous gesture communicates information via hand
movements is different from spoken language. While spoken
language largely encodes a message sequentially, with a series
of phonemes leading to words produced over time, gesture
can express multiple aspects of a message simultaneously.
For example, consider the case of a speaker describing a child
going down a slide. In speech, this might manifest as a series
of discrete segments ordered in a syntactically meaningful
way: BThe child went down the slide.^ The accompanying
gesture could be one finger moving downward in a spiral
motion to depict the child sliding down a tornado slide. This
gesture illustrates the message in a single fluid form produced
in conjunction with multiple words from the spoken message.
Although the position of the hands varies with time, other
features do not. Instead, the gesture simultaneously depicts
multiple features of the intended message. The motion of the
hand over time represents a single downward trajectory. The
shape of the finger may encode some information about the
child’s body position when sliding. Moreover, the gesture ex-
presses information that was not contained in the concurrent
speech; that is, that the slide the child used was spiral rather
than straight down and perhaps even the speed at which the
child moved down the spiral. All of this information is simul-
taneously contained in a single movement of the hand.

Importantly, slight variation in any of the dimensions
would likely alter the meaning expressed in gesture (Beattie
& Shovelton, 1999). If the finger had been slightly bent, this
might depict that the child was sitting rather than lying down.
Similarly, changing the steepness of the downward slope or
the degree to which the gesture is spiraled could lead to

different interpretations of the event and the nature of the
movement. It is known that observers are sensitive to subtle
variations in movement. For example, the weight of a box
lifted by another person can be perceived via the visual motion
information (Runeson & Frykholm, 1983), the expertise level
of musicians can be detected from their body movements
(Rodger, Craig, & O’Modhrain, 2012), and numerical infor-
mation in the environment is expressed in the scaling of one’s
grip to objects during reaching movements (Chiou, Wu,
Tzeng, Hung, & Chang, 2012).

Although research on movement dynamics has typically
used motion-tracking systems to obtain detailed information,
researchers in other traditions have often not had access to
such systems, or have been unable to implement them due to
the nature of the research questions. For example, current
measurement techniques in gesture research typically capture
continuous variation in gesture form in a categorical fashion.
In the field of hand gesture, conventions from sign language
research have informed the methods used to capture move-
ment properties, leading to categorical coding. Sign language
signs are often annotated using Stokoe, Casterline, and
Croneberg's (1976) system. In this system, three features of
the hand are annotated: handshape, location, and motion.
There is also a fourth, later-added feature, orientation, that is
less frequently analyzed in gesture research. Gesture coding
techniques typically assign gestures to categories on the basis
of these dimensions; each gesture is coded as having a partic-
ular motion, orientation, handshape, and location, as well as
other categorically coded aspects like handedness. Each ges-
ture is typically assigned to one category for each dimension
(e.g., for handedness: right, left, both; for motion: lateral, ver-
tical, etc.). For example, in the McNeillian system, gesture
phases are identified, and then each phase is coded by follow-
ing a strict descriptive system of these phases (e.g., Kita, Van
Gijn, & Van der Hulst, 1998). This provides a description of
the gesture form; from the annotation for each gesture, the
form of the original gesture can be approximated and recreat-
ed. This technique has been very useful for describing gesture
in a variety of research approaches, including in qualitative
analyses (e.g., Cardona, 2008) and in explorative situations
(e.g., Alibali, Evans, Hostetter, Ryan, & Mainela-Arnold,
2009). This system along with a typology of gesture
(McNeill, 1992) has been used to document wide variation
in gesture production across speakers, topics, and contexts.

Other research traditions examining human movement
have also developed coding schemes that are categorical.
The Bernese system (Frey, Hirsbrunner, Florin, Daw, &
Crawford, 1983), for example, describes the positioning of
the limbs along three Cartesian axes over time and thus details
nearly every potential degree of freedom in movement.
Similarly, Laban Movement Analysis describes movements
according to categories encoding dimensions of body, move-
ment, shape, and space (Zhao & Badler, 2001). The Body
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Action and Posture Coding System (BAP) is also executed
similarly, but captures and categorizes the function of move-
ments along with the articulator used and form of movement
produced (Dael, Mortillaro, & Scherer, 2012). These annota-
tion systems allow for visualization, reconstruction, and inter-
pretation of the annotated movements. These systems and the
gesture measurement techniques described above provide
multiple pieces of information about each movement and do
so by describing movements according to categorical features.

Continuous coding schemes should be applied
to continuous dimensions of movement

Of course, the way we transcribe our data necessarily and
implicitly reflects our interests and hypotheses and constrains
the inferences that can be made (Ochs, 1979). Despite the
utility of the aforementioned coding schemes, they fall short
when they are applied to the properties of the movement them-
selves. Describing motion features categorically does not al-
low one to capture continuous variation potentially available
within all the aforementioned dimensions. Motion can clearly
vary within a category; for example, describing a movement
as Blateral^ says nothing about the directionality, the distance
traveled, or the degree of angle from horizontal. Even hand-
edness, which is seemingly necessarily categorical, can vary
continuously; production of a large movement with the dom-
inant hand can be accompanied by small but similar move-
ments on the opposing hand. Thus, across coding systems,
many movements that have identical annotations in all cate-
gories will have been variable in form in their original
production.

Indeed, evenmeasurement techniques that explicitly intend
to capture continuous dimensions of hand movements are of-
ten fundamentally categorical, perhaps in part because of the
tradition and familiarity of categorical coding systems. For
example, McNeill (1992, pp. 86–89) described a method for
capturing the position of hand gestures in gesture space in
which the gesture space is divided into several discrete seg-
ments, and gestures are categorized as falling into a particular
segment (e.g., Kuhlen, Galati, & Brennan, 2012), some of
which are considered central and some peripheral. Similarly,
Goldin-Meadow, Mylander, and Franklin (2007) describe a
handshape coding system in which the distance between the
thumb and the fingers is categorized as touching, small, me-
dium, or large. However, given the great deal of individual
differences in the natural gesture space in which each person
gestures (Priesters &Mittelberg, 2013) and the potential of the
thumb and fingers to assume any one of an infinite number of
distances, analyzing across these sort of categories necessarily
disregards potential richness and variability in the shape and
form of gestures.

Thus, despite a theoretical emphasis in the field of gesture
studies on analog and continuous aspects of the hands, the

ability to investigate continuous movement properties of ges-
ture has been limited by the lack of measurement techniques
that can do so. Rather than treating body movements – and
their movement properties – as though their production is
categorical, quantitative analysis can enable us to consider
continuous variation in these movements.

Using non-continuous coding necessitates categorical
analysis

Aside from the theoretical implications of coding continuous
variation in body movement categorically, using categorical
coding systems also constrains the type of analyses that can be
conducted effectively. Although it is common practice to
transform categorical data into continuous variables for anal-
ysis, this can introduce spurious results and decrease power
(Jaeger, 2008). It is better practice to use statistical models that
capture the underlying structure of the data, either categorical
or continuous. Continuous data has some advantages for anal-
ysis. Statistical methods for continuous data are well devel-
oped and take advantage of the finer detail and greater infor-
mation inherent in continuous measurement, allowing for
stronger inferences with fewer data points (Zhao & Kolonel,
1992). Given that coding movement is often time-intensive, it
seems prudent to attempt to maximize the information gained
for analysis.

Continuous coding is not conducted due to constraints
in measurement techniques

Why do we continue to analyze continuous properties of
movement categorically? One of the greatest difficulties with
capturing continuous information in body movement is the
laborious nature of doing so. In the field of gesture studies,
one of the first analyses capturing motion was conducted by
Efron (1972). In his seminal examination of cultural differ-
ences in gesture production, Efron detailed the motion and
size of gestures produced by individuals from four different
ethnic groups using a series of still images and some motion
pictures. To document his findings, an artist produced elabo-
rate drawings of the hands with small dots detailing the tra-
jectory of each hand. Despite being incredibly thorough, this
intensive style of coding is likely too laborious and time-
consuming for contemporary analysis of gesture.

Quantitative descriptions can now be acquired more
readily with motion-tracking technology (Priesters,
2013). This has obvious advantages: it captures a com-
prehensive record of movement over time, is does not
require extensive coding after collection, and can have a
high level of precision. However, motion tracking often
requires that participants wear sensors on their append-
ages to track all movement produced and this may very
likely clue participants in to the goals of the study,
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which is often not acceptable in gesture research and
cannot be done when researchers are interested in ex-
amining live performances or other actions in context.
Newer motion-tracking systems make the use of sensors
unnecessary by using multiple cameras that integrate
videos to create a three-dimensional motion signal.
This can be extremely useful in laboratory environ-
ments. However, these systems may be of less utility
in naturalistic situations outside of the laboratory; the
logistics of setting up a motion-tracking system outside
of the laboratory (e.g., in a classroom) are complicated
and may have issues capturing the movement of multi-
ple people at various locations and orientations within a
space. Additionally, motion tracking can obviously not
be used post-hoc: if data have already been collected,
motion-tracking systems are of little use. Finally,
motion-tracking systems are often expensive and gener-
ate extremely dense data sets that further complicate
analysis. Thus, even if researchers are interested in cap-
turing continuous aspects of movement with automated
systems, there are considerable barriers to doing so.

In order to facilitate continuous coding of movement,
an accessible and simple method to do so is required. In
the rest of this paper, we describe a method that we
believe satisfies this need by allowing the researcher
to capture a motion signal of a multitude of articulators
– or parts of the body that can produce movements -
using technology and software that is readily available.
Although there are a variety of steps in our process, it
is relatively quick and efficient. Advances in image pro-
cessing will likely streamline the process even further.

Measuring body movement continuously: A new
approach

We have developed an approach that quantifies body
movement trajectories in a low-cost but fine-grained
fashion. Our measurement technique provides a two-
dimensional motion signal of each movement of inter-
est, captured frame-by-frame. When this method is ap-
plied to gesture production data, the position of each
hand in each frame of video is annotated by simply
clicking on a stable point of the hand in each image
and recording the screen position of the click. This out-
puts an x-y coordinate for each articulator: the position-
ing of the articulator in each frame. Thus, this signal
provides information about changes occurring within
each individual gesture over time. From this signal,
size, position relative to the body, speed, curvature,
and trajectory can be analyzed, both within and across
different categories of movements. Categories like
handshape can be processed in a similar way, depending

on the dimensions of interest, and combined with the
continuous motion information to provide a multi-
dimensional record of the hand configuration and posi-
tion over time. Thus, our approach builds on and ex-
tends prior work using categorical coding schemes. By
adding continuous measures, we can explore character-
istics of gestures and other body movements in greater
detail.

In order for this approach to be used, a video record-
ing of the movement of interest is needed, something
that is already a necessity for studying body movement.
It is preferable for videos to have a relatively stable
camera position across all videos considered in an anal-
ysis, since the quantitative output is coordinate points
on a computer screen. If the camera angle varies, this
introduces variability into the motion signal across cam-
era positions, which may be a problem depending on
the question of interest. Although it is possible to cor-
rect for deviations in camera position by transforming
the data points to a normed space for all participants or
by including reference objects in the video image, this
requires additional steps and is likely to introduce addi-
tional noise into the data.

Annotation of body movement trajectories over time
is a multistep process that requires that the movements
of interest be identified and the positioning and/or shape
of the articulator(s) annotated on each frame of video.
The process we use to carry this out is described in
detail below, although of course this approach can be
implemented in a variety of ways.

The measurement process

Identifying gesture timing information Although one
could annotate an entire stream of video and identify
movements of interest strictly from their motoric prop-
erties, it is often desirable to first identify when move-
ments of interest occur in the video data according to
predetermined criteria. This will considerably reduce the
amount of information to be annotated – especially
since researchers in many fields already have well-
established criteria for identifying behaviors of interest.
For our coding of gesture production data, we first iden-
tify gestures using ELAN (EUDICO Linguistic
Annotator) video annotation software (Wittenburg,
Brugman, Russel, Klassmann, & Sloetjes, 2006) and
we then use the timing information from ELAN to ex-
tract video frames from only the gestures of interest for
subsequent coding (Fig. 1, Step 1). After the move-
ments of interest have been identified and categorized,
these movements are further processed so that the con-
tinuous trajectory information can be coded efficiently.
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Exporting videos as series of images These annotated
movements are processed into images for analysis. To
reduce the amount of information and save time, we
have found it helpful to down-sample the video when
we process it into a set of images (Fig. 1, Step 2). We
have been sampling videos at the rate of ten frames per
second, although alternative sampling rates may be de-
sired depending on the level of detail appropriate to
one’s hypothesis. Thus our process identifies movements
of interest in the original video and then each individual
movement is transformed into a series of still images.
This information can be quickly obtained from the im-
ages using any program that presents the images as
stimuli and gathers mouse or keyboard responses, auto-
matically saving the coded data. For example, to capture
trajectory, the x and y coordinates of a mouse click are
recorded for each image, yielding information about
how each hand is moving over time (Fig. 1, Step 3).
Of course, multiple articulators (e.g., hand and head)
can be annotated for each movement for later compari-
son and analysis.

Codingmovement trajectory The result of this process is
a series of data points detailing how each articulator

moves in two-dimensional image space during each in-
dividual movement along with any categorical informa-
tion also annotated for each frame (Fig. 2). Prior to
analysis, it is often useful to invert the y-coordinates;
on computer monitors, the origin point is typically in
the top left corner, and thus lower coordinates actually
denote higher positioning on the screen. This can be
corrected by simply subtracting the raw y-coordinates
from the overall height of the monitor in pixels. It is
also possible to account for variation in participant
height by choosing norming points on each body and
transforming all the coordinates collected into a com-
mon space.

Analyzing multiple articulators

It is often the case that multiple parts of the body move
simultaneously. With this measurement method, the mo-
tion signals from multiple articulators can be easily in-
tegrated and compared. One obvious example is the
temporal coordination of hand gesture and speech.
Using ELAN (Wittenburg et al., 2006), one can inte-
grate information obtained via this technique with anal-
ysis of speech from Praat (Boersma & Weenink, 2015),

: Gesture timing

information identified.

: Videos exported

as a series of still images 

from timing information.

: Gesture trajectory 

coded by selecting hand

position on each image.

Fig. 1 Schematic depiction of the coding method
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allowing one to capture synchrony at the level of the
frame. By making multiple passes through the images,
researchers can easily investigate multiple articulators.

With multiple passes through the data, this method
could also be readily extended to capture handshape.
Although handshape has typically been coded according
to categories derived from American Sign Language
(ASL; following Stokoe et al., 1976), it is not clear that
gesture handshapes are perceived categorically. In fact,
it is even possible that continuous dimensions may un-
derlie handshape perception in ASL (Stungis, 1981). By
annotating the position of multiple joints or points on
the hand, researchers can capture the shape and size of
the hand in a more continuous fashion, allowing inves-
tigation of the possibility of continuous coding of infor-
mation in handshape, as well as the possibility of
change in handshapes within a single gesture.

Incorporating categorical data during movement
measurement

As alluded to earlier, categorical information will often
also be of interest along with continuous data.
Conveniently, traditional categorical coding can also be
applied with this technique, by coding each frame cate-
gorically rather than continuously. This can be done
efficiently by recording a keystroke for each frame rath-
er than a mouse click. The advantage of this method of
collection is that categorical information can now be
considered in conjunction with time and with other con-
tinuous measures like trajectory. For example, propor-
tions of time that the hand is in a particular category

can be analyzed for a single gesture (i.e., a movement
might be 60 % C handshape and 40 % V handshape).

Below we provide examples of some dimensions of
movement that our method can capture. To generate
these examples, we conducted a small study using stim-
uli predicted to elicit a variety of specific form-based
alterations in gesture production.

Capturing continuous variation in gesture form: An
example

As mentioned earlier, hand gesture is particularly well
suited to communicate multiple properties simultaneous-
ly. To date, many of the studies examining how gesture
communicates this type of information have focused on
single properties of gesture. However, it is very likely
that multiple properties of a gesture are expressing rel-
evant information simultaneously (Senghas, Kita &
Özyürek, 2004). Returning to our earlier example of
the child going down the slide, the spiraling gesture
communicated multiple features of the event. To dem-
onstrate the functionality of our coding system, we ex-
amined how speakers modulate multiple components of
their gesture production when describing the movement
of a stimulus. Our study followed Shintel, Nusbaum,
and Okrent, (2006), who examined the use of analog
representation in the vocal channel. In their study, par-
ticipants spoke about a dot moving to the left or right at
varying speeds, saying, BIt’s going right,^ or BIt’s going
left.^ The speed of the dot was irrelevant to the partic-
ipants’ task; nonetheless, Shintel et al. (2006) found that
participants encoded speed, speaking more quickly for
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Fig. 2 A plot showing the spiraling trajectory of a gesture accompanying the sentence BThe child slid down the slide^
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dots that moved more quickly. Moreover, listeners were
sensitive to this information.

Our study asked whether participants similarly
encoded speed information reliably in gesture. We also
asked whether participants spontaneously encoded addi-
tional irrelevant information in gesture, specifically the
location of the dot in space, given prior work suggest-
ing that gesture is effective for communicating spatial
information. Although it has been posited that gesture
reflects the properties of the object or action that it
represents (Hostetter & Alibali, 2008; McNeill, 1992,
to date there are no empirical studies that we know of
that have directly investigated this issue for these
dimensions.

Methods

Four right-handed student participants at the University
of Iowa viewed 24 short videos of a dot moving left or
right on the computer screen, and their task was to
describe which way the dot moved (left or right) in a
full sentence. Participants were asked to gesture on each
trial. They could not begin speaking until the dot fin-
ished moving, to prevent syncing of speech, gesture,
and dot movement.

In addition to varying the direction it moved (left or
right), which was relevant for the participants’ commu-
nicative task, the dot also varied in the speed (four
possible speeds) and the global position on the screen
(at the top, middle, or bottom of the computer screen).
Position and speed were not relevant for the communi-
cative task. On each trial, the dot was visible for 2 s on
the horizontal midpoint of the screen at the top, middle,
or bottom before it began moving. The dot always trav-
eled the same distance (600 pixels), but did so in 1, 2,
3, or 4 s. Accordingly, the depicted speeds were 600
pixels(p)/s, 300 p/s, 200 p/s, or 150 p/s. Thus, there
were multiple properties of the stimulus that could be
encoded in gesture.

Prior to analysis we identified the stroke of each
gesture (McNeill, 1992, which was the only phase that
we analyzed here. We did not code the preparation and
recovery phases (Kendon, 2004), as we did not predict
these phases would be modulated along the dimensions
of interest.

Analysis We analyzed the movement data with linear
mixed effect models predicting the feature of interest
with fixed effects for the relevant features of interest.
The random effect structure was determined by log-
likelihood ratio testing to determine the maximal ran-
dom effect structure justified by the data. Below we

report coefficients and t-values in the absence of p-
values, as there is no consensus regarding how degrees
of freedom are calculated for mixed regression models
(Bates, Maechler, Bolker, & Walker, 2015). We assume
that all t-values with an absolute value above 2 corre-
spond to significant findings.

Results

Height/positioning This details where in the gesture
space each gesture is produced, relative to the body.
To calculate this, we first had to locate a stable point
on the body so we could norm all trajectories to this
point to account for variation in camera angle and body
size. Given that all of our participants were sitting, we
chose the groin area (while participants often move their
head and trunk while communicating, the area of their
body that is in direct contact with the chair tends to
remain stable). These norming points were collected in
the same way as described above. The x and y coordi-
nates of the norming point for each participant was
subtracted from the x and y coordinates of all of the
gestures for that participant.

We predicted that the higher the dot was depicted on
the screen, the higher that the gesture describing it was
produced relative to the participant’s body. Our model
predicting height had a fixed effect for the height of the
object described on the screen and a random effect for
participant. We found that gestures produced for dots
located at the top of the screen were reliably higher
than those in the middle of the screen (β = 46.3, t =
3.87) and those in the bottom of the screen were reli-
ably lower than those in the middle (β = -686, t =
−5.69; Fig. 3). When including trial number as a fixed
effect in the model, we also found a significant lower-
ing of gestures across the 24 trials regardless of the
height of the dot in the video (β = −1.76, t = −2.54;
Fig. 4). Thus, participants’ gesture heights were not on-
ly semi-veridical representations of the motion of the
dot, but were also a function of how far into the exper-
iment they were.

This finding makes the analyses possible with our coding
scheme particularly evident. Had we coded gesture height
with McNeill’s (1992) gesture space description, we likely
would have not detected the general lowering effect; while
there was lowering for each of the heights present in the stim-
ulus, gestures very often fell within the same descriptive area
in McNeill’s description (Fig. 3). Thus, the ability to capture
small variation in gesture form was necessary to detect this
effect.

Not surprisingly, we also found an effect of the placement
of gestures horizontally as a function of the direction of
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motion that the gesture was depicting. Using a model that had
a fixed effect for direction and random effect for participant,
we found that gestures were significantly more left relative to
the body when produced for dots moving to the left (β =
379.18, t = 39.2).

Speed We also predicted that participants would adjust the
speed of their gestures to reflect the speed of motion observed.
We calculated the speed of each gesture by dividing the dis-
tance traveled during a gesture by the time it took to complete

the gesture. Of course, the distance between each of the points
of the gesture was calculated, as calculating from the end
points disregards any deviation from a straight trajectory.

Again, our prediction was confirmed; a mixed effect model
predicting velocity (p/s) with a fixed effect of speed of the dot
and a random effect of participant revealed that the less time it
took the dot to move across the screen, the faster the hand
moved (β = −.012, t = −2.71; Fig. 5). Beyond the use of
motion tracking systems, this is the first method of coding that
we know of for capturing gesture speed.

Fig. 3 The trajectories of three gestures produced by one participant
describing the same movement (in terms direction and speed) but with
the stimulus dot located at the three possible heights. The McNeill

(1992a, b) gesture space grid is also depicted to illustrate that all three
gestures, while reliably different in height, are produced in the same
general gesture space

Fig. 4 The trajectories of three gestures produced by one participant
describing dot movement at the same height and direction, but across
different trials. Only the speed of the stimulus varied in each of the

trials. Despite describing the same movement at the same location on
the computer monitor, the gestures are gradually lowered in the gesture
space across descriptions
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Size The size of gestures was determined by calculating how
far the handmoved in pixels during each gesture.We analyzed
only the size of the gestures horizontally, as the stimuli
depicted horizontal motion. We determined the maximum dis-
placement during each stroke by subtracting the minimum x
coordinate (extracted from our coding system) from the max-
imum x coordinate for each gesture (also extracted from our
coding system). In cases of non-linear movements, the dis-
tance between each point in a movement can be calculated
and summed to determine total size. Curves can also be fit
to the data when appropriate, and characteristics of these
curves can be studied (see Cook & Tanenhaus, 2009;
Hilliard & Cook, 2015). Note that this approach to calculating
gesture size allows the placement of the hand relative to the
body to be unconfounded from the location of the gesture in
space. In prior work, gesture size has been determined by how
much the hand deviates from the center of the gesture space

(identified as the Center-Center in McNeill’s (1992, pp. 89)
depiction of gesture space). A series of rectangles growing in
size is drawn around the central area of the gesture space and
each gesture’s size is determined by choosing which rectangle
it reached (see Fig. 3). However, this makes directly compar-
ing gestures that are produced in different areas of the gesture
space difficult – and we have already established that leftward
and rightward gestures are produced in different regions of
space. By continuously capturing the motion signal, we can
determine that two movements produced in vastly different
areas of the gesture space are the same size.

We analyzed size in a model predicting lateral displace-
ment in coordinates with fixed effects of direction, height,
and speed and a random effect of participant. We had no
explicit predictions about size, as we did not vary the distance
traveled by the dot in any videos. Surprisingly though, we did
find an effect of size as a function of direction; gestures

Fig. 5 Speed of movement depicted relative to a single example
trajectory for a dot moving at the fastest speed. Each symbol represents
the distance that would have been traveled by the hand if it were moving

at the average speed produced by the speaker when depicting dots
moving at slower speeds

Fig. 6 Two trajectories for one participant’s description of dot movement that varied only in the direction (left vs. right) that it moved. Note that the hand
travels a greater distance for the leftward trajectory
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moving leftward were larger than those moving rightward (β
= 127.98, t = 23.27; Fig. 6). Since all participants were right-
handed, they had to move their hand more distance overall
when describing leftwardmovement to reach the same relative
location on that side. One interpretation of this novel finding is
that speakers are depicting distance as a function of the end
point relative to the body, rather than the actual distance
travelled.

Although we have focused on just the three main variables
of interest in the present experiment, many additional contin-
uous variables can be extracted from the motion signal and
analyzed. For example, the curvature, duration, resting posi-
tion between gestures, and any number of variables might be
of interest in a particular study.

Conclusions

Benefits

Clearly, a variety of variables can be extracted from the
coordinates acquired by processing the data one time
through. Thus, many characteristics of gesture can be
determined simultaneously without having to develop
separate coding schemes for each variable of interest
(i.e., using McNeill-like gesture areas for size and
shape, making judgments about speed), although some-
times multiple coding schemes will be necessary. This
saves researchers time by not having to make several
passes through the data for each variable and obviates
the need to make decisions about how to capture each
variable separately.

Along similar lines, because this coding scheme describes
the form of body movement quantitatively, it is objective and
does not require extensive training to implement in a reliable
fashion. Typically, form-based properties of movement are
described by having coders make a categorical judgment
about the size or speed of a movement on a scale (e.g.,
Holler & Stevens, 2007; Kuhlen et al., 2012) or by identifying
movement Bareas^ post-hoc and evaluating if a movement
falls in this region (e.g., Bayliss, 2011; Galati & Brennan,
2013). This requires considerable training to ensure inter-
coder reliability. Instead, our coding scheme describes the
movement by exploiting the thousands of pixels available on
a computer monitor. This reduces the likelihood of coder bias.

The data generated by this method are very reliable. To
calculate reliability scores for our trajectory coding, we have
been randomly selecting 20 % of all movements for a second
coder to process and have then calculated the correlation in the
pixel selection between both coders or the distance between
points selected by each coder. We have found that variation
that occurs is typically very slight (less than 10 pixels). In
addition, errant mouse clicks or coder errors are typically easy

to identify because they involve great disparity between
coders, and between a single frame and nearby frames of
video. Based on our experience, we do not think that reliabil-
ity would need to be assessed in each application of this tech-
nique, but, depending on the size of the studied effect, some
researchers may want to further examine variability in their
implementation of the technique.

As suggested above, this coding scheme can be readily
used in tandem with other coding schemes to maximize the
amount of information obtained from video data. This system
by no means seeks to replace other well-established coding
schemes that identify the bounds of a gesture (Kendon, 2004;
McNeill, 1992), describe gesture type (Butterworth & Beattie,
1978; McNeill, 1985), detail semantic features (Beattie &
Shovelton, 1999; Gerwing & Allison, 2009), or a number of
other aspects of gesture coding. Instead, we hope that this
approach will supplement others used by allowing researchers
to capture properties of gesture that have been difficult to
discriminate, and therefore ignored, in previous research.

Limitations

Despite its benefits, there are also some limitations to our
approach. The first, perhaps obvious, limitation is that the
motion signal only captures two dimensions: x and y coordi-
nates. Any depth information present in the video data is
distorted or entirely ignored. Returning to our example of
the gesture depicting the child going down the tornado slide:
the spiral motion present could not be captured and analyzed
with a single stream of video. This could be corrected for by
using an additional camera positioned directly to the side of
the participant to capture any depth information. This could
then be integrated with the remaining two dimensions.
However, this has logistical complications. Although this
can be readily done in an experimental setting, one of the
major benefits of our measurement system is that it allows
for fine-grained analysis of data collected in naturalistic set-
tings. Thus, our coding system may not be of interest to those
who have a theoretical interest in depth information, particu-
larly in data that may be collected outside of the lab. We have
yet to add an additional camera, as we have found that having
just two dimensions has still provided considerable informa-
tion about how each hand moves.

Another potential limitation, as mentioned earlier, is that
this coding scheme necessitates fairly stringent requirements
for camera position and angle. This makes interactions in
which multiple people are involved and constantly moving
more difficult. We have found that in the case of multiple
people, positioning cameras slightly above and behind each
person pointed toward the other person still allows for clean
coding of the video data, capturing gestures as they are seen
by an observer, albeit in only two dimensions.
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Along the same lines, camera and body position must be
relatively stable throughout data collection, or data must be
transformed into a common space. This coding scheme may
therefore be difficult to employ in naturalistic multi-party or
classroom situations, where gesturers may be changing their
body positions as they address different addressees. We have
yet to use this coding scheme for such data. Though limita-
tions exist, we consider the information that can be gleaned
from this coding scheme to outweigh these limitations.

Summary

It is widely accepted that body movement varies across a
multitude of dimensions. Although categorical coding
schemes have been able to capture some degree of this varia-
tion, the richness present in body movements has likely been
overlooked due to the limitations in measurement techniques.
Our approach provides an accessible and straightforward
method that can be incorporated into movement research to
help capture this continuous variation. We do not suggest that
categorical coding schemes should be avoided, but rather that
they be used in concert with continuous measures: having a
fine-grained technique for capturing properties of body move-
ment will add greater power to categorical coding and analy-
ses. Even here, in a simple, illustrative experiment, we uncov-
ered new evidence about iconicity in gesture. Using a method
that can capture continuous variables will potentially facilitate
an understanding ofmany new aspects of movement.We hope
that by sharing these methods, we can help standardize and
streamline measurement of movement for researchers from a
variety of research traditions.
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