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Abstract Corpus-based semantic space models, which pri-
marily rely on lexical co-occurrence statistics, have proven
effective in modeling and predicting human behavior in a
number of experimental paradigms that explore semantic
memory representation. The most widely studied extant
models, however, are strongly influenced by orthographic
word frequency (e.g., Shaoul & Westbury, Behavior
Research Methods, 38, 190—195, 2006). This has the implica-
tion that high-frequency closed-class words can potentially
bias co-occurrence statistics. Because these closed-class
words are purported to carry primarily syntactic, rather than
semantic, information, the performance of corpus-based se-
mantic space models may be improved by excluding closed-
class words (using stop lists) from co-occurrence statistics,
while retaining their syntactic information through other means
(e.g., part-of-speech tagging and/or affixes from inflected word
forms). Additionally, very little work has been done to explore
the effect of employing morphological decomposition on the
inflected forms of words in corpora prior to compiling co-
occurrence statistics, despite (controversial) evidence that
humans perform early morphological decomposition in seman-
tic processing. In this study, we explored the impact of these
factors on corpus-based semantic space models. From this
study, morphological decomposition appears to significantly
improve performance in word—word co-occurrence semantic
space models, providing some support for the claim that
sublexical information—specifically, word morphology—
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plays a role in lexical semantic processing. An overall decrease
in performance was observed in models employing stop lists
(e.g., excluding closed-class words). Furthermore, we found
some evidence that weakens the claim that closed-class words
supply primarily syntactic information in word—word co-
occurrence semantic space models.
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Semantic memory - Lexical co-occurrence - Stop lists -
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You shall know a word by the company it keeps. (Firth,
1957, p. 11)

Human language, and the semantic representation it facili-
tates, is a complex behavior. To understand language, one
needs to know the meaning of words, and retain knowledge
regarding the grammatical application of words. The former
requirement is addressed by lexical semantics, or the study of
individual word meanings as constrained by morphology.
Here, meaning is defined by context that is likely derived from
statistical redundancies in multisensory elements perceived in
environment—that is, more than those found in analyzing text
alone. Using text alone is not likely to ever provide a compre-
hensive basis for modeling language comprehension, yet, it
has been shown that many aspects of perception and cognition
can be understood in isolation by modeling specific capacities
as computational problems (Anderson, 1990; Marr, 1982).
One such approach in acquiring an understanding of semantic
representation involves using simple mechanism(s) operating
on large scale. This approach has yielded a rich history of both
high level and derived mechanistic memory models for lexical
semantic representations. Many of these mechanistic models
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can be used in higher-order models of language comprehen-
sion (e.g., Kintsch, 1998, 2001).

Semantic space models define a word space in which indi-
vidual words are represented as points in the space, with their
relative locations being defined by their relatedness to the
dimensional anchors. These models build upon Osgood’s
(1952) early multidimensional representation approach (see
also Osgood, Suci, & Tannenbaum, 1957). In their early
forms, however, they relied on a limited number of human
judgments about the semantic nature of words to derive a set
of dimensions.

Current semantic space models build lexical semantic rep-
resentation directly from statistical co-occurrence of words in
a corpus of text, storing these representations in a corpus-
derived high-dimensional semantic space. The use of statisti-
cal co-occurrence enables unsupervised learning from text,
minimizing assumptions made in processing and representa-
tion. It also provides distributed representations for words,
whose meaning is the aggregate distributed pattern of all ab-
stract dimensions, which have no interpretable meaning on
their own. In other words, dimensions combine to form an
irreducible context. Another virtue of semantic space models
is that they are able to reveal latent semantic relationships:
words sharing similar context (e.g., two nouns with common
features, such as dog and cat, or Paris and Tokyo) are regarded
as being semantically related, even if they rarely co-occur in
the same sentence.

Corpus-based semantic space models

Corpus-based models of semantic representation (also known
as semantic spaces, vector spaces, word spaces, or distribu-
tional semantic models) characterize the meaning of linguistic
expressions in terms of lexical distributional properties. These
models are commonly unstructured, and capture primarily at-
tributional—and, indirectly, relational—similarity (e.g., can
capture standard taxonomic semantic relationships such as
hypernymy, synonymy, and co-hyponymy; Turney, 2006).

This section provides a brief functional overview of the
major corpus-based semantic space implementations, many
of which were built upon earlier work involving forming vec-
tor representations of word meaning (Schiitze, 1993;
Schvaneveldt, 1990). Beyond brief functional descriptions,
this overview is intended to highlight the persistence of unde-
sirable orthographic word frequency effects in various
implementations of corpus-based semantic space models
(about which more will be said later).

Latent semantic analysis (LSA; Landauer & Dumais,
1997) has arguably received the most attention of all the se-
mantic space model implementations. LSA starts by comput-
ing a word % document frequency matrix from a large corpus
of text, resulting in a very sparse matrix. The row entries

(word vectors) capture the frequency of each word in a partic-
ular document, and are normalized using an entropy function.'
Next, the dimensionality of the sparse matrix is reduced using
singular value decomposition (SVD; a form of factor/principle
component analysis), which brings out latent semantic rela-
tionships between words, even if they have never co-occurred
in the same document. The basic premise behind LSA is that
the aggregate contexts in which a word does and does not
appear provide a set of constraints to induce the word’s mean-
ing (Landauer, Foltz, & Laham, 1998). LSA has been criti-
cized for being prone to the influence of strong orthographic
word frequency effects (despite its entropy based normaliza-
tion) on vectors and vector distances (Rohde, Gonnerman, &
Plaut, 2006), and as being a “bag of words” model, ignoring
statistical information inherent in word transitions within doc-
uments (Perfetti, 1998).

The Hyperspace Analog to Language (HAL; Burgess,
1998; Lund & Burgess, 1996) implementation uses word co-
occurrence in a corpus to build an abstract data representation
(i.e., a vector space captured by a word X word matrix) that
contains contextual information for every word in a specified
dictionary. HAL uses N dimensions for this vector space (i.e.,
yielding an N x N matrix), where N equals the number of
words in the dictionary used while processing the corpus.
Each vector created represents a word from this dictionary.
Each column entry in a word’s vector is a count of the number
of times it co-occurred with another word in the corpus,
weighted by a factor that specifies how distant the two words
were on each co-occurrence. In the original HAL implemen-
tation, words were considered to have co-occurred if they
appeared within ten words of each other, in either direction
(i.e., a window size of 10F/10B). Lexical semantic memories
are built by reading words one window at a time, counting co-
occurrences, and then sliding the window forward one word.
Vectors with the lowest row variances (i.e., sparse rows) are
eliminated. Minkowskian distance metrics (e.g., Euclidean or
city-block) are used to calculate the distance between any two
word vectors in the space, and because these metrics are sen-
sitive to vector magnitudes, vectors are algebraically normal-
ized to unit vectors. If the words have similar values in the
same dimensions, they will be closer together in the space,
meaning they share similar contexts and are presumably se-
mantically related. The word vectors closest to a given word
are considered its neighbors.

! Entropy, in information theory, is a measure of the informa-
tion content of a token—such as a word—in a given context;
in the LSA model’s use of entropy, the more evenly distributed
a word is across documents (i.e., the more frequent it is), the
lower its weighting in the model, following the intuition that
frequent words are less informative.
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The High Dimensional Explorer implementation (HiDEX;
Shaoul & Westbury, 2010; 2012), an extension of HAL,
was developed to address three major shortcomings of
HAL. First, despite its vector normalization, HAL is
prone to the influence of strong orthographic word fre-
quency effects on vectors and vector distances (Shaoul
& Westbury, 2006), and HiDEx uses improved vector
normalization schemes to counter these effects. Second,
the majority of the parameters used in HAL (e.g., win-
dow size, co-occurrence distance weighting, distance/
similarity metrics, etc.) were set without any explicit a
priori justification; HiDEx allows for manipulation of
these parameters. Finally, a configurable neighborhood
size and membership threshold is implemented that better ac-
counts for variance in the number and average “closeness” of
neighbors between different words, providing more meaning-
ful neighborhood density measurements.

Windsor Improved Norms of Distance and Similarity of
Representations of Semantics (WINDSORS; Durda &
Buchanan, 2008) is another extension of the HAL implemen-
tation. WINDSORS’s primary aim is to eliminate orthograph-
ic word frequency effects and uses two mathematical tech-
niques to do so: log-relative frequency ratios (Damerau,
1993) to address high-frequency effects and a simplified
Good-Turing correction® (Good, 1953) to address low-
frequency effects.

The Correlated Occurrence Analogue to Lexical Semantic
implementation (COALS; Rohde et al., 2006) is also
based on HAL. COALS achieves significantly better
performance over HAL through improvements in vector
normalization, again, to address orthographic frequency
effects. Specifically, it converts raw co-occurrence counts to
Pearson correlations between each target word and the other
words in the lexicon. These correlation values tend to be very
small (i.e., 1 >>r>0), and so are square-rooted. Any negative
correlations, which are regarded by the model as being largely
uninformative, are set to a value of zero. This increases the
sparseness of the co-occurrence matrix, thereby optimizing
the subsequent dimensionality reduction performed through
SVD.

Bound Encoding of the Aggregate Language Environment
(Jones & Mewhort, 2007) analyzes a single sentence at a time,
recording each word’s context (i.e., co-occurrence) and the
word order information. After processing an entire corpus,

2 The Good-Turing methods provide estimates of the total
probability of unseen events. Where a target word does not
co-occur with a given word in a corpus, and therefore has a co-
occurrence value of zero (i.e., an unseen event), the log-
relative frequency ratios would be undefined; the Good-
Turing method is used to estimate non-zero values for such
unseen events, ensuring the log-relative frequency ratios are
well-defined for all entries in the co-occurrence space.
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context and order information are combined into single word
vectors using a circular convolution function,” and ortho-
graphic word frequency is controlled for using an entropy
function (similar to LSA) for vector normalization.

Limitations of corpus-based semantic space models

Closed-class words—that is, function words such as deter-
miners (e.g., the, a, etc.) and common prepositions (e.g., to,
for, etc.)—have much higher orthographic frequencies than
the rest of the words in a language. It is common practice in
the information retrieval literature to use stop lists (i.e., lists of
high-frequency words, such as closed-class words, that are
excluded by the model), as the highest frequency words are
regarded as semantically uninformative as context dimensions
(Manning & Schiitze, 1999; Rapp, 2003; Smith &
Humphreys, 2006). Moreover, discarding them greatly re-
duces both the corpus size (often by up to 50%) and, to a lesser
degree, the computing requirements for the co-occurrence sta-
tistics. Bullinaria and Levy (2007), however, found that doing
so reduces—or at the very least offers no significant improve-
ment in Bullinaria and Levy (2012)—performance of word—
word co-occurrence models.

The COALS implementation excludes closed-class words
and it has been shown doing so leads to better performance
over HAL, and, importantly, that adding closed-class words
back into COALS reduced its performance (Rohde et al.,
2006). BEAGLE uses stop lists of closed-class words for con-
text information, but not for word order information. LSA, a
word-document model, generally includes closed-class words
in the initial co-occurrence data (i.e., before dimension reduc-
tion), but when LSA is used to compare word strings shorter
than normal text paragraphs (e.g., short sentences) zero
weighting of function words (i.e., excluding closed-class
words) is often pragmatically useful (Landauer & Dumais,

* Also known as a holographic model because it is based on
the same mathematical principles as light holography. When
BEAGLE combines context and word order information
(stored in individual vectors), it calculates the outer-product
between vectors, which results in the binding problem: the
resultant outer-product vector has more dimensions than its
parents (i.e., [kn — k — I] dimensions, where £ = number of
vectors combined and » = number of dimensions in each
parent vector); meaning, many semantic context dimensions
would be added to the model, solely as an artifact of a math-
ematical manipulation. The circular convolution function in
BEAGLES calculates the outer-product and returns a vector of
the same length as its parents, while minimizing information
loss by algorithmically convoluting—or reflecting—the infor-
mation from the removed outer-product dimensions back into
their retained neighbours.
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2008). All other implementations discussed typically include
closed-class words in their co-occurrence statistics.

In the corpus-based semantic space literature, it has been
suggested that closed-class words, which are typically found
in close proximity to target words (Shaoul & Westbury, 2010),
are more syntactically related, rather than semantically related,
to target words (Rohde et al., 2006). Unstructured co-
occurrence models of lexical semantics generally ignore syn-
tactical information in meaning creation, yet when human
subjects perform semantic judgment tasks, they rely, in part,
on syntactic properties such as word class (Rohde et al., 2006).

It may prove useful to use stop lists to exclude closed-class
words while including part-of-speech (i.e., syntactic) informa-
tion about words in semantic space models. This assertion is
made, given (1) the inconsistent results with closed-class ex-
clusions reported between models, (2) the confounding influ-
ence of high orthographic frequency on co-occurrence statis-
tics, and (3) closed-class words’ purported syntactic role.

Another significant limitation of corpus-based semantic
space literature is that very little work has been done to inves-
tigate the performance impact of carrying out a full morpho-
logical decomposition on target words prior to collecting co-
occurrence statistics. In current models, each inflected form of
aword (e.g., happy, unhappy, happiness, happier, etc.) is rep-
resented as an individual vector, making the implicit, and
somewhat non-intuitive, assumption that each inflected form
has distinct semantic representation in human memory. The
plausibility of this assumption is called into question by evi-
dence for morphological decomposition occurring early in the
visual processing of words (e.g., Solomyak & Marantz, 2010).

One key study used morphological decomposition with
corpus-based semantic space models; this study reported that
morphological decomposition afforded no significant im-
provement to performance of word—word co-occurrence
models (i.e., HAL-based implementation; Bullinaria & Levy,
2012). However, in this study only partial morphological de-
composition was accomplished and evaluated: through simple
word stemming, and by using a standard lemmatized version
of their corpus. Both stemming and lemmatization reduce
inflected word forms to a common base form—not necessarily
the inflected forms’ monomorphemic stem. Stemming was
carried out using Porter’s (1980) algorithm, which employs
a basic, heuristic approach that removes many word suffixes
and derivational affixes. Lemmatization usually refers to
decomposing words “properly” through the use of a
predefined vocabulary and morphological analysis of words,
but it is difficult to perform accurately for very large corpora
because of its dependency on word context. Additionally, no
analysis was carried out in Bullinaria and Levy’s study to
determine whether retaining stripped affixes as part of context
had any effect on resulting performance.

There is some support for morphological decomposition
having an impact on co-occurrence model performance. Jing

and Tzoukermann (1999) used externally provided morpho-
logical information and showed it improved calculations of
semantic relatedness between two words (i.e., by computing
the distance between their vectors using an implementation
based on second-order, word—word lexical co-occurrence sta-
tistics). Harman (1991) found that stemming provided no per-
formance improvement, regardless of the stemming algorithm
used. Krovetz (1993), on the other hand, showed that stem-
ming improved performance in various tasks by up to 45.3%.
Hull (1996) similarly concluded that stemming is almost al-
ways beneficial, but, disagreeing with Krovetz, claimed the
average improvement due to stemming is only 1% to 3%.

Moving away from word—word co-occurrence models, the
use of morphological decomposition has been explored else-
where. Using the same word-stemming approach taken by
Bullinaria and Levy (2012), Landauer, McNamara, Dennis,
and Kintsch (2007)—using a standard LSA implementa-
tion—found that stemming offered no improvement; indeed,
Landauer and Dumais (2008) claim that “stemming often con-
fabulates meanings” (p. 4356) in word vectors.

It remains an outstanding question as to whether a full
morphological decomposition (i.e., stripping both prefixes
and suffixes as accurately and completely as possible) of the
corpus text will have a significant impact on the predictive
capabilities of word—word co-occurrence statistics in semantic
space models.

Current study

The present study explored the individual and interactive ef-
fects of using stop lists (i.e., to exclude closed-class words),
limited syntactic information (via part-of-speech [POS] tag-
ging and/or retaining stripped affixes as context dimensions),
and morphological decomposition on word—word co-
occurrence semantic space models. These factors have been
only partially addressed—or, at times, completely ignored—
in the corpus-based semantic space literature. Various combi-
nations of these factors were used to build corpora from which
co-occurrence statistics were computed, and compared with
each other by looking for significant differences in perfor-
mance on a set of semantic tasks.

A number of potential outcomes were foreseen. For exam-
ple, it was expected that through using POS tags and/or affixes
for context, the syntactic information presumably captured by
closed-class words would be retained, while excluding closed-
class words would eliminate their orthographic frequency ef-
fect, possibly leading to an overall improvement in perfor-
mance. In fact, some of the earliest work on co-occurrence
statistics from large corpora (e.g., Finch & Chater, 1992)
was actually focused on defining syntactic categories, rather
than semantics, suggesting that the word vectors already con-
tain a combined representation of both semantics and syntax.
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In using a morphologically decomposed corpus, all contex-
tual information for each inflected form of a word is combined
into a single, monomorphemic lexical stem vector. As sug-
gested by Landauer and Dumais (2008), this compression of
information may introduce excessive noise into the context,
thereby reducing semantic content. Implicit in such a view,
however, is the assumption that compressing—or
“confabulating”—co-occurrence statistics into a combined
representation would necessarily result in a loss of informa-
tion. The authors are not aware of any mathematical proofs
and/or empirical support for this implied information loss
resulting from combining dimensions. In the present study, it
was also considered that a morphological decomposition
might yield a richer semantic representation of words. Rapp
(2003) developed a relatively simple algorithmic machine
translation approach to inducing context-dependent word
sense (e.g., disambiguating homographs) from co-occurrence
statistics. In doing so, Rapp demonstrated that word vectors in
such models contain an aggregate representation of the under-
lying semantics, which implies content rich vectors (i.e., those
collecting co-occurrence statistics for a word used in multiple
contexts an senses) can provide better representations of a
given word’s lexical semantic content and provide access to
machine-driven approaches to understanding language.

We used HiDEX to test the performance impact of stop lists
(i.e., to exclude closed-class words), POS tagging, and mor-
phological decomposition on word—word corpus-based co-oc-
currence semantic space models.

Method
Factor combinations explored

This study used a 2 x 2 x 3 factorial design (see Fig. 1), with
the following factors and levels: (1) POS Tagging (with or
without), (2) Stop List (used or not used), and (3)
Morphological Decomposition (used [with affixes included
in lexicon], used [without affixes included in lexicon], and
not used). Morphological decomposition included both pre-
fixes and suffixes, and where affixes were included in the
lexicon, they were treated as individual words (i.e., vectors
and context dimensions) in the co-occurrence space.

Base corpus

The ukWaC corpus (Baroni, Bernardini, Ferraresi, &
Zanchetta, 2009) was used in this study. It contains close to
two billion words and was built from web content derived
from crawling the UK Internet domain. This corpus was cho-
sen because it has a POS-tagged version available. It was also
chosen for its size; it is large enough to provide more reliable
statistics and better performance than smaller, higher content
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quality corpora (Bullinaria, 2008; Bullinaria & Levy, 2007)
while still being small enough to make its use in 12 different
models computationally efficient.

Because the ukWacC corpus is derived from Web content in
the UK Internet domain, spelling of words in our corpora and
target lists were both subjected to the same UK-to-US word
form replacement process. A comprehensive list of 2,282 UK-
to-US spelling variants (Tysto, 2012; Wikipedia, 2014) was
used to make these replacements. Although the differences
between British and American English go beyond spelling
(e.g., unique word usages and differing patterns of word co-
occurrences), these differences were considered minor for the
purposes of this study, and as being outweighed by the other
advantages offered by this corpus.

Morphological decomposition

Full morphological decomposition (i.e., of both prefixes and
suffixes) was carried out by the parsing sub-functions from the
freely available PC-KIMMO (SIL International, 1997) appli-
cation (see also, Koskenniemi, 1984; Sproat, 1991). These
sub-functions are called from within PrepCorpus, a custom-
built application, which incorporates new functions to opti-
mize performance and accuracy. The base accuracy of PC-
KIMMO is estimated* at approximately 95% (i.e., it performs
correct morphological decomposition and stem replacement
on approximately 95% of inflected words), with 1% error
parses (i.e., words that were parsed, but parsed incorrectly)
and 4% missed parses (i.e., inflected words that PC-
KIMMO failed to parse). Using PrepCorpus to handle both
systematic and idiosyncratic errors and misses, we achieved
just over 99% accuracy” in our morphological decomposi-
tions. Lastly, where irregular root forms were encountered,
lexical stem replacements were used in the morphological
decomposition (e.g., spies replaced with spy +s), and affixes,
which are output as stand-alone “words,” were identified by
concatenating them with a “+” symbol (e.g., unknowable is
output as un+ know +able) in order to disambiguate them
from certain word stems (e.g., to distinguish between in-
stances of the word able and the suffix +able). The base
ukWacC corpus has just over 1.99 billion words; morphologi-
cally decomposing, while retaining affixes as independent to-
kens, resulted in an increased corpus token count of 2.41 bil-
lion words.

* These estimates were derived from manually reviewing ran-
dom blocks of text (approximately 30,000 words in total) in a

parsed sample corpus.
> Calculated by taking six random samples (50,000-70,000

words each) of text from the morphologically decomposed
corpora and tabulating the number of errors, misses and parses
in each.
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Morphologically Decomposed?

YES YES NO
with affixes without affixes

A Stop-list used 5 9
With POS- i.e. closed class words excluded|

tagging Stop-list not used 6 10
(i.e. closed class words included)

) Stop-list used 7 11
WVAGTINELONT (e closed dlass words excluded)

Tagging Stop-list not used 8 12

{Le. dosed class words included) baseline

Fig. 1 Depiction of the 2 x 2 x 3 factorial combinations explored in this study

For reasons outlined in this article’s Discussion section,
compound words (e.g., sunshine, grandmother, scarecrow,
etc.) were not decomposed in this study.

POS tagging

The POS tagging of the ukWaC corpus was performed using
TreeTagger (Baroni et al., 2009), and PrepCorpus, enabling a
POS tag to be added to the lexical stem of parsed inflected word
forms (e.g., unhappiness tagged as an adjective in the original
ukWaC corpus, is output as unhappiness_J in those corpora
without morphological decomposition, and un+ happy J +ness
in POS-tagged and morphologically decomposed corpora).
With POS tags, when the same word is used in different syn-
tactic roles (e.g., homographs, such as saw, which can be used
as a verb or noun, depending on the context), each distinct
syntactic use was represented as a different vector in the model
(i.e., saw N and saw V). We used four distinct POS tags:
nouns (_N), verbs (_V), adverbs (_A), and adjectives (_J).

Stop lists and closed-class word exclusions

The stop list used in this study was comprised of 323 words. It
was preliminarily constructed by taking all single words (i.e.,
nonphrase) from the list of closed-class words compiled by,
and freely available from, Sequence Publishing (2014), which
includes auxiliary verbs, conjunctions, determiners, preposi-
tions, pronouns, and quantifiers (total of 216 words). To this
list, the most frequent words in the raw ukWaC corpus were
added (total of 107 words), which either belonged to a closed-
class (e.g., inflected forms not included on the Sequence
Publishing lists) or that were nonsensical tokens (e.g., occur-
rences of single letters such as #, p, x, etc.). Removing all word
tokens included on the stop list reduced the corpus token count
to 1.04 billion words.

Co-occurrence model and parameterization

HiDEx was used to process all 12 corpora reflecting the factor
combinations in this study (see Table 1 for HIDEx parameter-
ization. Bullinaria and Levy (2007) have shown that using
positive pointwise mutual information for vector normaliza-
tion, and a cosine similarity metric, optimizes performance of

word—word corpus-based semantic space models. These au-
thors also found that using an unweighted window size of one
word (in either direction) was optimal. Given that one of the
aims of this study was to compare the performance impact of
retaining stripped affixes as context dimensions, a larger win-
dow size was deemed appropriate (i.e., to handle inflected word
forms with more than one prefix, like unpremeditated [unt+
pret meditate +ed], or more than one suffix, like computeriza-
tion [compute +er +ize +ation], while still capturing co-
occurrences with adjacent words, which could also be
surrounded by their own stripped affixes). Bullinaria and
Levy (2007, 2012) found that window sizes of up to three
words in either direction still performed very well (i.e., major
drops in performance were not noted in most of the tasks until
reaching window sizes of four or five), and Shaoul and
Westbury (2010) found that a window size of five words in
either direction (using a linear ramp weighting scheme) led to
optimal performance in a lexical decision task (also used in this
study). We chose a window size of four words in either direc-
tion to accommodate affix retention, while minimizing the trade
off in performance. With that all said, because we considered
comparisons of performance between our various factor com-
binations, achieving absolutely optimal performance was less
important than selecting parameterization settings that could
accommodate each factor combination.®

Lexicon construction

HiDEXx takes a user-supplied lexicon as input; a word vector is
created for each word both listed in the lexicon and found in
the corpus. The lexicon used in each model differed slightly
depending on whether stop lists, morphological decomposi-
tion, affix exclusions, and/or POS tagging was used in a given
model. The need for custom lexicons for each model can be
simply illustrated by considering the lexicon entry
deregulation; in some corpora this word will be represented
in its full form, but in others, it would appear as de+ regulate +
tion, regulate, deregulation N, de+ regulate N +tion, or

¢ For more elaborate investigations and discussions on model
parameterization and metrics please refer to Bullinaria and
Levy (2007, 2012), Kiela and Clark (2014), and Lapesa and
Evert (2013).
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Table 1 HiDEXx settings used for computing co-occurrence statistics
Parameter Configuration Used

Corpus ukWaC, with various manipulations
Normalization Positive pointwise mutual information
Vector similarity metric Cosine

Weighting scheme Linear ramp

Four words in either direction
15,000 (x2, forward/backward)

Window size
Context size (N)

regulate N. The average lexicon size was 62,573 words—
with a maximum of 64,806 words in the base corpus, and a
minimum of 60,772 words in the morphologically
decomposed corpus with closed-class and affix exclusions.

Tasks used for model comparisons

Each of the 12 sets of co-occurrence statistics resulting from
the factor combinations were used to complete three separate
semantic tasks:

* Distance comparison (DC) For this task, we used 200
pairs of semantically related words (e.g., thunder and
lightning, black and white, brother and sister). The distance
between each target word (i.e., first word in each pair) and
the second word in the pair was computed. Then the dis-
tances between the target word and each of ten other ran-
domly selected control words from the other 199 pairs was
computed. Performance was measured by counting the
number of times a given semantic pair was closer in the
semantic space than the first word in that pair and each of
the ten control words. This task is similar to the often-
studied Test of English as a Foreign Language’ (TOEFL)
test originally used by Landauer and Dumais (1997), but
makes use of more frequent, better-distributed words than
TOEFL (Bullinaria & Levy, 2007). It tested each corpus-
based semantic space model’s ability to perform semantic
similarity judgments.

* Semantic categorization (SC) For this task, we used ten
words from each of 53 semantic categories (e.g., precious
stones, units of time, familial relationships, vegetables)
based on Battig and Montague’s (1969) category norms.
A category center was calculated for each category by
taking the mean of the vectors corresponding to the last
nine words in each category, and performance was evalu-
ated by counting the number of times the first word in a

" The TOEFL is considered by some to have become a stan-
dard benchmark task for semantic space models, but, as it is
copyrighted material, it is not freely available and the authors
of this study were unable to either obtain a copy of it, nor
permission to use it.
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given category is closer to its category center than the
category centers of the other 52 categories. This task tested
each corpus-based semantic space model’s ability to rep-
resent known semantic categories (Patel, Bullinaria, &
Levy, 1997).

» Lexical decision (LD) This task was used to model human
behavior in an LD task. Rather than using data from a
limited number of subjects, the aggregate data from the
English Lexicon Project was used (Balota et al., 2007),
which included LD reaction time data for over 32,000
words. Along with the log-transformed orthographic fre-
quency, the ARC and INV-NCOUNT neighborhood mea-
sures (Shaoul & Westbury, 2012) from HiDEx were used
as LD reaction time predictors in linear regression models.
Performance was evaluated by comparing each model’s
change in variance accounted for in the data, relative to
the base model’s performance (i.e., AR?).

Tasks similar, but not identical, to the DC and SC tasks
described above were used by Bullinaria and Levy (2007,
2012) in their studies exploring the effects of stop lists and
word stemming on corpus-based semantic space models. The
same word sets were used for those tasks in this study
(Bullinaria, 2013). The DC and SC tasks are used here in
order to enable a very rough comparison between
approaches to morphological decomposition. One
performance evaluation used for these tasks by Bullinaria
and Levy (2007, 2012) was a simple comparisons of each
task’s count proportions as percentages. This measure was
also used here. It is not, however, an ideal measure because
a very small amount of variance was expected between
model performance percentages (i.c., there was a ceiling
effect), and the measure is not amenable to rigorous signif-
icance testing. Instead, to test for statistical significance,
Bullinaria and Levy split their corpus into disjoint subsets
and performed ¢ tests between manipulations, comparing
the mean performance of each corpus subset for each
corpus manipulation. However, in the earlier study,
Bullinaria and Levy (2007) showed that using smaller cor-
pora resulted in inferior performance. As such, in the pres-
ent study, each task’s count proportions were also modeled
using beta-distribution linear regressions (Ferrari &
Cribari-Neto, 2004), and models were compared using
Akaike information criterion (AIC) relative likelihoods.

Relative to the DC and SC tasks, LD is a more difficult task
for co-occurrence models—they typically account for slightly
less than a third of the variance in LD reaction times
(Buchanan, Westbury, & Burgess, 2001; Shaoul &
Westbury, 2010). As such, the LD task was expected to pro-
vide a better scale—that is, a greater range of performance—
to reveal differences between the 12 factor combinations.
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Beta-distributed linear regression models

In both the DC and SC tasks, a more statistically rigorous
approach to comparing factor combinations was needed—
one that made use of all of the data available. Treating the
performance percentages as count data, a generalized linear
model using a Poisson distribution is typically prescribed. In
the present study, however, DC and SC response data were
discrete (noncontinuous), heavily skewed, heteroskedastic,
failed a chi-squared goodness of fit test for Poisson distribu-
tion (i.e., did not follow Poisson distribution), and had an
unequal mean and variance. Because they specifically address
the DC and SC response data properties outlined, regression
models were built on the basis of beta distributions (Ferrari &
Cribari-Neto, 2004).

Target list construction

Custom target lists for each of the three tasks were created for
each of the 12 factor combinations compared, converting tar-
gets into forms appropriate for each (i.e., morphologically
decomposed and/or POS-tagged). Additional refinement of
the custom LD targets (and lexical decision reaction time
[LDRT] data) was required for morphologically decomposed
models, in order to account for many cases in which multiple
inflected forms of the same lexical stem were present in the
original ELP LDRT data set. In those cases in which a lexical
stem was present on the original target list (e.g., “abandon”),
all other records for inflected forms of that stem were
disregarded (e.g., “abandoned,” “abandoning,”
“abandonment”), both on the custom target list and in the
LDRT data used for the model.

This process yielded an average of 32,124 custom targets
for nondecomposed factor combinations (e.g., base: DC
custom/original targets = 199/200 pairs; SC custom/original
targets = 529/530 words; LD custom/original targets = 32,
290/32,681 words), and 15,700 targets for morphologically
decomposed factor combinations (e.g., morphologically
decomposed [only]: DC custom/original targets = 199/200
pairs; SC custom/original targets = 528/530 words; LD
custom/original targets = 15,801/15,975 words).

Results
Factor combination naming convention
The results reported here all make use of a shorthand abbre-

viation system—shown in Table 2—to identify each of the 12
factor combinations.

DC and SC performance percentages

Performance percentages are reported here for the sake of
comparison to Bullinaria and Levy’s (2012) results, though
the tasks are not identical. These are poor measures, since they
are clustered at the high end of the scale’s range (i.e., pro-
nounced ceiling effect), and given that very little performance
variation was observed between models. In the SC task, only
0.00002% variance was observed between all factor combina-
tions’ performance relative to the base; similarly, in the DC
task the observed variance was 0.00067%. Despite this short-
coming, performance differences between factor combina-
tions were noted, and the performance rankings in DC and
SC tasks correlated reliably with each other (Spearman’s
rank-ordered correlation, » = .74, p = .006).

Performance percentage results for the DC task are sum-
marized in Fig. 2. On the basis of these data, the morph
(morphological decomposition only), pos (POS tagging only),
and pos.morph (both POS-tagged and decomposed) factor
combinations all performed better than baseline.

Performance percentage results for the SC task are summa-
rized in Fig. 3. On the basis of these data, the pos.morph.ax
(POS-tagged, decomposed, and with affixes removed) and
pos.morph (both POS-tagged and decomposed) factor com-
binations performed better than baseline.

In the DC task, this study’s morphologically decomposed
factor combinations performed worse (80%—-86%) than
Bullinaria and Levy’s (2012) stemmed and lemmatized models
(92%-93%; p. 896). On the other hand, decomposed factor
combinations performed better on the SC task in the present
study (95%—96%) than in Bullinaria and Levy’s® (80%—82%;
p- 896). These comparisons were made with Bullinaria and
Levy’s (2012) models using 15,000 context dimensions, the
same number of context dimensions used in this study.

DC beta-model performance

In order to facilitate the DC task’s earlier discussed beta-
distributed regression analysis, the response variable (i.e.,
the number of comparisons in which the target was closer to
its own pair word than to ten random control words) was
transformed to proportions. As Smithson and Verkuilen
(2006) recommended, a betareg correction was then applied
in order to eliminate response values of 0 and 1 (i.e., replaces

81t should be noted, however, that the SC task implemented
by Bullinaria and Levy (2012) differed from ours. We used
one categorization test for each of the 53 categories, whereas
Bullinaria and Levy used one categorization test for each of
the 530 words; this could account for the large increase in
baseline performance noted in the present study.
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Table 2  Factor combination abbreviations used

No Morphological morph: Morphologically Decomposed
Decomposition
Affixes Included ax: Affixes Excluded
in Corpus From Corpus
Closed-class words included pos: with POS tagging pos pos.morph pos.morph.ax
(i.e., no stop list) without POS tagging base morph morph.ax
cx: Closed-class words excluded pos: with POS tagging pos.cx pos.morph.cx pos.morph.cx.ax
(i.e., uses stop list) without POS tagging ex morph.cx morph.cx.ax

with approximations—e.g., 0 becomes .000232, and 1 be-
comes .9934). Models’ were built using the betareg function
from the betareg package (Cribari-Neto & Zeileis, 2010) in
the statistical computing environment R (R Development
Core Team, 2013).

The AIC value for each betareg model was calculated and
compared via relative likelihoods, calculated as

R.L.husevs model = e(AICmodelfAlease)/Z.

The results—summarized in Fig. 4—show that the
pos.morph (both POS-tagged and decomposed), morph
(morphological decomposition only), and pos (POS tagging
only) factor combinations all performed significantly better
than baseline.

SC beta-model performance

In order to facilitate the SC task’s earlier discussed beta-
distributed regression analysis, the response variable (i.e.,
number of comparisons in which the target is closer to its
own semantic category center than to the other 52 semantical-
ly unrelated category centers) was transformed to proportions
and modeled'® as outlined earlier.

? The betareg formula used predicted corrected.CompPortions
by using tarlnOFREQ, pairInOFREQ, and
avgCompsInOFREQ, where tarInOFREQ is the log-
transformed orthographic frequency (OFREQ) of the target,
pairlnOFREQ is the logged OFREQ of the semantic pair
word, and avgCompsInOFREQ is the average logged frequen-
cy of all control words compared against the semantic pair. All

predictors entered reliably into all regressions.
' The betareg formula used predicted

corrected.CompPortions using groupCOS, tarlnOFREQ, and
grpAveragelnOFREQ, where groupCOS is the cosine distance
between the target and its category center, tarlnOFREQ is the
log-transformed orthographic frequency (OFREQ) of the tar-
get, and grpAverageInOFREQ is the average of the logged
OFREQ of the all nontarget members of the semantic catego-
ry. All predictors entered reliably into all regressions.
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AIC values for each betareg model were calculated
and compared using relative likelihoods. The results are
summarized in Fig. 5 and show that the morph (mor-
phological decomposition only) and morph.ax (morpho-
logical decomposition with affixes removed from the
corpus) factor combinations both performed significantly
better than baseline.

LDRT performance

Targets and their LDRTs from the English Lexicon Project
were used to build linear regressions'' for each model.
Because each factor combination had a different number of
observations (see the Target List Construction in the Method
section), interfactor combination comparison was made diffi-
cult, owing to most linear model comparison techniques re-
quiring balanced data. As such, the comparison metric used
here was the change in the variance accounted for in a factor
combination’s regression model, relative to the baseline—that
iS, ARZ = Rzmodel - R2base~

The results based on using all available LDRT targets/data
are shown in Fig. 6, where it can be seen, somewhat surpris-
ingly, that all models performed worse than baseline, for
which R* = .31. The morph (decomposed only) and cx
(closed-class word exclusions only) factor combinations per-
formed closest to baseline.

Very high and very low orthographic frequencies
(OFREQs) are known to exert a strong influence on lexical
access, though the precise nature of this effect is not clear (e.g.,
Andrews, 1992; Grainger, 1990; McCann, Besner, &
Davelaar, 1988; Scarborough, Cortese, & Scarborough,
1977). Given this, only those data associated with target words
falling within certain OFREQ ranges were considered.

" Im-formula = INV.LDRT ~ InOFREQ + ARC + InNCount;
where INV.LDRT = the inverse lexical decision reaction time,
InOFREQ = logged orthographic frequency of the target
word, ARC = average radius of co-occurrence of target, and
InNCount = logged neighbour count of the target word. All
predictors entered reliably into all regressions.
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Fig. 2 Rank-ordered performance percentages for each factor combination in the distance comparison (DC) task

Table 3 shows the distribution of the available data across
OFREQ bins; the moderate-OFREQ data comprised 58% of
the total data available for analysis.

As is shown in Fig. 7, targets with moderate OFREQs
accounted for, on average, twice the variance in LDRTs as
either the low- or the high-OFREQ data. In further LDRT
analyses, only those LD targets with moderate OFREQs were
considered.

On the basis of the comparison of these moderate-OFREQ
regressions, the morph.cx (morphological decomposition
with closed-class words excluded), morph (morphological
decomposition only), and pos.morph.cx (pos-tagged and
morphologically decomposed with closed-class words ex-
cluded) factor combinations each performed better than base-
line. The ex (closed-class word exclusions only) factor com-
bination’s performance was equal to baseline. These results
are summarized in Fig. 8.

Aggregate model performance

The performance of factor combinations in each task was
ranked by assigning scores to each factor combination based
on its performance in that task; that is, factor combinations
were assigned a score between 1 and 11 based on their perfor-
mance relative to baseline, with the best-performing combina-
tion being scored 11, the next best scored 10, and so on. The
performance rankings of only the most reliable tasks and mea-
sures are shown in Fig. 9; that is, we excluded, as unsuitable

for rigorous comparisons, the DC and SC task performance
percentage measures, as well as the LD task using all available
LDRT data (i.e., without target OFREQ filtering), for the rea-
sons outlined earlier. The four top-performing factor combi-
nations are identified as those using morphological decompo-
sition (morph and morph.ax; with [best] or without [2nd]
stripped affixes in the corpus, respectively), POS tagging
and morphological decomposition (pos.morph; 3rd), and
POS tagging, decomposition, and closed-class exclusions
(pos.morph.cx; 4th). However, only the factor combination
using morphological decomposition (morph; retaining affixes
in the corpus) outperformed baseline in all of the most reliable
tasks and measures.

Discussion

In the present study, we explored the performance impact of
closed-class word exclusions (using a stop list) and full mor-
phological decomposition on word—word corpus-based co-oc-
currence semantic space models. We did so by exploring the
individual and interactive performance effects of using stop
lists, limited syntactic information (via POS tagging and/or
affix retention as context dimensions), and morphological de-
composition—factors only partially addressed, or completely
ignored, in the literature. Various combinations of these fac-
tors were used to build corpora, from which co-occurrence
statistics are computed and used to compare performance on
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Fig. 3 Rank-ordered performance percentages for all factor combinations in semantic categorization (SC) task
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semantic tasks—distance comparison, semantic categoriza-
tion, and lexical decision.

Performance impact of closed-class word exclusions
(using stop lists)

We initially speculated that, through using POS tags and/or
affixes for context, the syntactic information presumably cap-
tured by closed-class words (Rohde et al., 2006) would be
retained, and excluding closed-class words would eliminate
their contribution to any orthographic frequency effects, pos-
sibly leading to an overall improvement in performance.

for the sake of display convenience, and the data point labels for each
model represent the nonlogged values)

Using stop lists to exclude closed-class words did not
improve performance in the DC and SC tasks; rather, in
most cases performance was much worse than baseline.
These findings are consistent with Bullinaria and Levy
(2012).

Of the four factor combinations that performed equal to, or
better than, baseline in the LD task, three employed closed-
class exclusions. The best factor combination in that task used
POS tagging, morphological decomposition, and closed-class
exclusions (which was also the fourth best overall performer).
Note, however, that no other factor combination featuring
closed-class exclusions performed better than baseline in any
task or measure.
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Fig.6 Change in variance accounted for (ARZ, where AR? =R \iopeL — B8 asg) between the full (i.e., including all data available to each model) lexical

decision task regression models and baseline
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Table 3 Numbers of words in aggregate lexical decision data in each
orthographic frequency bin

Bin® Number of Words %

1 79,066 32%
2 141,335 58%
3 23,207 10%
Total 243,608

*Bin 1: OFREQ < 1; Bin 2: 1 < OFREQ < 50; Bin 3: OFREQ > 50;
occurrences per million words of text

Some interesting findings emerged when considering the
interaction between closed-class exclusions and either POS
tagging or affix inclusions (the latter in decomposed corpora
only). In all tasks and measures, direct comparisons between
closed-class exclusive factor combinations varying only in
affix inclusion (i.e., morph.cx vs. morph.cx.ax;
pos.morph.cx vs. pos.morph.cx.ax; see Table 2), factor com-
binations with affixes performed better than those without
affixes—except for both SC performance measures, in which
morph.cx performed slightly worse than morph.cx.ax. Thus,
when excluding closed-class words in morphologically
decomposed corpora, retaining affixes seems to improve per-
formance. The same result emerged, however, when compar-
ing decomposed factor combinations without closed-class ex-
clusions—factor combinations with affixes outperformed

0.16 -
0.14 - 0.13 0.13 0.14
0.12 -
0.1 -

0.08 A

R%Value for
Linear Model

0.06 A

0.04

0.02 A

0.14

those without (i.e., morph.ax vs. morph; pos.morph.ax vs.
pos.morph; see Table 2)—except for SC percentage perfor-
mance measures, on which morph performed worse than
morph.ax. Overall, this suggests that a performance benefit
may be associated with retaining affixes—and subsequently
using them as context—in morphologically decomposed
word-word co-occurrence semantic space models.

From these results, little can be said about whether affixes
can provide some of the same semantic (via syntactical infor-
mation) information provided by closed-class words, unless
one assumes closed-class words contain primarily syntactic
information. In that case, it could be claimed the results re-
ported here provide support for the claim that affixes retain
syntactic information in morphologically decomposed word—
word co-occurrence semantic space models, as was demon-
strated by their inclusion resulting in consistently recapturing
some of the performance lost by excluding the syntactic infor-
mation contained in closed-class words.

Furthermore, in all tasks and measures contrasting POS
tagging and closed-class word exclusions (i.e., pos.cx vs.
pos; pos.morph.cx vs. pos.morph; pos.morph.cx.ax vs.
pos.morph.ax; see Table 2), factor combinations with POS
tagging and without closed-class exclusions outperformed the
equivalent factor combination with closed-class exclusions—
except in the LD task, in which pes.morph performed slightly
worse than pos.morph.cx. Indeed, POS-tagged factor combi-
nations without closed-class exclusions performed much

0.14

0.09

—6— OFREQ < 1
—8—1 < OFREQ < 50

—&— OFREQ >=50

Fig. 7 Comparisons of variances accounted for (R?) between lexical
decision task regression models and the baseline, by orthographic
frequency (OFREQ) bins (i.e., individual regression models were built
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using only those data with the specified OFREQ values). OFREQ values
shown represent the numbers of target word occurrences per million
words of text
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decision task regression models and the base model, where all models
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better than those with exclusions; the latter were among the worst
performers in all tasks and measures (note that in three of the six
tasks and measures, pos.morph.cx.ax is the worst performer).
This implies that POS tagging and closed-class words do not
provide the same syntactic information in these factor combina-
tions, and closed-class exclusions appear to worsen performance
in POS-tagged factor combinations to the same (relative) extent
as they do in non-POS-tagged factor combinations. This seems
to weaken the claim that closed-class words supply primarily
syntactic information in word-word co-occurrence semantic
space models (see, e.g., Rohde et al., 2006).

This effect could instead be the result of the high frequency
of closed-class words. HiDEx selects its context dimensions
from the highest-frequency words/tokens, and there is a puta-
tive performance advantage of frequency-sorted contexts in
some, but not all, co-occurrence models (for positive evidence
regarding HAL-based models—like HiDEx—see Bullinaria
& Levy, 2007, 2012). In other words, it seems that semantic
information content can be richer in those context dimensions
derived from higher-frequency words/tokens, and because
closed-class words (and all other non-closed-class words on
our stop lists) comprise the highest-frequency tokens in the
corpus, removing closed-class words would then remove
some of the richest information available in the co-
occurrence statistics. Therefore, the assertions made regarding
closed-class words may be unwarranted, and the observed

pos

-0.010

g pos.morph
morph.cx.ax
g morph.ax

morph.cx
morph
pos.morph.cx

S

-0.006

frequency was moderate (i.e., between 1 and 50 occurrences per million,
representing the majority of the lexical decision target words)

effects may simply be artifacts of the co-occurrence imple-
mentation selected.

Performance impact of morphological decomposition

We also considered it likely that, by using a morphologically
decomposed corpus, in which all contextual information for
each inflected form of a word is combined into a single, mono-
morphemic lexical stem vector, a richer semantic representation
of that word could be produced; or, alternatively, this could
introduce excessive noise into the context and reduce semantic
information content. Either way, morphological decomposition
was expected to have a significant impact on performance.
Baayen and colleagues (2011) provide an interesting coun-
terview to this expectation, having developed a highly effec-
tive computational language comprehension model that
completely ignores morphology, as traditionally conceived.
Their naive discriminant learning model (NDL) instead relies
exclusively on orthographic n-grams (i.e., both subword and
submorpheme) as the basic elements onto which meaning is
mapped. In this model, traditional morphemes (and, indeed,
words themselves) are simply probable sequences of letters.
Taken as a model of human language processing, NDL would
be entirely unaffected by morphological decomposition (or,
indeed, any kind of systematic decomposition), so long as
the morphemes were retained, as they play an important role

@ Springer



680

Behav Res (2015) 47:666-684

33 1
31
25
23
22
[ 22 7 20
2
E§ 18
ES 17 17
S &
-
=&
g 13
g.n
11 A
6 6
0_ T T T T T T T T T T 1
N I . N T S O S
DAIP S R MRS & & &
& & & L KR oY Y R
QN o QPO
N & o & & P
] N &
<

Fig. 9 Total performance scores, using only those tasks with the most reliable performance measures: Distance comparison and semantic categorization
beta regressions, and lexical decision regressions only for words with moderate orthographic frequency (out of 33 max)

in delimiting the probabilities of subsequent letters that NDL
is computing. Since it assumes that the mapping from letters to
semantics is entirely a function of the probabilities of se-
quences of letters, NDL would predict that there should be
no advantage for semantic access as a function of morpholog-
ical decomposition.

Other studies have shown positive performance results for
morphological decomposition. Krovetz (1993), for example,
showed that decomposition via word stemming improved per-
formance in various tasks by up to 45.3%. Hull (1996) simi-
larly concluded that stemming is almost always beneficial,
but, disagreeing with Krovetz, claimed the average improve-
ment due to stemming is only 1% to 3%. Kiela and Clark
(2014) found stemming improved performance in their
models, however, they excluded closed-class words from all
models, which potentially confounds their baseline perfor-
mance making it difficult to compare their findings and ours.

It has also been claimed that morphological decomposition
has, at best, no impact on performance, and often worsens it.
Harman (1991) found that decomposition via word stemming
provided no performance improvement, regardless of the
stemming algorithm used. Bullinaria and Levy (2012) report-
ed that morphological decomposition afforded no significant
improvement to performance of word—word co-occurrence

@ Springer

models. Using the same simple word-stemming approach tak-
en by Bullinaria and Levy (2012), Landauer et al. (2007)—
using a standard LSA implementation—Ilikewise found that
stemming offered no improvement to performance.

However, in all studies showing evidence against morpho-
logical decomposition’s purported performance benefit, full
morphological decomposition was not achieved.
Decomposition in these studies was carried out by either sim-
ple word-stemming algorithms, or by using a standard
lemmatized corpus. In contrast, the approach employed in this
study—using PC-KIMMO and PrepCorpus—achieved ap-
proximately 99% accuracy in morphological decomposition
and retained affixes for use as context in the models.

Both stemming and lemmatization reduce inflected word
forms to a common base form—not necessarily to the word’s
morphological stem. The preponderance of stemming was
carried out using Porter’s (1980) algorithm, which employs
a heuristic approach that only removes word suffixes and
some derivational affixes. Lemmatization typically uses a
predefined morphological analysis of words, but it is difficult
to perform accurately for very large corpora because of its
dependency on the word context. Neither of these approaches
performs a full morphological decomposition, nor do they
retain stripped affixes as context.
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It might seem that stemming must necessarily fail in a co-
occurrence model, since stemming removes semantic informa-
tion. The word runner does not mean the same thing as the
word run, but discarding the second morpheme in stemming
runner would make the two words indistinguishable. However,
the co-occurrence neighborhoods of words in nondecomposed
models often include morphological variants of the same word
(e.g., the first two neighbors of the word work are working and
works), reflecting the fact that many morphological variants of
the same root word share similar contexts. However, this is of
course not always true; recall that (as cited above) Landauer
and Dumais (2008) noted that “stemming often confabulates
meanings” (p. 4356) in word vectors.

This study showed that decomposition while retaining the
affixes appears to significantly improve performance in word—
word co-occurrence semantic space models. Morphologically
decomposed factor combinations (with no other manipula-
tions) achieved the best overall performance, and
outperformed baseline in all of tasks and measures (except
in the—Tleast reliable—SC percentage measure).

One possible explanation for this finding is that having
word vectors with more context information (i.e., information
from all inflected forms combine into one vector for the mono-
morphemic word stem) increases the semantic information
contained therein. In support of this possibility, Rapp (2003)
developed a relatively simple algorithmic machine translation
approach to inducing context-dependent word sense (e.g., dis-
ambiguating homographs) from co-occurrence statistics. In
doing so, Rapp demonstrated that word vectors in such
models contain an aggregate representation of the underlying
semantics, which implies content rich vectors (i.e., those
collecting co-occurrence statistics for a word used in multiple
contexts and senses, as affixes are) can provide better repre-
sentations of a given word’s semantic content. Similarly, Jing
and Tzoukermann (1999) demonstrated that morphological
information improved calculations of semantic relatedness be-
tween two words (i.e., by computing the distance between
their vectors using their own model based on second-order,
word—word co-occurrence statistics).

As well as aggregating information, and as we have noted
briefly above, morphological decomposition provides more
contexts for the root word. This potentially allows for fine
tuning of the associate/semantic information its neighborhood
contains. Consider the word discussed earlier,
computerization, consisting of four morphemes compute +er
+ize +ation. When it is entered as a single word, the root word
compute does not benefit from exposure the context of com-
puterization, though undoubtedly information about what
compute means enters into contexts discussing computeriza-
tion. When the word is decomposed, the word compute does
benefit from the context in which computerization was used.
In cases in which the affixed and unaffixed forms are both
commonly used—such as many singular and pluralized

nouns—the roots are likely to gain a very large increase in
exposure to contexts.

We also note that, independently of whether words are
decomposed or not when they are accessed, the semantic ag-
gregation of related words happens naturally, easily, and early
in real life. We know that running is the same thing whether
we ran, are going to run, or have been running; we know that
dogs do not change kind when they aggregate in numbers
greater than the singular; and we know that computerization
is about computers. We aggregate our experiences of the same
thing, and humans can benefit from that aggregation linguis-
tically, independently of whether or not it occurs as a result of
morphological decomposition.

Context selection provides a third possible explanation for
the observed improvement in performance of morphologically
decomposed factor combinations. HiDEx selects its context
dimensions by taking the N highest frequency words/tokens
(where N is a user-defined parameter; N = 15,000 in this
study). There is a putative performance advantage of
frequency-sorted contexts in some, but not all, co-occurrence
models. Bullinaria and Levy (2007, 2012) provide positive
evidence for this being the case in HAL-based models, like
HiDEX. In other words, it is claimed that semantic information
content is richer in context dimensions derived from higher
frequency words/tokens. A morphologically decomposed cor-
pus will necessarily have more higher frequency words/tokens
than a nondecomposed version of the same corpus. Multiple
inflected word forms will each be decomposed to—and have
their occurrences contribute to the frequency of—a single,
common stem. Therefore, the positive results for morpholog-
ical decomposition reported here might be the result of a sys-
tematic increase in the frequency of context dimensions. In
other words, the observed effects may simply be artifacts of
the co-occurrence implementation used (i.e., HiDEX). This
suggests a direction for future study, specifically, investigating
whether the same increase in performance resulting from full
morphological decomposition is observed in word—word co-
occurrence semantic space models that use variance, rather
than frequency, selected context dimensions.'?

These three reasons provide explanations for the decompo-
sition advantage for root words without making reference to
the information that is contained in the context dimensions for
the affixes. Since affixation is often widely applicable to many
radically different words (e.g., we can computerize, demonize,
vaporize, etc.) affix vectors (like, e.g., +ize) must be

' Though frequency and variance in word-based context di-
mensions are highly correlated, there is evidence for differen-
tial performance between these two types of context selection
processes (see, e.g., Levy & Bullinaria, 2001). For a more
elaborate discussion of using and manipulating variance-
selected context dimensions, please refer to Bullinaria and
Levy (2012).
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uninformative about their context, which is a melange of
otherwise-unrelated contexts held together by a common af-
fix. However, as we noted above, despite providing little use-
ful information about their own contexts, affix context dimen-
sions do provide useful context for their root word, since—for
example, they do a little to group together all things that can be
+ized, thus pushing nouns (things that be +ized) a little closer
together and a little further from other classes of things (i.e.,
we cannot verb-ize or pronoun-ize). When aggregated togeth-
er, the very common co-occurrence information from all mor-
phemes may push words around a little in co-occurrence
space, and that movement may—as our results suggest—help
increase semantic differentiation and accuracy.'?

It has been found that stemming greatly improves some
individual queries and severely degrades others (Krovetz,
1993), and it has been further suggested that this tends to
conceal any improvement in overall performance results
(Hull, 1996). More accurate queries result from morphologi-
cal variants being semantically related; in other cases, in
which variants are not semantically related, word stemming
introduces noise (Church, 1995; Krovetz, 1993). As another
direction for future research, this problem could possibly be
addressed—and stronger, more consistent performance im-
pacts observed—through correlating morphologically related
word vectors, using the results to distinguish the cases in
which decomposition helps (i.e., high correlations) from those
in which it does not, and morphologically decomposing/
stemming only positive cases (e.g., Xu & Croft, 1996).

A final word on methodological limitations

Our findings provide support for the claim that sublexical
information—specifically word morphology—plays a role in
lexical semantic processing. Interpretation of these findings,
however, ought to be tempered by recognizing some potential
limitations imposed by our methodology.

The present study focused on word—word corpus-based
semantic space models. Employing full morphological de-
composition in other distributional models of semantics—for
example, the word—document paradigm employed by LSA—
would lend insight into the generalizability of our findings.
More, we made use of a single corpus of text for each of the 12
factor combinations considered. Extending this work to ex-
plore the performance impact of full morphological decompo-
sition across different corpora of text would also better inform
claims of generalizability.

As they were implemented in this study, our morphologi-
cally decomposed factor combinations—with or without

13 A similar argument could be made for certain closed-class
words, which may help account for the performance
advantaged noted in this study for retaining closed-class
words as context dimensions.
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affixes included in the co-occurrence statistics—could not
deal with distances between multimorphemic words in a prac-
tical manner. If, for example, we wanted to compare distances
in the semantic space between unhappiness and happiness, in
decomposed models we end up comparing happy to happy. In
a way, however, that is exactly the point of these models; they
simply ignore those differences that are “just” due to affixa-
tion. In morphologically decomposed models in which affixes
are retained, it may be feasible to construct representations for
multimorphemic words such as (e.g.) unhappiness and
happiness, but in such a case these words would both be
represented by multiple vectors rather than a single vector.
The approach for doing so, however, was considered beyond
the scope of this study, and note that we disregarded inflected
forms of targets word in comparison tasks (see the Methods
section). Readers interested in constructing representations for
multimorphemic words are encouraged to consider some
more recent work being done with vector composition
models, operating at the level of morphemes (e.g.,
Lazaridou, Marelli, Zamparelli, & Baroni, 2013; Luong,
Socher, & Manning, 2013) and phrases (e.g., Mitchell &
Lapata, 2010).

Also, as was mentioned in the Method section, compound
words (e.g., sunshine, grandmother, scarecrow, etc.) were not
decomposed in this study. This decision was made on the basis
of previous work supporting dual-processing models of
multimorphemic words, wherein multimorphemic words—
and particularly compound words—are purported to afford
lexical access, and maintain semantic representation in mem-
ory, without requiring obligatory morphological decomposi-
tion (e.g., Bybee, 1995; Elman, 2004; Kuperman, Schreuder,
Bertram, & Baayen, 2009; Rubin, Becker, & Freeman, 1979;
Seidenberg & Gonnerman, 2000). We acknowledge, however,
that this is a contentious claim, and that evidence has also been
provided against these dual-processing models, asserting the
obligatory decomposition of multimorphemic words (e.g.,
Butterworth, 1983; Caramazza, 1997; Fiorentino & Poeppel,
2007; Marslen-Wilson & Zhou, 1999; Stockhall & Marantz,
20006; Taft, 2004).

Author note J.K. completed this article as his undergraduate honors
thesis at the Department of Psychology, University of Alberta. This work
was supported by a grant from the Natural Sciences and Engineering
Research Council of Canada to the second author.
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