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Abstract MultiLevel Simultaneous Component Analysis
(MLSCA) is a data-analytical technique for multivariate
two-level data. MLSCA sheds light on the associations be-
tween the variables at both levels by specifying separate
submodels for each level. Each submodel consists of a com-
ponent model. Although MLSCA has already been success-
fully applied in diverse areas within and outside the behavioral
sciences, its use is hampered by two issues. First, as MLSCA
solutions are fitted by means of iterative algorithms, analyzing
large data sets (i.e., data sets with many level one units) may
take a lot of computation time. Second, easily accessible soft-
ware for estimating MLSCA models is lacking so far. In this
paper, we address both issues. Specifically, we discuss a com-
putational shortcut for MLSCA fitting. Moreover, we present
the MLSCA package, which was built in MATLAB, but is
also available in a version that can be used on any Windows
computer, without having MATLAB installed.
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Introduction

Nowadays, more and more studies result in multivariate two-
level data. In sensometric research, for instance, such data are
obtained when multiple panelists each rate different sets of
food samples on a number of descriptor variables (e.g., Bro,
Qannari, Kiers, Naes, & Frost, 2008). Take as a second exam-
ple an emotion psychologist who studies how the experience
of multiple emotions evolves across time through experience
sampling, and does this for a number of subjects (e.g., Erbas,
Ceulemans, Pe, Koval, & Kuppens, 2014). Such data have a
two-level structure, in that the observation units (i.e., food
samples, measurement occasions) can be considered level
one units that are nested within level two units (i.e., panelists,
subjects). Moreover, the data are multivariate in that all level
one units are measured on multiple variables. In the remain-
der, following De Roover, Ceulemans and Timmerman
(2012), we will denote the level two units by “data blocks”
and the level one units by “observations.”

Many research questions regarding two-level multivariate da-
ta pertain to the associations between the variables, which need
not be the same across all data levels. In case the variables fall
apart in predictor (i.e., independent) and criterion (i.c., depen-
dent) variables, multilevel regression models (Snijders &
Bosker, 1999) may be adopted to properly model these different
associations. In case no such distinction is made and the number
of variables is somewhat larger (say, larger than five), researchers
often turn to multilevel factor analysis. The key principle behind
this method is that the observed variables are considered to be
indicators of latent variables, which account for the associations
between the variables. Two types of multilevel factor analysis
techniques exist. The first type is multilevel confirmatory factor
analysis (multilevel CFA), which aims at testing whether specific
hypotheses regarding the factor structure are consistent with the
data (e.g., Mehta & Neale, 2005). The second type is
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exploratory in nature (multilevel EFA) and is used to find the
latent factors that best fit the data at hand (e.g., Goldstein &
Browne, 2005).

In multilevel EFA, the variance in the data is split in a
between part, containing the means of each data block, and a
within part, consisting of the deviations from the block means,
and separate exploratory factor models are fitted to each part.
Hence, between-block differences in variable means and co-
variance structure can be studied separately. Multilevel EFA,
however, has the disadvantage that it requires a large number
of data blocks.

An interesting alternative to multilevel EFA was provided by
Timmerman (2006), who proposed a class of multilevel simulta-
neous component models (MLSCA). Like a multilevel EFA
model, a MLSCA model sheds light on the associations between
the variables at the different levels, by specifying separate
submodels for the level two units and the level one units. Each
submodel consists of a component model. MLSCA has already
been successfully applied to study individual differences in de-
velopment (Timmerman, Ceulemans, Lichtwarck-Aschoff, &
Vansteelandt, 2009) and attachment (Bosmans, Van de Walle,
Goossens, & Ceulemans, 2014), cross-cultural differences
(Kuppens, Ceulemans, Timmerman, Diener, & Kim-Prieto,
2006), and differences between experimental conditions in a so-
cial dilemma game (Stouten, Ceulemans, Timmerman, & Van
Hiel, 2011) and genomics (Jansen, Hoefsloot, van der Greef,
Timmerman, & Smilde, 2005).

However, the use of MLSCA is hampered by two issues.
First, as MLSCA solutions are obtained through iterative al-
gorithms, analyzing large data sets (i.e., data sets with many
observations) may take a lot of computation time. Second,
whereas for multilevel regression, multilevel CFA, and multi-
level EFA easily accessible software exists (e.g., MPLUS,
SAS, and R-packages), up to now, such software for estimat-
ing MLSCA models has been lacking.

In this paper, we address both issues. Specifically, we dis-
cuss a computational shortcut for MLSCA fitting that consid-
erably decreases computation time in cases where the number
of level one units is much larger than the number of variables.
Moreover, we present the MLSCA package, which was built
in MATLAB, but is also available in a version that can be used
on any Windows computer, without having MATLAB
installed. This package may be freely downloaded from
http://ppw.kuleuven.be/okp/software/MLSCA. The MLSCA
package allows the user to interact with the program through
a graphic user interface, in which different analysis options
can be specified (e.g., different number of between- and
within-components and different MLSCA variants). Through
built-in model selection heuristics, the package assists the user
in selecting a model that fits the data well and is parsimonious
at the same time. The analysis results are automatically saved
in formats that can be easily loaded in popular software pack-
ages (e.g., SAS and SPSS) to further process them (e.g.,

plotting the component scores/loadings, correlating the ob-
tained estimates with other variables).

The remainder of this paper is organized into four main
sections. In the second section, MLSCA theory is recapitulat-
ed. In the third section, the different steps of an MLSCA
analysis are discussed and demonstrated making use of sen-
sory profiling data. In this section, we also present the com-
putational shortcut for large data sets. The fourth section in-
troduces the MLSCA software package. Finally, the fifth sec-
tion contains some concluding remarks.

MultiLevel simultaneous component analysis
(MLSCA)

Data structure and preprocessing

MLSCA models a data matrix X, that consists of 7
columnwise concatenated data blocks X; (i = 1.../), consisting
of K; observations by J variables. X can be split uniquely into
three parts — an offset term, a between-part, and a within-part —
as:

X — Xoﬁ&et + Xbetween + Xwithin. (1)

The entries of these three matrices are obtained by
decomposing the score x;, of observation k; within data block
i on variable j:

o offset between within
Xijk, = Xk, T X, T X,
X + (Xij._x.,:) + (xijk,»_xij.)a

(2)

with x ; denoting the mean score on variable j computed
across all data blocks, and x;; indicating the mean score on
variable j computed within data block i.

Since component analysis identifies components that cap-
ture as much of the variance in the data as possible, variance
differences among the variables may hugely affect the obtain-
ed results. Therefore, researchers should decide whether or not
such variance differences are meaningful. For instance, when
analyzing physiological measures such as heart rate, respira-
tory volume, and blood pressure, variance differences are at
least partly arbitrary because the variables are measured on a
different scale (see e.g., De Roover, Timmerman, Van Diest,
Onghena, & Ceulemans, 2014). Thus, it makes sense to give
each variable the same weight in the analysis by scaling each
variable to a variance of one across all data blocks. However,
as a counterexample, when studying emotions in daily life, the
variances of negative emotions are often much smaller than
those of positive emotions, even though they are rated using
the same scale. Such differences are meaningful because neg-
ative emotions are experienced less often than positive ones.
Discarding these variance differences may yield misleading

@ Springer


http://ppw.kuleuven.be/okp/software/MLSCA

1010

Behav Res (2016) 48:1008-1020

results (see e.g., Brose, De Roover, Ceulemans, & Kuppens,
2015); therefore, one should not scale the variables to equal
variance in this case.

Model

The full MLSCA model for the observed data is obtained by
summing the offset term and the between- and within-
submodels (see Timmerman, 2006), which we discuss below.

Between-submodel

The between-submodel captures the differences between data
blocks in variable means. It boils down to an ordinary princi-

pal component analysis (PCA) of X”*"**“", Formally, each of
o between

the 7 between-parts X2¢"**" is approximated by X ; which
is decomposed as follows:
.. between

i = lKif?Bbl’ (3)

with 1, being a K;x 1 vector of ones, f2 (1x Q") containing the
between-component scores of data block 7 on the O” between-
components, and B” (Jx Q") being the between-component
loading matrix. Per component, the overall mean (i.e., across
all blocks) of the between-component scores equals zero, and
its overall variance amounts to one.

Two remarks regarding the between-loadings are in order.
First, these loadings may be orthogonally or obliquely rotated,
provided that the between-component scores are counterrotated.
This rotational freedom is often exploited to facilitate the inter-
pretation of the obtained components, by rotating the loadings
towards simple structure. Second, a raw between-loading
amounts to the covariance among the between-component and
the between-part of the observed variable. To ease interpretation,
one can compute normalized loadings, which can be read as
correlations rather than covariances, by dividing each raw load-

ing by the standard deviation of the corresponding column of
Xbetween'

Within-submodel

The within-submodel accounts for the covariance structure of

the variables within the data blocks. More specifically, each
o within

X is approximated by X

which is decomposed as:

. within )

=, )
with Q" denoting the number of within-components for data
block i, F" (K;x Q") being its within-component score matrix,
and B} (JxQ") its within-component loading matrix. Per
block and per component, the mean of the within-
component scores equals zero.
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The most general variant, called MLCA, boils down to a
separate PCA per X! with the variance of the within-
component scores being restricted to one for each of the
block-specific components. Thus, each data block has its
own component loading matrix B}", implying that the within-
component scores of the different data blocks cannot be com-
pared. Each loading matrix B;” can be separately rotated.
MLCA should be used when equal within-loadings for the
different data blocks are implausible. For instance, when
assessing the structure of values in different cultures, it is
reasonable that this structure differs depending on, amongst
others, the industrialization rate of the cultures (see e.g., De
Roover, Timmerman, Mesquita, & Ceulemans, 2013).

However, for many data sets it makes sense to expect that the
within-loadings of the data blocks are equal or at least very
similar. Then, the structure is (about) the same, but the variances
and/or correlations of the component scores may still differ
across data blocks. As an example, Erbas et al. (2013) studied
the structure of 20 emotions in typically developing adolescents
and in adolescents with autism spectrum disorder (ASD). They
found that the emotion loadings are very similar in both groups,
but that the emotion components are more strongly correlated in
the autism group. As another example, Brose et al. (2015) sum-
marizes multiple studies on daily affect in different age groups by
stating that the level of negative affect varies less across days in
older adults. To model such data, based on the simultaneous
component analysis (SCA) framework of Timmerman and Kiers
(2003), Timmerman (2006) distinguished four different model
variants (see Table 1), which imply different sets of restrictions
on the F}" matrices. Note that all variants constrain B}” to be the
same for all data blocks.

The four variants can be ordered in terms of restrictiveness.
MLSCA-P is the least restrictive variant in that no further con-
straints are imposed on the variances and correlations of the
within-component scores. When these correlations are
constrained to have the same absolute values in all data blocks,
but the variances are left untouched, MLSCA-PF2 is obtained.
Importantly, this constraint on the correlations implies that the
signs of these correlations may differ across the blocks (see
Helwig, 2013), which has not always been acknowledged in
previous papers on MLSCA. If such sign differences are unrea-
sonable and occur, a constrained MLSCA-PF2 version can be
considered, which restricts the correlations to be exactly the
same. This model can be called MLSCA-PF2-NN, as it imposes
non-negativity constraints on a further decomposition of the F}"
matrices (see Harshman, 1972; Kiers, ten Berge & Bro, 1999).
MLSCA-IND goes one step further in this direction in that the
correlations of the within-component scores are set to zero for
each data block. Finally, in MLSCA-ECP, the most restrictive
variant, both the variances and the correlations of the within-
component scores are restricted to be the same for each data
block. Note that in all four variants, the overall variances of the
within-component scores equal one per component.
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Table 1  Overview of the restrictions imposed on the variances (var)
and correlations (corr) of the within-component scores of the separate
data blocks by the different MultiLevel Simultaneous Component

Analysis (MLSCA) variants, and of the associated complexity values,
I

with K = Y min(K;, In(K;)J)
i=1

Variant Var Corr Complexity cgv
MLSCA-P None None KQ"+JO"—(0")Y-10"
MLSCA-PF2 None Equal® 0*(0"1)
W W W

KQ¥ +JO"-(I + 1)Q"—(I-1)==%—
MLSCA-IND None Zero ! ! L 0"(0"1)

KQ" 4+ JO"—(I +1)Q"-1==5—
MLSCA-ECP Equal Equal _ — > i

KQ" + JQ"~(I-1)Q"~(1-1) £ ~(0")*-10"
MLCA - - KO"+1JQ"—KQ"Y—10"

# The unconstrained MLSCA-PF2 only imposes equality of the absolute values of the correlations

Two of these four variants, MLSCA-P and MLSCA-ECP,
have rotational freedom. Specifically, the within-loadings can
be rotated across data blocks, as long as these rotations are
compensated for in the within-component scores. Note that a
raw within-loading equals the covariance between the
corresponding within-component and the within-part of
the associated observed variable. Again, when the cor-
relation, rather than the covariance, is of interest, the
within-loadings can be normalized into correlations by
dividing them by the standard deviation of the associat-
ed column of X",

Steps in an MLSCA analysis

In this section, we discuss the three main steps of an MLSCA
analysis: (1) fitting the different MLSCA variants, (2) model
selection, that is, determining the optimal number of between-
and within-components and the most adequate model variant
for the within-part, and (3) interpreting the component matri-
ces of the retained solution. These steps will be illustrated by
analyzing a sensory profiling data set.

An important goal in sensory profiling research is to reveal
whether panelists have systematically higher or lower ratings
than other panelists; whether panelists, implicitly or explicitly,
take different product features into account when judging food
samples; whether panelists attach different weights to these
product features; and whether these product features are dif-
ferently associated across panelists. These four questions per-
tain to between-panelist differences in mean levels, within-
component loadings, and the variances and correlations of
the within-component scores, and can thus be answered using
MLSCA.

To demonstrate this, we will analyze sensory profiling data
concerning cream cheeses. Specifically, eight panelists were
asked to rate three samples of ten different cream cheeses (i.e.,
30 samples) with respect to 23 attributes, such as sweet,

grainy, and chalky (for a detailed description of the data set,
see Bro et al., 2008). We consider the samples to be the level
one units, which are nested within the panelists. In other
words, the data blocks pertain to the sample by attribute data
matrices of the different panelists. In accordance with previ-
ous analyses of these data (Bro et al., 2008; Ceulemans,
Timmerman, & Kiers, 2011; De Roover, Timmerman, Van
Mechelen, & Ceulemans, 2013; Wilderjans & Ceulemans,
2013), we opted to discard all variance differences between
the attributes by scaling each of them to a variance of one
across all data blocks (preprocessing option of the software).
This implies that possible differences in variances between
panelists are retained. The software package includes an
excel-file that shows the raw data, the scaled version, and
the splitting into offset term, between-part, and within-part.

Fitting the different MLSCA variants
Loss function

When fitting the different MLSCA variants for specific num-
bers of between-components and within-components, we look
for estimates of 7, B, F¥, and B}" that satisfy the imposed
constraints and minimize the following loss function:

2

; (5)

1
=3 || () ~(1 777 4 2B
i=1

where X,;— X% implies that we analyze the grand-mean cen-
tered data. Timmerman (2006) demonstrated that minimizing
this loss function (Eq. 5) is equivalent to maximizing the per-
centage of variance in the data that the between- and within-
components account for:

f

1
_ offset
Zi:l”xi X;

VAF% = 1-

2 (6)
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Furthermore, the VAF% may be computed for each
submodel separately, because the offset, between-submodel,
and within-submodel are mutually orthogonal. Specifically,
the percentages of between- and within-variance accounted
for amount to:

VAF%benveen — Z i=1 H beb ,H

! efween 2
M o

FWBM /H

VAF%Within — Zl 1”
Zi:l HX}MMMH

Note that it is instructive to examine and compare the
values of Y7_ [IXZ¢"||2 and Y1_, IX}"™™"||2, as they indicate
how much of the variance is situated at the between-level and
how much at the within-level. For instance, these values equal
1,902.05 and 3,617.95 for the cheese data, implying that
34.46 % of the total variance is between-variance. Moreover,
it is also worthwhile to inspect the amount of between- and
within-variance for each variable separately.

Algorithm

Because the X?°***" and X" matrices are mutually orthog-
onal, the parameters of the between- and within-submodels
can be estimated separately. In particular, f2 and B are obtain-
ed by conducting a singular value decomposition (SVD) on
the vertically concatenated X?“"**“* matrices (for details, see
Timmerman, 2006). The within-component scores and load-
ings of the MLCA and MLSCA-P models are estimated by an
SVD of each separate X" matrix and of their vertical con-
catenation, respectively (Kiers & ten Berge, 1994a;
Timmerman & Kiers, 2003). Because of the additional restric-
tions in the MLSCA-PF2, MLSCA-IND, and MLSCA-ECP
models, an alternating least squares algorithm is required to
estimate their associated within-component scores and load-
ings. These algorithms alternate between estimating B" and
the separate F}" matrices, starting from an initial configuration
for B (see Timmerman & Kiers, 2003). In case of MLSCA-
PF2 analyses, it may happen that the obtained solution is de-
generate in that the within-component scores are extremely
strongly correlated in each data block. This degeneracy prob-
lem is well known in PARAFAC analysis where one possible
solution is to impose orthogonality constraints (Harshman &
De Sarbo, 1984). Following this line of reasoning, in case of a
MLSCA-PF2 degeneracy, we recommend considering or-
thogonality restrictions and thus using MLSCA-IND. More-
over, to obtain MLSCA-PF2-NN solutions, non-negativity
constraints can be imposed in a particular step of the alternat-
ing procedure (see, Kiers, ten Berge & Bro, 1999).

Given that the results of an ALS algorithm may depend on
the starting configuration and thus may pertain to a local
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optimum only, we recommend using a multi-start procedure.
Specifically, we advise running the algorithm using a more or
less rational start, consisting of the B" that is obtained through
an MLSCA-P analysis, as well as using a number of randomly
generated B" matrices, and retaining the best solution encoun-
tered across the different runs. When analyzing the cheese
data, we used 100 random starts.

Computational shortcut

For large data sets, computation time can be considerable due
to, amongst others, the SVDs that are performed when esti-
mating the separate F}” matrices. If one or more of the data
blocks X" contain more observations than variables — as is
typically the case — computational costs can be decreased by
using a speedup that was proposed by Kiers & Harshman
(1997) in the context of three-way component analysis. More
specifically, one computes the QR decomposition of the X-
JVithin matrices for which J<K;: X"™"=QR;, with Q; a K;xJ
columnwise orthonormal basis matrix and R; (JX.J) an upper
triangular matrix, and replaces X" by R;. Analogous to
what is explained by Kiers and Harshman (1997), the loss
function does not change when replacing X" by R;, so
minimizing the loss function involving R; solves the same
problem, but on (much) smaller matrices. Conducting the
MLSCA analysis on these smaller matrices yields within-
component score matrices F,*"*? that are reduced in size as
well. Afterwards, the within-component score matrices F}”
for the full data set are computed based on the F'*"*/ and Q;
matrices: F'=Q;F/"*.

How much computation time can be gained depends of
course on the difference between the number of observations
per block and the number of variables. To illustrate this,
Table 2 first shows the computation time of the within-part
of the MLSCA analyses of the cheese data, run on a the same
laptop using five within-components, one rational start, and
100 random starts. As the number of observations per block is
only slightly larger than the number of variables, there is hard-
ly any gain in computation time. For comparison, Table 2 also
displays the computation times for the MLSCA analyses of
the cross-cultural data reported by Kuppens et al. (2000),
using five within-components and a rational start only. This
data set consists of ratings of 14 emotions by inhabitants
(observations) of 48 different countries (data blocks). Since
the number of inhabitants per block varies between 27 and
549 (M = 193.75; SD = 117.63), it is no surprise that the
analyses are executed much faster when using the computa-
tional shortcut.

Model selection

The number of between- (i.e., 0”) and within- (i.e., 0") com-
ponents and the model variant that is needed to adequately and
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Table 2 Computation times (in seconds) of the within-part of
MultiLevel Simultaneous Component Analysis (MLSCA) analyses of
the cheese data and a cross-cultural data set

Data Shortcut Within analysis
ECP IND PF2 P
Cheese With 2.732 150.213 161.199 .006
Without 2.711 157.842 164.737 .005
Cross-cultural ~ With 241 9.461 10.668 .030
Without 1.646 46.357 48.600 .044

parsimoniously summarize the information in a two-level
multivariate data set are usually unknown, although prior
studies or theory can sometimes yield useful clues. To resolve
this model selection problem, one may fit the different
MLSCA variants with increasing O” and 0" and use a formal
model selection heuristic to assessing the optimal complexity.
As the between- and within-part of the data are analyzed in-
dependently (see Model subsection above), the appropriate
between- and within-submodels can be determined separately.

Between-part

To select the optimal number of between-components, we
recommend using the CHull test (Ceulemans & Kiers, 2006;
Wilderjans, Ceulemans, & Meers, 2013), which is an exten-
sion of the well known scree-test (Cattell, 1966) and has
shown good behavior for MLSCA (Ceulemans, Timmerman
& Kiers, 2011) as well as for a variety of other model selection
problems (Bulteel, Wilderjans, Tuerlinckx, & Ceulemans,
2013; Ceulemans & Kiers, 2009; Ceulemans & Van Meche-
len, 2005; Schepers, Ceulemans, & Van Mechelen, 2008). To
conduct this test, VAF%"“"***" s first plotted against a com-
plexity measure ¢ (i.e., the number of free parameters

corrected for the number of observations), which can be com-
puted as [min(Z, In(/)))]0°+JO"—(0")*— O (for a detailed ex-
planation, see Ceulemans, Timmerman, & Kiers, 2011). Next,
the convex hull of this plot is obtained and the solutions that
are located on the higher boundary of this convex hull — de-
noted as the hull solutions — are retained, as they have the best
fit versus complexity balance. Finally, the resulting A hull
solutions are scanned to detect the model complexity at which
the increase in fit maximally levels off. To determine this point
in a more objective way, scree ratios

VA F%zemeeniVA F%Zitlween

ChCh-1
Sty = — ’ 8
VAF%ert\iveen_VAF%Zemeen ( )

Ch+17Ch

are computed, with / indicating the A-th hull solution
(h=1..H), and the solution for which the resulting ratio is

highest is retained (see Ceulemans & Kiers, 2006; Wilderjans,
Ceulemans, & Meers, 2013).

When analyzing the cheese data, we fitted between-models
with one to six between-components. Applying the CHull
procedure reveals that all between-models except for the one
with five between-components lie on the higher boundary of
the convex hull (see Fig. 1). Based on the scree ratios (see
Table 3), a between-model with four between-components is
selected.

Within-part

To select the optimal model variant and number of within-
components Q", one can also apply a CHull test. Specifically,
one can compute scree ratios as in equation (8), but using
VAF%"™" and cor, with the latter value expressing the num-
ber of free parameters in the within-submodel, corrected for
the number of observations. Table 1 shows the formulas to
determine cp+ (for details, see Ceulemans, Timmerman, &
Kiers, 2011). Note, however, that it is not readily clear how
the cor values should be adapted to distinguish among the
MLSCA-PF2 and MLSCA-PF2-NN variants.

To determine the optimal within-model for the cheese data,
analyses with all five model variants (see Model subsection
above) were performed with the number of within-
components varying from one to six, resulting in 30 within-
solutions. Figure 2 shows the resulting hull plot. Applying the
numerical convex hull procedure to this plot yielded
seven hull solutions. Based on the associated sr,-values
(see Table 4), a MLSCA-PF2 model with two within-
components seems indicated.

Hull plot for between part
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Fig. 1 Hull plot for the between-solutions for the cheese data. The
numbers in the plot indicate the complexity of the solutions (i.e., the
number of between-components)
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Table 3  Fit and complexity values and sr,-ratio for all between-
solutions for the cheese data that are located on the upper boundary of
the convex hull

Table4 Fitand complexity values and sr,-ratio for all within-solutions
for the cheese data that are located on the upper boundary of the convex
hull

o’ co VAF%beteen 7
1 29 33.29 -
2 56 59.02 137
3 81 76.36 1.44
4 104 87.45 2.0
6 144 96.60 "

*For the first and the last models considered, the sr,-ratio is not defined

The optimal model is underlined and indicated in italics

Interpreting the parameter estimates of the retained
model

Interpretation of the between-submodel

Table 5 displays the raw (i.e., the covariances between the
between-components and the between-parts of the observed
variables, see above) VARIMAX rotated between-component
loadings. Because the between-variance is considerably smaller
than the within-variance, the normalized loadings (i.e., correla-
tions rather than covariances; not shown) are much larger, but
they are proportionally quite similar to their raw counterparts.
From Table 5 it can be concluded that the differences in the
mean descriptor profiles of the eight panelists can be summa-
rized by means of the following four dimensions: The first
characteristic pertains to chalky (i.e., astringency) and grainy

Hull plot for within part

Perc. explained variance within part

201

500 1000 1500 2000

Model complexity

Number in plot ~ Variant oY . o VAF %" g,
1 MLSCA-ECP 1 247 2423 -
7 MLSCA-PF2 2 501  40.70 1.82
13 MLCA 2 800  51.38 1.18
19 MLCA 3 1176 62.81 132
27 MLCA 4 1536 71.10 1.30
28 MLCA 5 1880  77.19 126
29 MLCA 6 2208 81.81 —

*For the first and the last models considered, the s7,-ratio is not defined

The optimal model is underlined and indicated in italics

taste of the cheese samples, whereas the second characteristic
groups fat-related flavor properties (i.e., butter, fat, and cream-
iness). The other two characteristics pertain to the visual appear-
ance and the sweetness of the cheese samples, respectively. The
between-component scores, which reveal the positions that the
eight panelists take on these four dimensions, can be read from
Table 6. It can, for instance, be derived that the sixth panelist
has higher sweetness ratings than the other panelists have.

Interpretation of the within-submodel

Given that the number of observations, and, thus, the number of
within-component scores, will often be quite large, the interpre-
tation of the within-model focuses mostly on the within-loadings,
which determine the labeling of the within-components.

Hull plot for within part

42t

a1t

40 |

39

Perc. explained variance within part

38

450 500 550
Model complexity

Fig.2 Hull plot for the within-solutions for the cheese data (left panel); the right panel zooms in on the part of the plot that contains the selected solution.

The solutions are ordered from least to most complex
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Table 5 Raw between- (VARIMAX rotated) and within-loadings of
the MultiLevel Simultaneous Component Analysis (MLSCA)-PF2
model with four between-components and two within-components for
the cheese data. Loadings for which the normalized value is larger than
or equal to .40 are underlined

Attributes Between Within
1 2 3 4 1 2

N-old milk 81 -.08 -.05 —-.05 .01 .15
E-green 7 12 A1 .09 —-.01 -.07
E-grainy 57 11 .07 22 —-.06 .09
M-grainy 46 -.07 26 24 .08 -.12
M-chalky 44 —-.16 -.15 -.12 —-.10 58
M-butter -.05 .60 -.03 .04 -.03 —.63
M-fat .05 58 —13 —.14 -17 —.57
M-cream —.08 .56 .03 .07 —.08 —.54
N-butter .16 54 =22 .04 -.03 -29
M-salt =21 48 -12 .19 24 —41
N-cream .02 46 24 .08 —-.10 -35
E-grey 24 —31 40 —.11 —.11 18
M-sour .02 -.19 —.55 -.06 15 42
E-white —-.06 .06 —48 -.03 —.18 50
M-melt down .09 11 —47 .07 a1 -23
E-yellow 18 -.15 42 13 A1 —.59
M-sweet 11 -.03 .01 5 —-.06 -23
E-shiny .08 .06 -.11 30 65 -.01
M-resistance —-.06 .07 -.03 -.05 —83 29
M-creaminess —24 17 14 .10 =27 -32
M-firm .03 -.03 —.08 —21 —.84 24
N-acidic .06 29 —.26 —25 -.02 12
H-resistance —24 -.07 -.03 —18 —78 .04

Moreover, depending on the variant, inspecting the block-
specific variances and correlations of the within-component
scores can also be very informative.

For the cheese example, the within-components capture the
main features that each panelist (implicitly or explicitly) uses
when judging the separate cheese samples. These components
can be labeled by inspecting the raw loadings in Table 5. The
MLSCA-PF2 model has no rotational freedom, which implies
that the loadings should be interpreted as given in Table 5. The
first within-component pertains to texture properties of the
cheese (i.e., going from cheese with a firm texture that does
not easily melt down in the mouth to soft cheese that breaks
down faster), and the second to fat- and color-related proper-
ties (i.e., going from fat and creamy yellow cheese to chalky
white cheese).

The panelist-specific variances of the within-components,
which are shown in Table 6, reveal how salient these components
are for each panelist. For instance, it can be concluded that pan-
elists 4, 6, and 7 are relatively variable in their judgments of the
texture of the cheeses. The correlation between the within-

Table 6 Between-component scores and standard deviations of the
within-component scores of the MultiLevel Simultaneous Component
Analysis (MLSCA)-PF2 model with four between-components and two
within-components for the cheese data

Between-component scores SDs of within-components

Panelist 1 2 3 4 1 2

Panelist 1 —-1.14 -79 —.63 55 .84 1.22
Panelist 2 .65 02 153 1.04 .67 1.29
Panelist3 —-45 153 —-15 —-141 93 7
Panelist4 133 -1.53 -131 —-58 133 1.24
Panelist5 140 1.04 -10 —-45 95 .59
Panelist 6 .00 77 —66 188 1.10 71
Panelist7 -1.50 -05 -39 -36 1.10 1.18
Panelist8 —-29 -1.00 171 —-.67 95 70

components for each single panelist amounts to .11 for three
panelists (1, 4, 7) and —.11 for the other five, which implies that
the two product features that the judges use are only slightly
dependent, with “firm texture” being related to a “yellow color”
for panelists 1, 4 and 7 and to “a white color” for the others. The
fact that this correlation is weak, implies that the MLSCA-IND
model fits the data almost equally well and yields very similar
parameter values.

Note that in this example the between-components and
within-components pertain to different features. This suggests
that features relevant for describing structural differences be-
tween raters (as captured in the between-loadings) differ from
those relevant for describing structural differences between the
cheeses (as captured in the within-loadings). In other applica-
tions, the between- and within-features may or may not differ
substantially.

The MLSCA software package

The MLSCA software can be downloaded from http://ppw.
kuleuven.be/okp/software/ MLSCA. The package includes all
the files that are necessary to replicate the analysis of the
cheese data, so that users can get a sense of how the program
works, and of what the output looks like and can be interpreted.

Users interact with the program through a graphic user inter-
face (GUI), which is built around a set of MATLAB m-files. Two
versions of the software are available: a standalone application,
which runs on any Windows computer and does not require
MATLAB to be installed, and a MATLAB application. Whereas
the standalone version can be launched from the Windows start
menu (icon MLSCA_gui.exe; see also installation manual at the
website mentioned above), the MATLAB version can be started
by setting the current MATLAB directory to the folder in which
all the software files are stored and typing MLSCA gui at the
command prompt. The GUI that appears (see Fig. 3) consists of
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Data description and data files
Data file:

C:\MLSCA\example\Data.txt
File that contains the number of rows per data block:

C:\MLSCA\example\Rows. txt

Analysis options

Complexity of the between analysis
Number of between components: 6

(©) Analysis with the specified number of components only
@ Analyses with 1 up to the specified number of components
Complexity of the within analysis

Number of within components: 8
(© Analysis with the specified number of components only
@ Analyses with 1 up to the specified number of components
Output files and options
Directory in which the output files will be stored:
C:\MLSCA\example\output

Name to label the output files: Results

D] = =

@ yes (specify label file)

MLSCA-P

MLSCA-PF2

Labels for the rows and columns of the data blocks

©) no (no labels)

Browse

C:\MLSCA\example\Labels.txt

Type of within analysis
MLSCA-IND

MLSCA-ECP

MLCA per data block

Analysis settings

Number of random starts (1 rational start has been provided): 5

Maximal number of iterations: 1000

preprocessing strategy center and scale data overall w

Required parameters in output
unrotated loadings component scores
[¥] orthogonally rotated loadings

obliquely rotated loadings

Run analysis

Fig. 3 Screenshot of the MultiLevel Simultaneous Component Analysis (MLSCA) graphic user interface

three compartments: Data description and data files, Analysis
options, and Output files and options. To perform a ML(S)CA
analysis, the user specifies the necessary information in the dif-
ferent compartments and clicks the Run analysis-button. In the
following paragraphs, the three compartments will be outlined,
closing off with error handling.

Data description and data files
Data file

First, the user specifies the data file by means of the “Data file”
Browse-button. For instance, from Fig. 3, it can be read that the
cheese data are stored in Data.txt; an excerpt of this file is
displayed in the left-hand panel of Fig. 4. The data file should
be an ASCII file (i.e., .txt file) that contains a row for each
observation and is sorted according to the blocks. No empty
lines are allowed between the rows of a single data block.
However, rows belonging to different data blocks may be
separated by one or more empty lines. Per row, the scores on
the variables are separated by one or more spaces, commas,
semicolons, or tabs, or any combination of these. Missing data
are not allowed. Each observed score should be an integer or a
real number, with decimal separators being denoted by a pe-
riod and not by a comma!

@ Springer

Data description

To provide information regarding the number of observations
in each data block, the user clicks the File that contains
the number of rows per data block Browse-button and
selects the appropriate file (for our example: Rows.#xt,
see right-hand panel of Fig. 4). This file should again
be of the ASCII format, containing as many rows as
there are data blocks; each row consists of a single number
indicating the number of observations within the correspond-
ing data block.

Label file

Optionally, the user may provide labels for the observations,
variables, and data blocks. To this end, the user checks the
option yes (specify the labels) and, subsequently, browses for
the ASCII file containing the labels (for our example:
Labels.txt, see Fig. 3; the content of this file is shown in the
middle panel of Fig. 4). The label file contains three sets of
labels, for the data blocks, block-observation combinations,
and variables, respectively. Each label should be placed on a
separate line. The different sets may be separated by one or
more empty lines; however, within each set, only line breaks
are allowed. Obviously, the number and ordering of the labels



Behav Res (2016) 48:1008—1020

1017

JRID o o1 MRI=IT]] o wons RT=Y
File Edit Format View Help File Edit Format File Edit Format
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6.9 7.95 7.8  1.05 8.4 :
7.35 6.6 8.8 2.1 0.15 Sgﬂg]}g% || [
6.0 7.5 6.6  2.25 0.7 banalist § 20
5.55  7.95 6.9 1.2 10.05 baneliat 4 20
4.95 6.6 7.5 1.5 9.6 Panelist 3 20
5.55 5.4 5.4 5.1 0.45 Hanelist 6 20
6 8.4 7.2 1.65  10.8 Banelist 7 20
6 7.2 6.5 1.8  10.5 panelist 8 20
6.45 6.9  7.95 1.5 9.45
6.9  7.35 B.85  0.75  0.75
7.35  7.65 7.8  1.95  11.1 D
7.5 7.8 0.3 0.75 11,25 =lb—7-3
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7.35 0 6.75  3.45  12.15 s
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5,55 9.15  6.15 2.1 11.25 133
6.15  8.55  7.05 1.65  0.45 33
5.7 81 7.2 315 9.15 ==
5.55 6.6  7.65 1.8 9.9 53
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5.85  7.35  7.05 1.65 9O 51T%
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4.65 6.3 5.85 4.8 10.35 -
7.5 8.7 D 0.3 8.1 e
7.5 8.1 B4 1.2 9.3
4.65 5.4 5.4 0.6  10.5 8103
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10.65 7.8 8.4 3.6 4.8 NoButrer
8.25 8.1 7.2 5.4 4,65 M-01d milk
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8.4 7.95 9.3 3 8.7 Eveld ow
8.55  6.75 7.8 3 5.9 EtreEn
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8.55  7.95  7.65 3 5.9 E_Grainy
8.85  4.35 11.4 2.7 B.7 E-shiny
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Fig. 4 Input files for the MultiLevel Simultaneous Component Analysis
(MLSCA) analysis of the cheese data: (Left) Excerpt of the data file
Data.txt (i.e., first two panelists, only first five attributes), (Middle) the

within each set has to correspond to the number and ordering
of the entities in the data file. The labels should be character
strings that may contain any kind of symbol. If the user does
not want to provide labels, no (no labels) should be checked.
As a consequence, the program will generate default labels.
Note that when the user wants to include labels, (s)he should
provide labels for each of the three sets.

Analysis options
Complexity of the between/within analysis

In the Complexity of the between-analysis and Complexity of
the within-analysis panel, the user specifies how many

label file Labels.txt, and (Right) the file that indicates the number of
observations within each block Rows. txt

between- and within-components, respectively, should
be extracted. For the between-components, this number
should be an integer between one and min(l,J), whereas
the number of within-components should be a number
between 1 and min(K,,K5,...,K;,J). Next, the user indi-
cates, for the between- and within-submodel separately,
whether only an analysis with the specified complexity
is needed, or whether different analyses with the num-
ber of components going from one to the specified
number of components should be run. The former can
be achieved by checking the Analysis with the specified
number of components only option, while the latter is
obtained by selecting the Analysis with 1 up to the
specified number of components option.
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Type of within analysis

The user may select one or more within-submodel variants
(see Model subsection above): (1) MLCA, (2) MLSCA-P,
(3) MLSCA-IND, (4) MLSCA-PF2, and (5) MLSCA-ECP.

Analysis settings

When fitting MLSCA-IND, MLSCA-PF2, and/or MLSC
A-ECP, an ALS algorithm is adopted. In order to min-
imize the risk of obtaining a local minimum only, a
multi-start procedure is used consisting of one rational
and a number of random starts (see Algorithm subsec-
tion above). The user may alter the number of random
starts (five by default) that needs to be used by entering
a number (integer) in the box next to the Number of
random starts (1 rational start has been provided) field.
Further, the user may indicate the maximal number of
ALS iterations (1,000 by default) that will be performed
by means of the Maximal number of iterations box.
Note, however, that if this maximum number of itera-
tions is reached, this indicates that the obtained solution
should be interpreted with much caution as the algorithm did
not converge properly. Finally, the user has to decide
about the preprocessing strategy by selecting whether
(center and scale data overall option) or not (center
data overall option) the variables should be scaled to
a variance of one across blocks. Hence, the software
always grand-mean centers the data.

Output files and options

In the Output files and options compartment (see Fig. 3), the
user selects the directory (for the cheese example
“C:\MLSCA\example\output™) where all the output files have
to be stored, by means of the corresponding Browse
button. Furthermore, the user specifies a string (Name
to label the output files) which will constitute the first
part of the name of all output files (i.e., for the cheese
example “Results”). Finally, the user checks the appro-
priate boxes in the Required parameters in output panel,
indicating which parameter estimates need to be present-
ed in the output: (a) unrotated loadings, (b) orthogonally
rotated loadings, using the VARIMAX criterion, (c)
obliquely rotated loadings, on the basis of the HKIC
criterion (Kiers & ten Berge, 1994b), and/or (d) the
associated component scores.

When the analysis is finished, multiple output files with
different extensions (i.e., .mht, .txt, and .mat) are stored in
the selected output folder. The information in the .zxt files
enables the user to load the results easily into any popular
software package, like SAS and SPSS, in order to further
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process the results. In the remainder, the content of the differ-
ent output files will be described.

Output file with .mht extension

The .mht file (in our example “Results overview.mht”)
contains a summary of the analysis. Specifically, first,
information regarding the amount of between-block and
within-block variation in the data is displayed. Second,
the percentage of between- and within-variation that is
explained by the fitted between- and within-submodels
is shown, along with a between- and within-Variance
Accounted For (VAF) plot and model selection advise. Final-
ly, for each considered within-variant, the total percentage of
within-variance explained by the different solutions is
displayed for each data block separately.

Output files with .txt extension

When the user checked loadings and/or component scores in
the Required parameters in output panel, the between- and
within-solutions are stored in separate files, of which the name
indicates the model variant (i.e., between, PCA, SCAP, SCAI
ND, SCAPF2, or SCAECP) and the rotation used (i.e.,
_unrotated, rotated, and _oblique). If unrestricted, the com-
ponent variances and correlations per data block are also
displayed.

Output files with .mat extension (for MATLAB version only)

These files contain an object containing the results of the
different analyses.

Status of the analysis and error handling

Once the user has specified the necessary input and
output files and analysis options, the analysis can be
started by clicking the Run analysis-button. During the
analysis, the MLSCA program displays information
concerning the status of the analysis in the box at the
bottom of the GUI screen (see Fig. 3). When the anal-
ysis has finished, a screen will appear notifying the user
that The analysis has been finished!. When the input
files do not comply with the requirements mentioned
above, the analysis will be deferred and the MLSCA
program will produce one or more error screens, which
will contain information regarding the encountered prob-
lem(s). To aid the user in dealing with the encountered
problem(s), the content of the error message(s) will also
be displayed in the box at the bottom of the GUI
screen. Once all specifications are corrected, the user
may click the Run analysis-button to restart the
analysis.
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Concluding remarks

In this paper, we discussed a computational shortcut for
MLSCA. Further, we presented a software package, MLSC
A, to perform MLSCA analyses. Three comments need to be
made.

First, as MLSCA is a deterministic approach, no statistical
tests or estimates of the standard errors of the parameters are
provided. Yet, to get insight into the reliability of the esti-
mates, one may adopt a bootstrap procedure to obtain confi-
dence intervals for the ML(S)CA parameters (sce
Timmerman, Kiers, Smilde, Ceulemans, & Stouten, 2009).
As many options have to be specified (e.g., which data levels
are considered random), leading to rather different bootstrap
procedures and analysis output, we opted to not include it in
the MLSCA program. However, the MATLAB code for
performing such a bootstrap analysis is available upon re-
quest. Moreover, we will explore how this option can be in-
corporated efficiently and in a user-friendly manner in a future
version of the software.

Second, as for regular component analysis (Hubert,
Rousseeuw, & Vanden Branden, 2005), MLSCA results can
be affected by bad leverage outliers. To trace such outliers and
obtain robust estimates, Ceulemans, Hubert and Rousseeuw
(2013) presented a robust version of MLSCA-P. As the asso-
ciated estimation procedure relies heavily on the Libra toolbox
and is only available for MLSCA-P, the robust approach can-
not be incorporated in the software package, but m-files can be
provided upon request.

Finally, two-level multivariate data often contain missing
data. Up to now, this problem is in most cases dealt with by
list-wise deletion of the corresponding observations (see e.g.,
Kuppens et al., 2006), which may yield biased results. Recent-
ly, Josse, Timmerman and Kiers (2013) proposed an imputa-
tion approach for the least restrictive MLSCA variant. How-
ever, for the moment it is unclear how missing data have to be
treated when using the other MLSCA variants. Therefore, we
did not include this imputation approach in the current version
of the package.
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