Behav Res (2016) 48:1454-1475
DOI 10.3758/s13428-015-0660-6

@ CrossMark

Bonn eXperimental System (BoXS): An open-source platform
for interactive experiments in psychology and economics

Mirko Seithe' - Jeronim Morina? - Andreas Glockner>>

Published online: 11 November 2015
© Psychonomic Society, Inc. 2015

Abstract The increased interest in complex-interactive be-
havior on the one hand and the cognitive and affective pro-
cesses underlying behavior on the other are a challenge for
researchers in psychology and behavioral economics. Re-
search often necessitates that participants strategically interact
with each other in dyads or groups. At the same time, to
investigate the underlying cognitive and affective processes
in a fine-grained manner, not only choices but also other var-
iables such as decision time, information search, and pupil
dilation should be recorded. The Bonn eXperimental System
(BoXS) introduced in this article is an open-source platform
that allows interactive as well as non-interactive experiments
to be conducted while recording process measures very effi-
ciently and completely browser-based. In the current version,
BoXS has particularly been extended to enable conducting
interactive eye-tracking and mouse-tracking experiments.
One core advantage of BoXS is its simplicity. Using BoXS
does not require prior installation for both experimenters and
participants, which allows for running studies outside the lab-
oratory and over the internet. Learning to program for BoXS is
easy even for researchers without previous programming
experience.

>J Andreas Glockner
andreas.gloeckner @fernuni-hagen.de

Fraunhofer Institute for Applied Information Technology, Sankt
Augustin, Germany

Max Planck Institute for Research on Collective Goods,
Bonn, Germany

University of Hagen (FernUniversitit), Universitétsstrasse 27,
D-58097, Hagen, Germany

@ Springer

Keywords Methodology - Internet experiments - Interactive
decision making - Eye-tracking - Social dilemmas - Process
tracing - Mechanical turk

Introduction

One important paradigm of investigation in social psychology
and behavioral economics is the interactive study in which the
behavior of two or more persons jointly determines the con-
sequences for the participants and the collective. Interactive
studies can be contrasted with non-interactive studies mainly
used in fields such as cognitive psychology, in which conse-
quences of behavior are not influenced by the behavior of
other persons and are only dependent on the person’s own
behavior and some predefined algorithm (e.g., determining
which answer is right or wrong) or chance. The high and still
increasing interest in interactive studies (for reviews see
Chaudhuri, 2011; Dawes, 1980; Komorita & Parks, 1995;
Sally, 1995; Van Lange, Joireman, Parks, & Van Dijk, 2013)
is due to several reasons. Some of the most severe problems
society faces today — such as environmental protection and
depletion of natural resources — depend on coordinated inter-
active behavior between persons. Such real-world situations
are often structured as a social dilemma in which incentives
for the collective and the individual agent diverge (Hardin,
1968). The prototypical examples for an interactive problem
structure are prisoners’ dilemmas and public good games. In
both dilemmas, persons have to simultaneously make strate-
gic decisions about whether to choose the option that max-
imizes their self-interest (i.e., to defect) or to choose the
option that maximizes the outcome for the collective (i.e.,
to cooperate), if the others in the collective cooperate as well
(Rapoport & Chammah, 1965). A good understanding of the
mechanisms underlying cognitive and affective processes in

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-015-0660-6&domain=pdf

Behav Res (2016) 48:1454-1475

1455

strategic decision making is consequentially of crucial im-
portance for society.

Running interactive studies comes with the pragmatic com-
plication that many individuals participate simultaneously and
that their responses have to be anonymously matched in
groups of varying size. While in early work on strategic deci-
sion making researchers had to rely on effortful and error-
prone manual matching or had to use deception (i.e.,
misinforming participants that they interact with each other
although they do not), nowadays research is mainly conducted
using software that is specifically developed for this purpose.

One of the most prominent tools for user-generated exper-
iments in this domain is the Zurich Toolbox for ready-made
economic experiments (z-Tree). z-Tree, which is developed
and maintained by Urs Fischbacher (2007), is probably the
most mature and powerful experiment system in this domain
yet and continues to be very popular, especially among exper-
imental economists, and this immense popularity is docu-
mented in an impressive citation count (Thomson Reuter
Web of Knowledge: 1,125 citations for the document as of
October, 2014). It offers a graphic approach to programming
which appeals to many experimental scientists who either lack
sophisticated programming skills or prefer the convenience of
an intuitive programming interface. As a core advantage over
all-purpose tools (e.g., Java), z-Tree provides easy routines for
matching agents and transferring information between them,
which is essential for any kind of interactive studies. Techni-
cally, the system consists of the programs z-Tree, which con-
tains both the server and the experimenter interface, and z-
Leaf, which is the client interface for multiple participants that
can interact with each other.

Despite its popularity, z-Tree also has its limitations. Since
z-Tree has been developed to be used in economic experi-
ments, it has limited capabilities to record process measures’
due to the fact that economists are typically less interested in
cognitive processes than psychologists. Specifically, it lacks
support for precise response-time measurement as well as
mouse- and eye-tracking, which are of great interest for many
behavioral researchers.? Furthermore, the architecture, which
requires the manual installation of client software, makes non-

! The technical term “process measures” refers to measures of observable
variables that are recorded while an individual makes a decision. This is
usually done in order to infer how a decider came to his or her choice.
Process measures therefore allow testing isomorphic models of decision
making, which describe not only the outcome of a choice process but also
more details concerning information processing. Prominent process mea-
sures are response time, mouse clicks, or mouse-movements (i.e., mouse-
tracking), shifts in attention measured by eye-tracking, and measurement
of physiologic arousal (e.g., skin conductance or pupil dilation) (for an
overview see Schulte-Mecklenbeck, Kiihberger & Ranyard, 2011).

2 One recently suggested workaround involves the use of external photo-
sensors that detect changes in light intensity on the participants’ screens to
achieve exact stimuli timing and to synchronize event presentation with
external physiologic recording devices (Perakakis et al., 2013).

laboratory set-ups such as large-scale interactive internet ex-
periments and studies conducted using workers from Ama-
zon’s Mechanical Turk (Mason & Suri, 2012) very difficult
or in many cases even impossible to conduct. Finally, z-Tree is
provided only for the Windows operating system and is based
on a closed-source code which makes the system hard to
modify or expand upon without explicit support.

Hence, aside from many advantages, z-Tree’s limited ca-
pacity for investigating cognitive processes in a fine-grained
manner (e.g., by recoding eye-fixations that precede a choice)
reduces the program’s usefulness for psychologists. Re-
searchers that are, for instance, interested in running interac-
tive z-Tree studies with eye-tracking need to rely on effortful
and error-prone workarounds based on manual coding (e.g.,
Fiedler, Glockner, & Nicklisch, 2012; Fiedler, Glockner,
Nicklisch, & Dickert, 2013).

One alternative is to rely on more general programs for
developing and running non-interactive studies. These more
general programs have usually been created for local experi-
ments with individual participants that do not interact with
each other (Table 1, first section). Programs such as NBS
Presentation, E-Prime, or their non-commercial counterparts
such as OpenSesame (Mathot, Schreij, & Theeuwes, 2012),
PsychoPy (Peirce, 2007), PsyToolkit (Stoet, 2010) or others
(e.g., Geller, Schleifer, Sederberg, Jacobs, & Kahana, 2007,
von Bastian, Locher, & Ruflin, 2013) already have excellent
capabilities for recording process measure. These programs
could also possibly be expanded by including libraries that
enhance the capabilities for matching, interconnecting, and
simultaneously supervising participants in interactive studies,
but standard extensions are not available yet and
implementing them might be relatively effortful.

A second alternative are programs that have been devel-
oped to run browser-based online experiments relying on
Javascript (Table 1, second section). Tools such as jsPsych
(de Leeuw, 2014) and WEXTOR (Reips & Neuhaus, 2002)
have been designed for enabling researchers to develop
browser-based studies that run on any platform and without
any software installation. jsPsych, for example, is a JavaScript
library for creating and running experiments in a browser,
which allows building a wide range of experiments that can
be run online. jsPsych provides the structure for a study and
several plugins, that are ready-made templates for simple ex-
perimental tasks such as displaying instructions and collecting
responses. The researcher can create a study by adapting a
partially pre-specified javascript code that calls these plugins
in the order they are needed for implementing the research
design. Still, although being based on a generally very prom-
ising approach, to date neither jsPsych nor WEXTOR provide
standard functionality to manage and supervise the interaction
between many participants.

The Bonn eXperiment System (BoXS) presented in this
paper provides an alternative that has been developed from

@ Springer

1456 Behav Res (2016) 48:1454-1475

Table 1 Overview of programs to develop experiments

General Experiments Technical Measures*

Name GUI Free OSS Scripting MultiPl Inet Brow FIO SV DC IH RT MT ET Platform Reference

Programs for local experiments with individual participants

DirectRT Yes No No Custom No No No Yes - - - - - - Win Reviewed in Stahl
(2006)
DMDX No Yes No Custom No No No Yes - - - - - - Win Forster & Forster
(2003)
E-Prime Yes No No E-Basic No No No Yes - - - - - - Win Reviewed in Stahl
(2006)
Experiment Yes No No Python No No No Yes - - - - - - Win SR Research,
Builder Missisauga, ON,
Canada
MATLAB No Yes Yes MATLAB No No No Yes - - - - - - Win/Lin/ Brainard (1997)
Psychophysics Mac
Toolbox
PEBL No Yes Yes Custom No No No Yes - - - - - - Win/Lin/ Mueller (2010)
Mac
Presentation Yes No No Custom No No No Yes - - - - - - Win Neurobehavioral
Systems,
Albany, CA
PsyScope Yes Yes Yes Custom No No No Yes - - - - - - Mac Cohen et al. (1993)
PsyToolkit No Yes Yes Custom No No No Yes - - - - - - Lin Stoet (2010)
PyEPL No Yes Yes Python No No No Yes - - - - - - Lin/Mac Geller et al. (2007)
SuperLab Yes No No Custom No No No Yes - - - - - - Win Reviewed in Stahl
(2006)
Tscope No Yes Yes C/C++ No No No Yes - - - - - - Win Stevens et al.
(2006)
Vision Egg No Yes Yes Python No No No Yes - - - - - - Win/Lin/ Straw (2008
Mac (Straw))
OpenSesame Yes Yes Yes Python No No No Yes - - - - - - Win/Lin/ Mathoét et al. (2012)
Mac
PsychoPy Yes Yes Yes Python No No No Yes - - - - - - Win/Lin/ Peirce (2007)
Mac
Inquisit Yes No No Custom No Yes Yes Yes - - - - - - Win Reviewed in Stahl
(2006)
Programs for browser-based online experiments
WEXTOR Yes Yes No Javascript No Yes Yes No - - Yes Yes No No Win/Lin/ Reips & Neuhaus
Mac (2002)
jsPsych No Yes Yes Javascript No Yes Yes No - - Yes Yes No No Win/Lin/ de Leeuw (2014)
Mac
Programs for interactive studies with multiple players
BoXS Yes Yes Yes Custom Yes Yes Yes No Yes Yes Yes Yes Yes Yes** Win/Lin/ Seithe (2012)
Mac
zTree Yes Yes No Custom Yes Yes No Yes Yes Yes No limited No No Win Fischbacher (2007)

Note Information in this table is in parts based on Math6t, Schreij, and Theeuwes (2012)

GUI graphical user interface, OSS open-source software, MuliP! interactive multiplayer experiments, /net internet-based experiments, Brow browser-
based experiments that require no software installation by participants, F70 local file access/manipulation, SV supervision during multiplayer experi-
ments, DC automatic data collection in multiplayer experiments, /H input history (choice revision detection), RT response time measurement, M7 mouse
tracking, ET eye tracking

* Not coded for programs for individual participants, for which these features are usually all available

Currently implemented for SMI eye-tracker only

scratch. It aims to combine core advantages of z-Tree and the ~ capabilities for programming interactive studies and possibil-
established non-commercial software in that it contains full ities to record process data in an easy to use, platform-

@ Springer

Behav Res (2016) 48:1454-1475

1457

independent open-source programing tool. At the same time,
BoXS also allows for implementing standard questionnaires
and non-strategic decision-making studies with persons taking
part at the laboratory or over the internet according to standard
requirements for web research (e.g., Birnbaum, 2004; Reips,
2002; Reips & Birnbaum, 2011).

Key features of the Bonn Experiment System

BoXS is a platform for conducting experiments that is both
powerful and easy to use. The architecture of BoXS is based
on open software and supports both laboratory and internet
experiments. BoXS allows non-interactive experiments and
questionnaires as well as interactive experiments including
the recording of process measures such as mouse-tracking
and eye-tracking. A comprehensive and up-to-date documen-
tation as well as tutorials and examples are provided to guide
and assist experimenters new to BoXS.

Platform independence and flexibility

The BoXS client, which is the part of the system the partici-
pants interact with, is implemented as a Java applet. Unlike
software compiled for a specific system, Java applets run on
Windows, Linux, and MacOS, and do not need to be installed
prior to being used, which vastly expands the scope of how
experiments using the BoXS can be conducted. Without the
need to distribute and install client software, laboratory exper-
iments can be set up easier. Furthermore, BoXS also allows
participants to attend experiments from home without the need
for a local infrastructure for the experimenter and the
“autorun” feature allows them to start experiments at any time.
BoXS makes it easier to investigate interactions of participants
that are otherwise difficult to reach simultaneously (e.g., inter-
cultural research, forensic research, research on minorities,
etc.) and it allows for conducting interactive web-based exper-
iments with participants from different locations, as is for ex-
ample required in studies involving workers from Amazon’s
Mechanical Turk. Finally, BoXS can also be used as a pow-
erful teaching tool as students can use it instantly to create and
conduct improvised classroom experiments.”

Open-source issues/availability

BoXS is released as open-source software (OSS) in accor-
dance with the terms of the GNU Public License (GPL). This
license grants every user the right to download, examine, and

* The only requirement for BoXS to run is the free Java Runtime Envi-
ronment (JRE). Since many other programs require JRE as well, it is
already installed on most computers. If it is not installed, most internet
browsers automatically notify the user and guide her through the neces-
sary installation process, which requires about 2—3 min.

modify the software in any way as long as the resulting deriv-
ative work is attributed to the original author and is itself
released as OSS under the GPL.

Releasing the BoXS as OSS offers two major advantages
for the users. Many experiments include the recording of sen-
sitive information such as individual preferences, attitudes,
and personal information (i.e., income, health). This can raise
questions about the system’s reliability in handling and
protecting this data. In BoXS the experimenter can examine
and retrace the software routines herself in order to verify their
correctness and appropriateness.

The second major advantage of releasing BoXS as OSS is
that it enables experimenters to expand upon and adapt BoXS.
If the need for specific extensions arises, for example an ele-
ment in the user interface that supports a specific type of hard-
ware device, the experimenter can implement such a change
herself without relying on the support of the system’s main
developers. Furthermore, upon creating such an extension, the
experimenter can submit and publish this extension to make it
available for other researchers in need of a similar functionality.

Feature set

The basic feature set of BoXS allows experimenters to imple-
ment most popular economic and many psychological
experiments.

The display method can present basic text, static and ani-
mated images, as well as tables and enumerations (Fig. 1). This
functionality can be enhanced by using web services like Goo-
gle Image Chart,* which allow the experimenter to include
complex graphs and diagrams based on experiment data.

The available user interface components include text fields,
buttons, radio buttons, check boxes, and slider bars (cf. Reips &
Funke, 2008). It is possible to either use two-step input proce-
dures in which data for each page are entered and confirmed
with a button press or one-step input procedures in which the
program directly reacts on hitting pre-defined keys. The exper-
imenter can define arbitrary restrictions on the participant’s
input (e.g., ensuring that the person’s age is above 10 years),
and provide specific error messages to assist participants in
correcting mistakes. The elements of the user interface can be
laid out both automatically and manually, in which case the
experimenter can specify the exact position of each element.

BoXS provides an “input history” and also supports mouse-
tracking and eye-tracking. The “input history” records every
input submitted by each participant with a time-stamp, which
allows the experimenter to detect instances in which choices
were revised and to analyze the time participants spent ponder-
ing over each item contained in one display. An integrated
mouse-tracking routine records every movement of each par-
ticipant’s mouse. Finally, eye-tracker support including a basic

* See https://developers.google.com/chart/image/

@ Springer

https://developers.google.com/chart/image/

1458

Behav Res (2016) 48:1454-1475

Basic text with formatting

Lorem jpsum dolor sit amet, consectetur adipisicing elit. Quas non rem
dolores eaque dolore eligendi modi aperiam officia earum inventore
provident perferendis atque voluptas impedit architecto dicta veniam
minus tenetur.

Images
u niversitétbonnl
Tables

(& D

C 10/10 5415
BN 5/ 15 717

Continue...

Fig. 1 Examples of a display method

calibration procedure and the recording of the tracking data dur-
ing the experiment is available.” All three data sources are auto-
matically synchronized with the respective participants’ system
clocks and can therefore be jointly analyzed after the experiment.

On the basic programming level BoXS provides both basic
algebra (+, -, /, *, % (modulo)), logical operators (<, >, <=, >=,
==, |=), common mathematical functions (exp, log, sin, cos,
tan, round), uniform and gaussian random number generators,
as well as methods for conditional (if) and repeated execution
(for, while). The data within a BoXS experiment is stored in
local, group-specific, or global variables that can be accessed
and modified at any point in the experiment.

Finally, four different kinds of matching of individuals for
interactive studies are provided, including alphabetical
matching, stranger matching, perfect stranger matching, and
manual matching, which can be used to implement arbitrary
matching patterns. For more detailed information and example
programs please refer to the online documentation.’®

Documentation and getting started

Experiments for BoXS are written in a custom programming
language (BoXSPL), which is designed to be easy to learn and
master. Novice users of BoXS can get started by watching a
tutorial video and examining examples that demonstrate how
basic experiments like questionnaires or public good games
can be implemented. An up-to-date online documentation that
also provides detailed information on each feature is main-
tained on the official homepage. The “frequently asked ques-
tions”-section (FAQ) of the website and a mailing list provide
further support for novice and advanced users.

> As of now, the iView X by SensoMotoric Instruments (SMI) is support-
ed and a solution for eye-trackers by Interactive Minds GmbH is available
on request. Other eye-trackers can be supported in the future, given that
they provide a network based API, which is most often the case.

6 See http://boxs.uni-bonn.de/documentation/index.html

@ Springer

" Jan Feb Mar Apr May

Charts (via Google Image Chart API)

— Apri

March—
— January

February

(Charts can display and visualise data generated by the experiment.)

Formulas (via Google Image Chart API)

" —b+\b?—4ac

2a

(Formulas based on LaTeX-Code.)

Continue...

What is inside BoXS?

From a technical perspective, BoXS consists of a server process,
which manages participants and experiments, and a client ap-
plet, which provides the graphic user interface (GUI). The server
is a central process to which the experimenter and all participants
connect. The server parses and executes programs, handles the
necessary communication between participants, and collects and
relays all data generated by the experiment to the experimenter.
The strict separation of experimenter client and server offers the
advantage that a crash on an experimenter's computer does not
affect running experiments. Equally, neither the crash of a par-
ticipant’s computer nor participants accidentally closing the
browser affects the running program. Participants can usually
reconnect to and resume the experiment by restarting their web
browser (or computer) and reopening the given experiment ad-
dress. They then can regularly continue the study at the point
they left it. The default BoXS server is located in Bonn
(Germany) and can be used without further set-up. Experi-
menters are, however, free to set up their own custom servers,
which may be advisable for environments in which no suffi-
ciently reliable internet connection is available.

The client applet connects to the server and provides a GUI
for participants and experimenters (Fig. 2). Based on the re-
spective login information, the server decides whether the
client applet takes on the role of an experimenter client or a
participant client. The experimenter client provides an inter-
face that consists of a code editor, in which the experimenter
can program and manage the experiment code. The experi-
menter client also allows the experimenter to track the status
of all connected participants as well as all variables generated
in the running experiment. The appearance of the subject cli-
ent is based on the running experiment and can include text,
graphics, and input elements (i.e., radio buttons, slider bars).

Multiple instances of applets can be executed alongside (for
example, one experimenter client and two subject clients) which
is useful for implementing and testing new experiments. If the
connection between any client and the server is disrupted, the

http://boxs.uni-bonn.de/documentation/index.html

Behav Res (2016) 48:1454-1475

1459

running experiment can usually be resumed without further is-
sues by simply restarting the respective applet. A detailed expla-
nation of the inner workings of the BoXS would exceed the
scope of this paper. For more information, please refer to Seithe
(2012). The latest version of the source code and files for custom
server installations of BoXS can be downloaded from the official
webpage (see footnote 6) and are additionally provided at https://
github.com/plattenschieber/BoXSServer

Applications and examples

Previous versions of BoXS have already been successfully used
for local experiments investigating strategic decision making in
social dilemmas within one laboratory (e.g., Glockner & Hilbig,
2012) but also for experiments including interactions between
laboratories in different cities (Dorrough, Glockner, Hellmann,
& Ebert, 2015). In the currently released version 1.0, some fur-
ther features have been implemented that allow BoXS to be
applied to a wider range of research questions in psychology
and to make handling easier.

How easy it is to realize various experiments with a few
lines of code in BoXS will be demonstrated in the following
three examples. In the first two examples we present a basic
version of the program in the main text and an advanced
version in the appendix. The basic versions already include
all functional parts; the advanced versions demonstrate how

// **** BEGIN Code Example la ****
while(lastkey ! =32)
{

additional useful features can be added to the programs. Due
to formatting restrictions, the printed versions of the provided
example programs contain unintended line breaks. Executable
versions are available at https://github.com/plattenschieber/
BoXSServer/tree/master/examples

Example 1: risky-choice study

The first example involves a classic paradigm from individual
decision making. Participants are repeatedly asked to choose
between risky prospects. The provided risky choice program
makes use of the Google Charts API to present gambles
(Fig. 3). In the basic version provided below, ten randomly gen-
erated choices between two-outcome gambles are presented. The
generated charts are displayed until one gamble is selected by
pressing a key. The decision time for each task is measured. The
first part (lines 2—8) generates the instruction screen, the main
part (lines 9-53) presents ten randomly generated gambles in a
loop, and the last part (lines 54-55) finishes the experiment.” In
the main part, probabilities and outcomes of gambles are gener-
ated and stored in variables (lines 11-19), graphic gamble pre-
sentation is prepared (lines 23-25), and gambles are presented to
the participants until one of two keys is pressed (lines 27-34).
Finally, variables and gamble information are stored (lines 36—
45) and the program waits for a key response before continuing
to the last screen (lines 47-52).

display (" < CENTER > <H2 > Choice Study </H2 > </CENTER>

 In the following you are
askedto select thegamble youprefer.
 Each gamble consists of twooutcomes which realize
with some probability that is visually displayed")

display (" < br >
 <H4 > Please press space to continue</H4 > ")

recordKeys ()
waitTime (50)

for (1=0; 1<1l;1i=1+1)
{

// randomly generate gambles and store in variables to shorten the google chart api call

Lpl = round (randomUniform ()*100) /100
Lol = randomUniformInteger (-10,10)

Lp2 =1-Lpl

Lo2 = randomUniformInteger (-10,10)

Rpl = round (randomUniform()*100) /100
Rol = randomUniformInteger (-10,10)

Rp2 =1-Rpl

Ro2 = randomUniformInteger (-10,10)

// measure the time when gamble is shown
beginTime = time

7 Numbering of lines can best be followed by in the online versions of the
example programs that are provided at https://github.com/
plattenschieber/BoXSServer/tree/master/examples Example programs
can be tested by copying these code files in an experimenter client at
the standard BoXS server: http://boxs.uni-bonn.de/start.html

@ Springer

https://github.com/plattenschieber/BoXSServer
https://github.com/plattenschieber/BoXSServer
https://github.com/plattenschieber/BoXSServer/tree/master/examples
https://github.com/plattenschieber/BoXSServer/tree/master/examples
https://github.com/plattenschieber/BoXSServer/tree/master/examples
https://github.com/plattenschieber/BoXSServer/tree/master/examples
http://boxs.uni-bonn.de/start.html

1460

Behav Res (2016) 48:1454-1475

// collect images from google api

tdPicl ="< img src= 'http://chart.apis.google.com/chart?cht =p&chd=t:" +Lpl+"," + Lp2 +
"§chs = 260x150&chl =" + Lol + "$20EUR|" + Lo2 + "$20EUR' > "
tdPic2 ="< imgsrc= 'http://chart.apis.google.com/chart?cht =p&chd=t:" +Rpl+"," +Rp2 +

"&chs =260x150&chl =" + Rol + "%$20EUR|" + Ro2 + "$20EUR' > "

// gather players decision

while (lastkey !

{

// present pies toplayer

display ("Gamble A:

=67 && lastkey !

"+ tdPicl + "Gamble B:

=77)

"+ tdPic2)

display ("
<H4 > Please press 'C' toselect Gamble Aand 'M' to select Gamble B</H4> ")

recordKeys ()
waitTime (50)

}

// save gambles, choice and time

results[1][O
results
results
results

[1]
[111
[1]
results] i] [
[1]
[1]
[1]
[111

i
i
i
results| i
results
results

i
i

i

1
2
3
4
5
6
7
results 8
9

results[i] [

= lastkey

time - beginTime
=Lpl

=Lol

=1Lp2

=Lo2

=Rpl

=Rol

= Rp2

=Ro2

while(lastkey ! =32)

{

display ("

 Please press Space to continue")

recordKeys ()
waitTime (50)
}

}

display (" < br >
 Thank you very much for taking part in the study!")

waitForExperimenter ("Finish")
// **** END Code Example la ****

The full-fletched version of Example 1b in the appendix
uses predefined gambles that are hard coded into an array
structure, which is then accessed randomly via an index array

“shuffle.” It furthermore uses a table display and adds the
selection of one gamble at the end which is played out and
incentivized (see Fig. 3, lower part).

wait()

B E 2_questionnaire.boxs & = €) (¥ @ ss
display("<hl=Questionnaire</hl=<hr=")
display("<br=Please enter your age:")

4 inputNumber(age)
5 assert(age>10 && age<100 && age==round(age))

display("<br=Please enter your field of study:")
inputString(study)

display("<br=Please select your gender:")
choice(gender,"female”,"male")

} @ send more

Username|

gy

group

"

role

AT

age

34

gender

"male”

study

[IR~ N
Available Subjects

51

"Econ”

Bonn Experiment System

Framework for conducting laboratory and field experiments
in economic and social science

Dr. Mirko Seithe i
mseithe@uni-bonn.de

Bonn Graduate School of Economics . I
University of Bonn universitatbonn

Fig. 2 Experimenter client (left) and participant client (right)

@ Springer

Behav Res (2016) 48:1454-1475

1461

Gamble A:

4EUR Gamble B:

Please press 'C' to select Gamble A and "M’ to select Gamble B

4EUR——

— -8 EUR

——2EUR

480 EUR—

480 EUR—

You won 4.80 EUR.

Confinue. ..

Fig. 3 Display in risky-choice experiment in a basic (top) and an extended (bottom) version

Example 2: Repeated prisoners’ dilemma
with eye-tracking

The second example shows a basic version of a prisoners’ dilem-
ma in which participants play ten rounds and dyads are reshuffled
every round (Fig. 4). Using the eye-tracking feature, which cur-
rently supports the eye-trackers provided by SensoMotoric In-
struments (SMI), consists of five simple commands: (1)

// **** BEGIN Code Example 2a ****

initializing the connection: eyetrackerlnitialise ("localhost",
4444 5555), (2) performing the calibration: eyetrackerCalibrate(),
(3) starting the recording: eyetrackerStart(120, filename), (4)
sending triggers to indicate events in BoXS:
eyetrackerTrigger("Trigger Name") (see extended Example 2b),
and (5) stopping the eyetracker: eyetrackerStop(). Eye-tracking
data can be recorded for all participants by removing the com-
ment markers (/) in front of the eye-tracker commands.

for (gameCounter = 1; gameCounter < =10; gameCounter = gameCounter + 1)

{
matchStranger (A, B)
i=1i+1
if (i==1)
{

display ("< H2> Prisoners Dilemma Game </H2>
 Inthis study in 10 subsequent rounds you and
a randomly chosen other person will simultaneously decide whether to cooperate or to
defect. < br > ")

display ("If you both decide to cooperate, you will both earn 200 point. If you both decide to
defect youwill both earn 100 points.
")

display("If one of you decides to defect and the other to cooperate, the defecting person
receives 300 points and the cooperating person receives 50 points.
 ")

display ("In each round you are randomly matched with a new person.")

display ("The total points your earned are paid to you according to the following exchange
rate: 500 point =1 Euro.")

wait ()

@ Springer

1462 Behav Res (2016) 48:1454-1475

//eyetrackerInitialise ("localhost",4444,5555)
display ("The calibration begins after pushing the wait button < br > Please hold still and
follow the points.")
wait ()
//eyetrackerCalibrate ()
display ("Thank you - the calibration was successful")
//eyetrackerStart (60, "PrisonersDilemma " +username +" " + gameCounter + ".dat")
wait ()
}
clear ()
choice (action, "Cooperate", "Defect")
waitForPlayers ("Continue..")
// calculate Payoffs

if (A.action == "Cooperate" && B.action == "Cooperate")
{

A.win =200

B.win =200
}

if (A.action == "Cooperate" && B.action == "Defect")
{

A.win =50

B.win =300
}

if (A.action == "Defect" && B.action == "Cooperate")
{

A.win =300

B.win =50
}

if (A.action=="Defect" && B.action == "Defect")
{

A.win=100

B.win=100

}

display ("You choose " + action + " < br > Your opponent choose " + opponent.action + " < br >
Your roundwin equals " + win)

// save win and actions into the global array 'vp'

totalwin = totalwin + win

* % .vpl username] [1][i] =action
* % .vpl username] [2][1] =win
wait ()

if (i==10)

{
display ("Youwon " + totalwin + " Points. This equals " + totalwin/200 + "EUR.")

// eyetrackerStop ()
waitForExperimenter ("FINISH")
}

matchDone ()

}
// **** END Code Example 2a ****

An extended example with an optimized display that also eye-trackers in the laboratory) and involves the sending of de-
allows eye-tracking for a single player (e.g., in case one hasonly tailed time triggers is provided in the appendix as Example 2b.

@ Springer

Behav Res (2016) 48:1454-1475

1463

Prisoners Dilemma Game

In each round you are randomly matched with a new person.

Continue...

In this study in 10 subsequent rounds you and a randomly chosen other person will simultaneously decide whether to cooperate or to defect.
If you both decide to cooperate, you will both earn 200 point. If you both decide to defect you will both earn 100 points.
If one of you decides to defect and the other to cooperate, the defecting person receives 300 points and the cooperating person receives 50 points.

The total points your earned are paid to you according to the following exchange rate: 500 point = 1 Euro.

(O Cooperate

Continue...

Fig. 4 Display in the Prisoners’ Dilemma (Example 2a)

Example 3: Repeated public good with mood induction
and eye-tracking or mouse-tracking

Example 3 shows a public good game in which four
persons can contribute to maximize their shared profit
(Fig. 5). The example includes a mood induction by
video (converted to gif), full eye-tracker usage (if com-
ment markers in front of eyetracker commands are re-
moved), usage of mouse-tracking (if comment markers
in front of ‘enableMouseTracking()’ are removed), a
graphic visualization of the contributions and reshuffling
of groups after every round (stranger matching) in only
43 lines of code (without comments and newlines).
The interaction goes over ten rounds implemented by
a loop over gameCounter. Participants are randomly re-

// **** BEGIN Code Example 3 ****

matched every round in new groups of four (lines 5 and
48). Before the first round starts, several issues are tak-
en care of (lines 7-23): the eye-tracker is turned on
(lines 10-11) and calibrated (lines 15-17), the instruc-
tion is shown (lines 12—14), and the mood induction is
carried out by playing a video (lines 20-22). Partici-
pants’ contributions to the public good are recorded
and checked (lines 27-30) and graphic feedback
concerning the contributions of all four players is pre-
sented (lines 31-32). The round payoff and the total
payoff for all participants are calculated (line 34-35)
and displayed (lines 40-41) and all variables are
stored (lines 36-39). After the last round, the final
payoff is displayed and the eye-tracker is stopped
(lines 42-47).

for (gameCounter = 1; gameCounter < =10; gameCounter = gameCounter + 1)

{
// match 4 players each round
matchStranger (A,B,C,D)
i=1i+1
if (i==1)
{
// enable mouse tracking
// enableMouseTracking ()

// eyetrackerInitialise ("localhost",4444,5555)
display (" < H2 > Public Good Example</H2 >
 Please read the paper instructions in

front of youbefore starting the experiment.")

display ("The calibration begins after pushing the wait button.
 Please hold still and

follow the points.")
walt ()
//eyetrackerCalibrate ()

display ("Thank you - the calibration was successful")
//eyetrackerStart (60, "PublicGoodGame" + username + " " + i+ ".dat")

wait ()

@ Springer

1464 Behav Res (2016) 48:1454-1475

// mood induction video, showed for 10 sec.
display ("Please watch the following movie!")
display (" < img src = 'http://www.wonderoftech.com/wp-content/uploads/2012/12/
fireplace.gif'>")
waltTime (10000)
}
beginTime = time
clear ()
// read in contribution and check for consistency
display (" < br > Please choose the amount you would like to contribute:")
inputNumber (z)
assert(z> =0 && z< =10 && z==round(z))
waitForPlayers ("Continue..")
display ("Youareplayer " +role+". Youcontributed"+z+" Talers.
 The total
amount donated is "+ sum(z) + " Talers.")
display (" < img src = 'http://chart.apis.google.com/chart? cht = p&chd=t:" +A.z+"," +
B.z+","+C.z+","+D.z+"&chs =200x150&chl =A|B|C|D'>")
// Calculate payoff and save decision, decision time inms and payoff
payoff =10-z+ 0.4*sum(z)
totalPayoff = totalPayoff + payoff

results[1]J[0] =z

results[i][1] = time - begintime

results[1][2] = payoff

results[1][3] = totalPayoff

display ("Your payoff is " +payoff + " Talers")
wait ()

if (i==10)

{
display ("Your total payoff is " + totalPayoff + " Talers")

// eyetrackerStop ()
waitForExperimenter ("FINISH")

matchDone ()

}
// **** END Code Example 3

Please watch the following movie! Plasse choass the amount you would ke o contus You are player D. You contributed 6 Talers.
= — The total amount donated is 17 Talers.

h

Your payoff is 10.80 Talers
Continue...

Fig. 5 Display of the public good experiment from Code Example 3; left: mood induction by video, middle: contribution screen, right: feedback about
contributions of others

@ Springer

Behav Res (2016) 48:1454-1475

1465

Validation of time measurement and presentation
timing

To assure exact measurements of response times as well as
synchronization with external devices such as eye-trackers,
BoXS reads time directly from the system clock of the client
PC. Measurement errors and delays in stimulus presentation
due to slow connections with the server can therefore be
avoided.

We used the time measure of a high precision eye-tracker
from Sensomotoric Instruments SMI RED250 to validate time
measurement in BoXS. Specifically, we wrote a program that
sends time stamps from BoXS to the eye-tracker and to record
the timing of these stamps in BoXS as well. The times record-
ed by the eyetracker and in BoXS on average deviated by
0.2 ms and the maximum difference observed was 4.2 ms.
Hence, time measurement in BoXS can be considered to be
very precise and valid. At the same time, this validation shows
that measurement in BoXS and in external eye-trackers is very
well synchronized.

In a second validation study, we investigated the precision
of stimulus presentation in BoXS. Stimulus presentation is
naturally limited by the refresh rate of the monitor in that
stimuli cannot be presented shorter than the time which the
monitor needs to overwrite the previous display. Many of the
programs for local experiments with individual participants
such as PsychoPy or DirectRT have the ability to control stim-
uli on the level of single display frames. BoXS does not have
this capability, so that lower precision in timing can be expect-
ed. In the validation study we presented stimuli (numbers vs.
pictures from IAPS (Lang, Bradley, & Cuthbert, 2005)) for
durations of 20, 50, 100, 200, 500, and 1,000 ms each 200
times using the waitTime function of BoXS. We measured the
(validated) time after each presentation and calculated time
differences to infer presentation time. The differences were
on average 1.6 ms larger than the programmed durations
(SD = 1 ms) with a range of deviations between 0 and
16 ms. Note that our measurement includes time for stimulus
presentation plus processing some lines of code so that a pos-
itive deviation could be expected. The time for presenting
IAPS pictures was 0.16 ms longer than the time for presenting
numbers, thus complexity of the stimuli did not make a no-
ticeable difference for presentation time. Hence, overall the
waitTime function can be considered to work very precisely
for timing stimuli.

Although the second validation study shows that stimulus
timing in BoXS is very precise this does not necessarily mean
that the true presentation duration is precise as well since the
stimuli might be timed for presentation but still not be shown
for the correct time on the screen. Most importantly, for very
short presentation times the interplay between hardware and
software could lead to the fact that stimuli are not presented at
all. We conducted a third validation study in which we

presented stimuli for 50, 80, 100, and 200 ms with an intertrial
interval of 1,000 ms on a laptop with a 50-Hz display. Visual
inspection showed that only very few stimuli were actually
presented at 50 ms, some stimuli were omitted for 80 ms,
and essentially all stimuli were shown for 100 ms and beyond.
The presentation time was noticeably longer for 200 ms as
compared to 100 ms, although the precise actual presentation
duration on-screen could not be measured further. Given this
result, BoXS cannot be used for priming below 100 ms, such
as subliminal priming. Furthermore, taking 50 ms as the
threshold for the time necessary to present stimuli on the
screen, arguably screen presentation time could be considered
to be precise £50 ms.

Challenges and limitations
Complex applications and interactivity

One further challenge for web-based experimental systems
such as BoXS is that they should be able to implement designs
that require fairly intensive, real-time interaction between
many persons. Could, for example, a fully functional double
auction with 16 participants be programmed in this software?
And can BoXS handle second-by-second interaction between
players in real time? In general, the BoXS server can handle
such complex interactions with many subjects at the same
time, including quasi real-time cross-subject interactions.
While the BoXS was already successfully tested in experi-
ments involving many simultaneous users, it is hard to specify
the system’s exact limits as they rely on numerous factors
including the performance of the involved computers, the la-
tency of the network, and the type and complexity of the
experiment. Hence, sufficient pre-testing of such complex ex-
perimental programs is required.

Furthermore, it would be useful for some kinds of interac-
tive studies if a web-based experimental system could have
the functionality to handle interactions in which participants
use input devices (e.g., sliders), which instantly causes real-
time changes to a graph. As introduced above, in BoXS
graphs and diagrams can be included in an experiment and
shown to the subjects by using the Google Charts API. This
API can create different types of diagrams based on data pro-
vided by the program. Examples for this would be a pie chart
visualizing risky prospects (Fig. 3) or the contributions in a
public goods game (Fig. 5) or a line graph showing the change
in contributions in a repeated trust game. While this approach
does provide many useful diagram types, it is limited by the
fact that the subjects cannot interact with these diagrams.
Compared to the BoXS, z-Tree does provide a greater selec-
tion of interactive user interface elements, and if these are
necessary in an experiment it might be advisable to implement
the study using z-Tree.

@ Springer

1466

Behav Res (2016) 48:1454-1475

Mobile devices

For some types of studies (e.g., tracking of behavioral changes
over longer periods) it becomes increasingly important that
studies can also be run on mobile devices such as
“smartphones” and tablets. As introduced above, the BoXS
client requires the Java browser plugin in order to work prop-
erly. While this plugin can be easily installed on most com-
puters, it is unfortunately available for neither iOS nor An-
droid, which are the most popular smartphone- and tablet-
operating systems. Hence, in its current implementation BoXS
does not allow implementation of such studies since it does
not run on most smartphones and tablets. For such studies
Javascript-based experimental systems such as jsPsych might
be an alternative, since Javascript is usually available on
smartphones and tablets too (although they do not allow im-
plementation of interactions between persons yet).

In the long run and given sufficient support, the BoXS
could be extended to support such mobile devices. Even ex-
periments in which both desktop and smartphone users partic-
ipate at the same time might be possible. From a technical
perspective there are two approaches implementing mobile
device support. The first approach would be to program
platform-specific clients for mobile-operating systems. Given
its large user base and the fact that it is itself based on Java, the
Android system seems to be a particularly appealing choice
for this approach. Programming such a platform-specific cli-
ent would allow most of the BoXS features to work on mobile
devices. In addition, it would be possible to create device-
specific user interface elements which could adapt to smaller
screen sizes and other device-specific properties. The alterna-
tive approach would be to write a purely HTML-based client
for simple experiments which would work on PCs and mobile
devices alike. The advantage of this approach would be that it
would work on all mobile operating systems. Unfortunately,
the set of features which can be implemented using pure
HTML is limited. Especially advanced features like time-
based experiments or experiments involving real-time interac-
tion may be impossible to implement using this approach. One
potential solution would be to also include elements of
Javascript, potentially combining positive features of jsPsych
and BoXS.

Discussion

Bonn eXperimental System (BoXS) allows experimenters to
develop and run interactive and non-interactive studies in and
outside the laboratory. It is particularly useful for conducting
research with persons at different locations interacting over
the internet, which is for example necessary in studies involv-
ing participants from Amazon’s Mechanical Turk. BoXS
combines core features of z-Tree and specialized programs

@ Springer

for developing non-interactive studies in that it provides sim-
ple routines for connecting, matching, and supervising partic-
ipants and recording process measures. BoXS is platform-
independent and completely browser-based to allow for
large-scale interactive experiments around the world. The
source-code of BoXS is provided under an open license which
allows experimenters to extend the program if necessary and
to verify data handling for data protection reasons. Finally,
BoXS provides a relatively simple programing language
which is easy to learn and to apply.

BoXS has been successfully used in recent research and
could provide a viable tool for the growing number of re-
searchers interested in cognitive processes and interactive be-
havior. BoXS can also be applied for conducting simple non-
interactive studies. However, one has to acknowledge that the
tailoring of BoXS for allowing browser-based interactive
studies comes at a cost. Some functionalities concerning data
manipulation and data input (i.e., loading stimuli files and
saving data files) are currently limited due to Java’s inherently
strict security policies. Workarounds, such as hard coding of
stimuli (see Example 1b, appendix), can be implemented, but
they might not be very elegant. Other programs such as
PsychoPy and OpenSesame might be preferable to BoXS for
running non-interactive cognitive studies that involve compre-
hensive data manipulation. Furthermore, we could show in
validation studies that time measurement in BoXS is very
precise and synchronize with other external devices such as
eye-trackers by relying on the same high precision system
time at the user client. The internal timing of presentation
durations is precise as well, but it was found that the interplay
between software and hardware makes priming with stimuli
presentation durations below 100 ms basically impossible in
BoXS. At 100 ms and above we estimate display time to be
precise+£50 ms, which should be sufficient for many applica-
tions. Also BoXS has the functionality to implement complex
real-time interactions of many individuals, although it has to
be acknowledged that it has not been intensely tested for such
purposes yet. Two further important limitations are that BoXS
in the current version cannot handle real-time changes in in-
teractive graphs and that it does not run on most mobile de-
vices since it requires Java.

The currently released version 1.0 of BoXS contains many
crucial features that allow investigating cognitive processes in
interactive studies. BoXS is aimed to make conducting such
research easier. BoXS will allow answering research questions
that were hard to address with previously established tools
such as hypotheses concerning changes in attention and arous-
al in the course of making interactive decisions as well as
many others. BoXS is also constantly improved and extended
to include additional features and support for external devices
of other manufacturers to allow broadening the range of ex-
perimental applications and making the program attractive for
more potential users. One important project for future

Behav Res (2016) 48:1454-1475

1467

developments is also the extension of the BoXS to run on
mobile devices. We hope that BoXS can contribute to the
cumulative development of knowledge by supporting re-

Appendix
Example 1b: “RiskyChoiceFull.boxs”

// Number of Risky Choices

nGambles =5

// gamblesL/Rl gamble] [outcomel, outcome2,
// first gamble

gamblesIf{ 0][0][0] =0.85
gamblesI{ 0][0][1] =
gamblesI[0][1]J[0] =0.15
gamblesIf{ 0][1][1] =2.5
gamblesR O0][O][0] =0.95
gamblesR 0][0][1] =
gamblesR O0][1][0] =0.05
gamblesR O0][1][1] =0.35
// second gamble
gamblesIf{ 1][0][0] =0.8
gamblesIf{ 1][0][1] =4.8
gamblesIf{ 1][1][0] =0.2
gamblesIf 1][1][1] =
gamblesR 1][0][0] =0.9
gamblesR 1][0][1] =4.8
gamblesR 1][1][0] =0.1
gamblesR 1][1][1] =0.2
// third gamble
gamblesI{ 2][0][0] =0.95
gamblesI{ 2][0][1] =4.8
gamblesI{ 2][1][0] =0.05
gamblesI{ 2][1][1] =0.6
gamblesR 2][0][0] =0.9
gamblesR 2][0][1] =4.8
gamblesR 2][1][0] =0.1
gamblesR 2][1][1] =2.4
// fourth gamble
gamblesI{ 3][0][0] =0.05
gamblesIf{ 3][0][1] =4.8
gamblesI{ 3][1][0] =0.95
gamblesI{ 3][1][1] =0.6
gamblesR 3][0][0] =0.1
gamblesR 3][0][1] =2.6
gamblesR 3][1][0] =0.9
gamblesR 3][1][1] =0.6
// fifth gamble

gamblesIf 4][0][0] =0.5

searchers with implementing their innovative research
ideas also concerning complex topics involving cognition

and interactive behavior.

-1l p/d]

@ Springer

1468 Behav Res (2016) 48:1454-1475
gamblesIf 4][0][1] =2.2

gamblesIf 4][1][0] =0.5

gamblesI] 4][1][1] =

gamblesR 4][0][0] =0.5

gamblesR 4][0][1] =4.8

gamblesR 4][1] 0] =0.5

]

gamblesR 4][1][1

// first part of the presentation table
tOpen =" < table border ="0"' cellspacing="'0"' cellpadding="'0"' width="'520"'">"

trOpen="<tr>"

trClose="</tr>"

tClose ="</table>"
tdl="< tdalign = 'center'> Gamble A</td>"
td2="<tdalign= 'center'> Gamble B</td>"
td3="<tdalign= "center'> Press C for this Gamble</td> "
tdd="<tdalign= "center'> Press M for this Gamble</td> "
// write some numbers into an array ;)

for (1=0; 1< nGambles; 1=1+1)

{

shufflel i] =1

}

// and shuffle thema lot of times e.g. 100x
for (1=0; 1<100; i=1+1)

{

for (J=0; j<nGambles; j=73+1)

{

// shuffle with your neighbour in half of the cases
if (randomUniform() < =0.5)

{

}

// save number to be shuffled and ..

tmp = shufflel j]

// shuffle upward

if (3 +1 ! =nGambles)

{
shuffle[j] = shufflel j + 1]
shufflel j +1] =tmp

}

// shuffle downward

if (j +1==nGambles)

{
shuffle[j] = shufflel j-1]
shufflel j-1] = tmp

randChoosenGamble = randomUniformInteger (0, nGambles-1)

// instructions

while(lastkey ! =32)

{

display (" < CENTER > <H2 > Choice Study </H2 > </CENTER> ")

@ Springer

Behav Res (2016) 48:1454-1475

1469

}

display ("In the following you are asked to select the gamble you prefer.")

display ("Each gamble consists of two outcomes which realize with some probability
that is visually displayed in pie charts.")
display ("Press 'C' to select the left gamble, andpress'M' to select the right gamble.")

display ("One of the decisions will be randomly selected and paid.")

display ("
 If youhave understood the instructions please press space tocontinue.")

recordKeys ()
waitTime (500)

for (1=0; 1< nGambles; i=1+1)

{

// shortening the google chart api call

Lpl = gamblesI{ shufflel i]][0][O]
Lol = gamblesI{ shufflel i]]1[0][1]
Lp2 = gamblesI{ shufflel i]]1[1]1[0]
Lo2 = gamblesI{ shufflel i]1[1]1[1]
Rpl = gamblesR shufflel i]1][0][0]
Rol = gamblesR shufflel i]1]1[0][1]
Rp2 = gamblesR shufflel i]1][1][0]
Ro2 = gamblesR shufflel i]][1][1]

// measure the time when gamble is shown
beginTime = time
// collect images from google api

tdPicl = " < td > <img src = 'http://chart.apis.google.com/chart? cht = p&chd =
t:" +Lpl+"," +Lp2 + "&chs = 260x150&chl =" + Lol + "$20EUR|" + Lo2 + "$20EUR' > </td>"
tdPic2 = " < td > <img src = 'http://chart.apis.google.com/chart? cht = p&chd =
t:" +Rpl+"," + Rp2 + "&chs = 260x150&chl =" + Rol + "$20EUR|" + Ro2 + "%20EUR"' > </td> "

tClose

// and place them into a nice table

table = tOpen + trOpen + tdl + td2 + trClose + trOpen + tdPicl + tdPic2 + trClose +

// gather players decision
while (lastkey ! =67 && lastkey ! =77)
{
// present pies to player
display (table)
recordKeys ()
wailtTime (50)
}

// save players decision (for presented gamble — shuffle[i])

results|[shuffle[i]][0] = lastkey

// length of players decision making in ms (for presented gamble)
results[shufflel i]][1] = time - beginTime

// save the round in which player saw shuffle[i]

results[shufflel i]]1[2] = 1

// choose a gamble by chance

if (shufflel i] == randChoosenGamble)

{
if(lastkey == 67)
{
decision = "A"
}
if(_lastkey ==177)
{

@ Springer

1470 Behav Res (2016) 48:1454-1475

decision = "B"
}
}

// this one is usually not needed, but we have to change lastkey, before enter-
ing the loop again
while(lastkey ! = 32)
{
display ("Please press Space to continue")
recordKeys ()
waitTime (50)

}

// present choosen gamble to user and let him start the dice rolling
// shortening the google chart api call

Lpl = gamblesl[randChoosenGamble] [0] [O]
Lol = gamblesl[randChoosenGamble] [O] [1]
Lp2 = gamblesI[randChoosenGamble] [1][0]
Lo2 = gamblesl|[randChoosenGamble] [1][1]
Rpl = gamblesR[randChoosenGamble][0] [0]
Rol = gamblesR[randChoosenGamble] [0] [1]
Rp2 = gamblesR[randChoosenGamble] [1][O]
Ro2 = gamblesR[randChoosenGamble] [1][1]

// measure the time when gamble is shown TODO: Check where to put timeMeasurements
beginTime = time
// collect images from google api

tdPicl =" < td> <img src = "http://chart.apis.google.com/chart?cht =p&chd=t:" + Lpl

+ "," + Lp2 + "&chs = 260x150&chl =" + Lol + "$20EUR|" + Lo2 + "$20EUR' > </td > "
tdPic2 =" < td> <img src = 'http://chart.apis.google.com/chart?cht =p&chd=t:" + Rpl +
"," + Rp2 + "&chs = 260x150&chl =" + Rol + "$20EUR|" + Ro2 + "%20EUR' > </td> "

// and place them into a nice table
table = tOpen + trOpen + tdl + td2 + trClose + trOpen + tdPicl + tdPic2 + trClose + tClose
while(lastkey ! =10)
{

display(table)

display (" < hl align = 'center' > This is the randomly choosen gamble</hl > ")

display ("Your decision was: Gamble " + decision)

display("Please press Enter to roll the dice..")

recordKeys ()

waitTime (500)
}
// roll the dice
rand = randomUniform ()
if (decision == "A")
{

if (rand < = gamblesI[randChoosenGamble][O][0])

{

outcome = gamblesI[randChoosenGamble] [0] [1]
tdPicl = " < td > <img src = 'http://chart.apis.google.com/chart?cht =

p&chd = t:" + Lpl + "," + Lp2 + "&chco = FF0000, FFEACO&chs = 260x150&chl = " + Lol + "%
20EUR|"™ + Lo2 + "$20EUR"' > </td > "

}

if (rand > gamblesl[randChoosenGamble][0][0])

{

@ Springer

Behav Res (2016) 48:1454-1475 1471

outcome = gamblesl[randChoosenGamble] [1][1]
tdPicl = "<td><img src='http://chart.apis.google.com/
chart?cht=pé&chd=t:" + Lpl + "," + Lp2 + "&chco=FF9900,FF0000&chs=260x150&chl=" + Lol +
"$20EUR|"™ + Lo2 + "$20EUR'></td>"
}
tdPic2 = "<td><img src='http://chart.apis.google.com/chart? cht=p&chd=t:"™ + Rpl + ",
" + Rp2 + "&chco=EOEOEO, FCF7F7&chs=260x150&chl=" + Rol + "$20EUR|" + Ro2 + "$20EUR'></
td>"
}
if (decision == "B")
{
tdPicl = "<td><img src='http://chart.apis.google.com/chart? cht=p&chd=t:" +
Ipl + "," + Lp2 + "&chco=EOEOEQO,FCF7F7&chs=260x150&chl=" + Lol + "%20EUR|" + Lo2 +
"$20EUR'></td>"
if (rand<= gamblesR randChoosenGamble][0][0])
{
outcome = gamblesR randChoosenGamble] [0] [1]
tdPic2 = "<td><img src='http://chart.apis.google.com/
chart? cht=p&chd=t:" + Rpl + "," + Rp2 + "&chco=FF0000, FFEACO&chs=260x150&chl=" + Rol +
"S20EUR|" + Ro2 + "%20EUR'></td>"
}
if (rand > gamblesR[randChoosenGamble][O0][0])
{
outcome = gamblesR randChoosenGamble] [1][1]
tdPic2 = "<td><img src='http://chart.apis.google.com/
chart?cht=p&chd=t:" + Rpl + "," + Rp2 + "&chco=FF9900,FF0000&chs=260x150&chl=" + Rol +
"$20EUR|"™ + Ro2 + "$20EUR'></td>"
}
}
// present lottery win again with a chart (color changed)
table = tOpen + trOpen + tdPicl + tdPic2 + trClose + tClose
display(table)
display ("<hl align="'center'>You won " + outcome + " EUR.</h1>")
wait ()

Example 2b: “PrisonersDilemmaFull.boxs”

rounds =10
// play the game
for (i=1; i<=rounds; i=i+1)
{
matchStranger (A, B)
// if avariable is never used before, it is by default 0 ..
if (isFirstRound == 0)
{
isFirstRound =1
// new style for tables
style ("body{ padding: Opx; font-size: 12px; } hl{ font-size: 130 %; margin-top:
Opx; margin-bottom: 3px; font-weight: normal;} h2{ font-size: 115 %; margin-top: Opx;
margin-bottom: 3px; font-weight: normal; } table{ border-collapse:collapse;} th{ text-
align:center; background:#fff4c6; color:#333; padding:8px l6px 8px 8px; border-

@ Springer

1472 Behav Res (2016) 48:1454-1475

right:1px solid #fff; border-bottom:1lpx solid #fff;} td{ text-align:center; col-
or:#333; padding:8px; border-right:1lpx solid #f3f0ed4; border-bottom:1lpx solid
#£3f0e4d;} ")

// Initialize variables

// CD

//

/] \ |

// C 1200/200| 50/300]

/] | |

/7

// D 1300/50 |100/100]

/] | |

// WinMatrix[Zeile][Spalte][Spieler]

WinMatrix[0][0][0] =200
WinMatrix[0][O][1] =200
WinMatrix[0] 1][0] =50

WinMatrix[0][1][1] =300
WinMatrix[1]1[0][0] =300
WinMatrix[1]1[0][1] =50

WinMatrix[1][1]1[0] =100
WinMatrix[1][1]1[1] =100

// overall win
totalwin=20
// number of rounds per player combination
rounds =10
// Welcome screen
display ("<H2>Prisoners Dilemma Game </H2>
In this study in 10 subsequent rounds you
and a randomly chosen other person will simultaneously decide whether to cooperate or to
defect.
")> display("If you both decide to cooperate, youwill both earn 200 point. If
you both decide to defect youwill both earn 100 points.
")
display ("If one of youdecides todefect and the other to cooperate, the defecting person
receives 300 points and the cooperating person receives 50 points.
")
display ("These outcomes will be shown to youina table format on screen each time youmake
a decision.
")
display ("In each round you are randomly matched with a new person.")
display ("The total points your earned are paid to you according to the followingexchange
rate: 500 point =1 Euro.")
//Subject Code
display ("

Please indicate subject code:")
inputString (sub_number)
// EYETRACKER ONLY FOR S1
if (username =="31")
{
// INIT EYETRACKER
// eyetrackerInitialise ("localhost™,4444,5555)
display ("The calibration begins after pushing the continue button.
Please hold
still and follow the points.")
wait ()
// CALIBRATE EYETRACKER AND START TRACKING
// eyetrackerCalibrate ()
display ("Thank you - the calibration was successful")

@ Springer

Behav Res (2016) 48:1454-1475

1473

}

filename = "PrisonersDilemma " + sub umber + ".dat"
// eyetrackerStart (60, filename)

// SEND TRIGGER

// eyetrackerTrigger ("Calibration Done")

// Wait for everybody being ready
waitForPlayers ("continue™)

// Calculate Payoff

table = "<table>"

table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table
table = table

clear ()

B e

+

A}

n

"

"

<thead>"

<tr>"

<th> </th>"

<th>Cooperate</th>"

<th>Defect</th>"

</tr>"

</thead>"

<tbody>"

<tr>"

<th>Cooperate</th>"

<td>" +WinMatrix{ 01[0J[O] +" / " + WinMatrix{ 0][O][1]
<td>" +WinMatrix{ 01[1]1[0] +" / " + WinMatrix{ 0][1][1]
</tr>"

<tr>"

<th>Defect</th>"

<td>" + WinMatrix[1J[0][0] +" /" + WinMatrix[1] 0][1]
<td>" +WinMatrix[1J[1][0] +" /" +WinMatrix{ 1][1]1[1]
</tr>"

<tr>"

</tbody>"

"</table>"
display (table)

choice (action, "Cooperate", "Defect")
if (username == "S1")

{

// SEND TRIGGER for start of contribution screen
// eyetrackerTrigger ("contribution start for round: " + 1)

}

waitForPlayers ("Weiter")

if (A.action == "Cooperate")

{

i

{

}

f(B.action == "Cooperate")

A.win=WinMatrix[0][0][O]
B.win=WinMatrix[0][O] [1]

if (B.action == "Defect")

{

"</td>"
"</td>"

"</td> "
H</td> "

@ Springer

1474 Behav Res (2016) 48:1454-1475

A.win=WinMatrix[0][1][0]
B.win=WinMatrix[0][1][1]

}
if (A.action == "Defect")
{
if (B.action == "Cooperate")
{
A.win=WinMatrix[1][0][O]
B.win=WinMatrix[1][0] [1]
}
if(B.action == "Defect")
{
A.win=WinMatrix[1][1][O]
B.win=WinMatrix[1][1][1]

}

// present actions and payoff

display ("You have chosen: '" +action+"'.")
if (role=="B")
{
display ("Your opponent has chosen: '" + A.action+""'.")
}
if (role=="A")
{
display ("Your opponent has chosen: '" + B.action+""'.")
}
display ("Your income in this round is: " + win)

totalwin = totalwin + win
display ("Your total income so far is: " + totalwin)
win[1] =win
action[i] = action
if (username =="S1")
{
// SEND TRIGGER for start of feedback screen — note that screendisplay isbuildat the wait
command
// eyetrackerTrigger ("feedback start for round: " + 1)
}
wait ()
matchDone ()
}
if (username=="S1")
{
// eyetrackerTrigger ("finish after round: "+ 1)
// eyetrackerStop ()
}
// End of game reached
display ("<h1>The study is finished. Please click continue. </hl1>")
wait ()

@ Springer

Behav Res (2016) 48:1454-1475

1475

display ("Your total earning is: " + totalwin + "Points")
display ("This equal: " + totalwin / 200 + " Euro")
display ("

 Please contact the experimenter.")

waitForPlayers ("Finish")

References

Bimbaum, M. H. (2004). Human research and data collection via the internet.
Annual Review of Psychology, 55, 803-832.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436.

Chaudhuri, A. (2011). Sustaining cooperation in laboratory public goods
experiments: a selective survey of the literature. Experimental
Economics, 14(1), 47-83.

Cohen, J., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: An
interactive graphic system for designing and controlling experiments
in the psychology laboratory using Macintosh computers. Behavior
Research Methods, Instruments, & Computers, 25(2), 257-271.

Dawes, R. M. (1980). Social dilemmas. Annual Review of Psychology,
31, 169-193.

de Leeuw, J. R. (2014). jsPsych: A JavaScript library for creating behav-
ioral experiments in a Web browser. Behavior Research Methods, 1—
12. doi: 10.3758/313428-014-0458-y

Dorrough, A. R., Glockner, A., Hellmann, D. M., & Ebert, 1. (2015). The
development of ingroup favoritism in repeated social dilemmas.
Frontiers in Psychology, 6. doi: 10.3389/fpsyg.2015.00476

Fiedler, S., Glockner, A., Nicklisch, A., & Dickert, S. (2013). Social
Value Orientation and information search in social dilemmas: An
eye-tracking analysis. Organizational Behavior and Human
Decision Processes, 120(2), 272-284.

Fiedler, S., Glockner, A., & Nicklisch, A. (2012). The influence of social
value orientation on information processing in repeated voluntary
contribution mechanism games: an eye-tracking analysis. In A.
Innocenti & A. Sirigu (Eds.), Neuroscience and the economics of
decision making (Vol. 5, pp. 21-53). New York: Routledge.

Fischbacher, U. (2007). z-Tree: Zurich toolbox for ready-made economic
experiments. Experimental Economics, 10(2), 171-178.

Forster, K. 1., & Forster, J. C. (2003). DMDX: A Windows display pro-
gram with millisecond accuracy. Behavior Research Methods,
Instruments, & Computers, 35(1), 116-124.

Geller, A. S., Schleifer, I. K., Sederberg, P. B., Jacobs, J., & Kahana, N. J.
(2007). PyEPL: A cross-platform experiment-programming library.
Behavior Research Methods, 39(4), 950-958.

Glockner, A., & Hilbig, B. (2012). Risk is relative: Risk aversion yields
cooperation rather than defection in cooperation-friendly environ-
ments. Psychonomic Bulletin & Review, 19(3), 546-553.

Hardin, G. (1968). The tragedy of the commons. Science, 162, 1243—
1248.

Komorita, S. S., & Parks, C. D. (1995). Interpersonal-relations - mixed-
motive interaction. Annual Review of Psychology, 46, 183-207.

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International
affective picture system (IAPS): Affective ratings of pictures and
instruction manual: NIMH, Center for the Study of Emotion &
Attention.

Mason, W., & Suri, S. (2012). Conducting behavioral research on
Amazon’s Mechanical Turk. Behavior Research Methods, 44(1),
1-23.

Mathot, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-
source, graphical experiment builder for the social sciences.
Behavior Research Methods, 44(2), 314-324.

Mueller, S. T. (2010). The PEBL manual. Retrieved from http://pebl.
sourceforge.net/

Peirce, J. W. (2007). PsychoPy—psychophysics software in Python.
Journal of Neuroscience Methods, 162(1), 8-13.

Perakakis, P., Guinot, J. V., Conde, A., Jaber-Lopez, T., Garcia-Gallego,
A., & Georgantzis, N. (2013). A technical note on the precise timing
of behavioral events in economic experiments. Working paper of the
Economics Department, Universitat Jaume I, Castellon (Spain).

Rapoport, A., & Chammah, A. M. (1965). Prisoner’s dilemma. Ann
Arbor, MI: University of Michigan Press.

Reips, U.-D. (2002). Standards for internet-based experimenting.
Experimental Psychology, 49(4), 243-256.

Reips, U.-D., & Birnbaum, M. H. (2011). Behavioral research and data
collection via the internet. In R. W. Proctor & K.-P. L. Vu (Eds.), The
handbook of human factors in web design (pp. 563-585). Mahwah:
Erlbaum.

Reips, U.-D., & Funke, F. (2008). Interval-level measurement with visual
analogue scales in Internet-based research: VAS Generator.
Behavior Research Methods, 40(3), 699-704.

Reips, U.-D., & Neuhaus, C. (2002). WEXTOR: A Web-based tool for
generating and visualizing experimental designs and procedures.
Behavior Research Methods, Instruments, & Computers, 34(2),
234-240.

Sally, D. (1995). Conversation and cooperation in social dilemmas: A
meta-analysis of experiments from 1958 to 1992. Rationality and
Society, 7(1), 58-92.

Schulte-Mecklenbeck, M., Kuehberger, A., & Ranyard, R. (2011). A
handbook of process tracing methods for decision research: a crit-
ical review and user's guide. New York: Psychology Press.

Seithe, M. (2012). Introducing the Bonn Experiment System (BoXS).
Bonn ECON Papers, No. 01/2012.

Stahl, C. (2006). Software for generating psychological experiments.
Experimental Psychology, 53(3), 218.

Stevens, M., Lammertyn, J., Verbruggen, F., & Vandierendonck, A.
(2006). Tscope: A C library for programming cognitive experiments
on the MS Windows platform. Behavior Research Methods, 38(2),
280-286.

Stoet, G. (2010). PsyToolkit: A software package for programming psy-
chological experiments using Linux. Behavior Research Methods,
42(4), 1096-1104.

Straw, A. D. (2008). Vision egg: an open-source library for realtime visual
stimulus generation. Frontiers in neuroinformatics, 2.

Van Lange, P. A. M., Joireman, J., Parks, C. D., & Van Dijk, E. (2013).
The psychology of social dilemmas: A review. Organizational
Behavior and Human Decision Processes, 120(2), 125-141.

von Bastian, C. C., Locher, A., & Ruflin, M. (2013). Tatool: A Java-based
open-source programming framework for psychological studies.
Behavior Research Methods, 45(1), 108—115.

@ Springer

http://dx.doi.org/10.3758/s13428-014-0458-y
http://pebl.sourceforge.net/
http://pebl.sourceforge.net/

	Bonn eXperimental System (BoXS): An open-source platform for interactive experiments in psychology and economics
	Abstract
	Introduction
	Key features of the Bonn Experiment System
	Platform independence and flexibility
	Open-source issues/availability
	Feature set
	Documentation and getting started

	What is inside BoXS?
	Applications and examples
	Example 1: risky-choice study
	Example 2: Repeated prisoners’ dilemma with eye-tracking
	Example 3: Repeated public good with mood induction and eye-tracking or mouse-tracking

	Validation of time measurement and presentation timing
	Challenges and limitations
	Complex applications and interactivity
	Mobile devices

	Discussion
	Appendix
	�Example 1b: “RiskyChoiceFull.boxs”
	Example 2b: “PrisonersDilemmaFull.boxs”

	References

