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Abstract Previous simulation research has focused on eval-
uating the impact of analytic assumption violations on sta-
tistics related to the F test and associated pCALCULATED
values. The present article evaluated the bias of classical
estimates of practical significance (i.e., effect size sample
estimators bη2 , b"2 , and bw2 ) in a one-way between-subjects
univariate ANOVA when assumptions are violated. The
simulation conditions modeled were selected on the basis
of prior empirical research. Estimated (1) sampling error
bias and (2) precision computed for each of the three effect
size estimates for the 5,000 samples drawn for each of the
270 (5 parameter Cohen's d values × 3 group size ratios × 3
population distribution shapes × 3 variance ratios × 2 total ns)
conditions were modeled for each of the k 0 2, 3, and 4 group
analyses. Our results corroborate the limited previous related
research and suggest thatbη2 should not be used as an ANOVA
effect size estimator, even though bη2 is the only available
choice in the menus in most commonly available software.

Keywords Effect size . Practical significance . Analysis of
variance . Homogeneity of variance . Type I error . Power .

Eta squared . Epsilon squared . Omega squared

Analysis of variance (ANOVA) was a term first used by Sir
Ronald Fisher in 1918 (see David, 1995). Fisher conceived
of the ANOVA as a way to analyze differences in crop
yields across agricultural plots (Gamst, Meyers, & Guarino,
2008). The ANOVA is a parametric statistical technique that
explores mean differences on a single response variable

across two or more groups on each of one or more ways
or factors. Reviews of statistical techniques in the literature
empirically demonstrate the long-standing popularity of
ANOVA techniques within the social sciences (Edginton,
1964, 1974; Elmore & Woehlke, 1996; Kieffer, Reese, &
Thompson, 2001; Skidmore & Thompson, 2010). The
ANOVA is the most popular inferential analysis technique
for between-subjects univariate designs and was used in
93.3 % of the between-subjects univariate articles reviewed
by Keselman et al. (1998).

As with all statistical techniques, the integrity of ANOVA
results is contingent upon the extent to which the assump-
tions of the ANOVA are met. When the outcome variable
scores exhibit independence, normality, and homogeneity of
variance across groups, the ANOVA assumptions are satis-
fied. Unfortunately, empirical studies suggest that "researchers
rarely verify that validity assumptions are satisfied . . . and . . .
typically use analyses that are nonrobust to assumption viola-
tions" (Keselman et al., 1998, p. 350).

In practice, the question is not whether ANOVA assump-
tions are perfectly met but, rather, whether assumptions are
sufficiently well met that reasonable confidence can be
vested in the ANOVA statistics. Of course, not all these
statistical assumptions are equally vital. For example, it is
well known that the F test is robust to "mild departures from
normality" (Harwell, Rubinstein, Hayes, & Olds, 1992, p.
316) and, more generally, that the F test is relatively insen-
sitive to normality assumption violations under conditions
of equal group sizes (cf. Glass, Peckham, & Sanders, 1972;
Lix, Keselman, & Keselman, 1996).

The behavior of Type I error rates under heterogeneity of
variance conditions is also well documented in the literature
(Glass et al., 1972; Harwell et al., 1992). As summarized by
Glass et al. (1972) and corroborated by Harwell et al.
(1992), when groups are equal in size (i.e., a balanced
design) but given heterogeneity of variance, there is a slight
increase in the Type I error rate. Differential and more
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pronounced effects are observed given both groups unequal
in size (i.e., an unbalanced design) and heterogeneity of
variance. In negative pairing, when smaller sample sizes
are paired with larger variances on the outcome variable,
Type I error rates are markedly inflated as against the
nominal alpha level. In cases of positive pairing, when
smaller sample sizes are paired with smaller variances, Type
I error rates conversely are less than the nominal level. Some
researchers have recommended under these circumstances
the use of alternatives to the ANOVA, such as the James and
the Welch tests (Lix et al., 1996).

Keselman et al. (1998) commented on the severity of
violations to ANOVA assumptions:

Without the assumptions (or barring strong evidence
that adequate compensation for them has been made),
it can be—and has been—shown that the resulting
significance probabilities (p values) are, at best, some-
what different from what they should be and, at worst,
worthless. (p. 351)

Yet on average, in published research, the highest standard
deviation tends to be roughly twice as large as the lowest
standard deviation across groups (Keselman et al., 1998).
And for published one-way designs, positive pairings (i.e.,
largest outcome variable variance occurs in the largest sized
group) were present roughly a third of the time (31.3 %), and
negative pairings (i.e., smallest outcome variable variance in
the largest sized group) were present roughly a fifth (22.1 %)
of the time (Keselman et al., 1998). Thus, assumption viola-
tions should be explored by all researchers, and the extent to
which violations are present should be matched against em-
pirical literature that details the extent to which Type I error
rates and/or power are impacted before making a judgment as
to whether a different analytical tool better suited to the
characteristics of the data needs to be used.

Moving beyond statistical significance testing

While an ANOVA can be used to test the statistical signif-
icance of group mean differences, a second and at least
equally important use of the ANOVA is to estimate the
practical significance, or the magnitude of effect, of group
mean differences. Previous researchers have focused pri-
marily on understanding the impact of violation assump-
tions on both power and the p values for null hypothesis
statistical significance testing.

Of course, beginning in the late 1980s, psychologists
increasingly emphasized the importance of effect size
reporting and interpretation. Fiona Fidler (2005) reviewed
this evolution in her comprehensive 70,000+ word disserta-
tion, From Statistical Significance to Effect Estimation: Statis-
tical Reform in Psychology, Medicine, and Ecology.

By 1994 the American Psychological Association (APA)
Publication Manual first mentioned and "encouraged" (p.
18) effect size reporting, in APA (2001) it noted that failure
to report effect sizes was "a defect" (p. 5), and in 2010 it
noted that

historically, researchers in psychology have relied
heavily on null hypothesis statistical significance test-
ing (NHST) as a starting point for many (but not all) of
its analytical approaches. APA stresses that NHST is
but a starting point and that additional reporting ele-
ments such as effect sizes, confidence intervals and
extensive description are needed to convey the most
complete meaning of results. (p. 33)

Indeed, in 2002, Fidler (2002) noted that, "of the major
American associations, only all the journals of the American
Educational Research Association [AERA] have remained
silent on all these issues" (p. 754). But in 2006, the AERA
spoke, and published its standards requiring effect size
reporting in all AERA journals (AERA, 2006).

Purpose of the present study

Previous Monte Carlo ANOVA simulation research focused
on evaluating the impact of assumption violations on statis-
tics related to the F test and associated pCALCULATED values.
For example, Wilcox has published extensively on the ro-
bustness (or lack thereof) of the F test under assumption
violations (Wilcox, 1995; Wilcox, Charlin, & Thompson,
1986) and has suggested the use of more robust methods
(Wilcox, 1993; Wilcox & Keselman, 2003).

A few researchers have considered the effects of assump-
tion violations on ANOVA-related effect sizes. In one study,
Wilcox (2006) examined the robustness of one measure of
effect size, Cohen's d, which is relevant in the two-group
one-way ANOVA. In cases where there is a contaminated
normal distribution (see Tukey, 1960), "Cohen's d can mask
a large effect size" (Wilcox, 2006, p. 355). Wilcox (2006)
found that when the tails of the distribution are thicker, as in
a contaminated normal distribution or in the presence of
outliers, indices of effect size, such as Cohen's d, can be
distorted.

One study on the robustness of estimates of practical
significance was published over 30 years ago by Carroll
and Nordholm (1975). Means across nonnull conditions
were held constant, while the within-population variances
were adjusted to achieve η2 parameters of .05, .15, .40, and
.75 within the context of a three-level one-way fixed effects
ANOVA under both balanced and unbalanced conditions.
Carroll and Nordholm found that just as heterogeneity of
variance in unbalanced designs causes serious distortions to
power and Type I error rates in ANOVA, the most serious
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distortions to b"2 and bw2 (i.e., sample estimators) occurred
when variances were unequal across unbalanced designs.

Keselman (1975) investigated the (1) bias and (2) preci-
sion of three ANOVA effect sizes (bη2 , b"2 , and bw2 ) with
respect only to robustness against distribution assumption
violations. He found that "omega squared is a more accurate
estimator [i.e., smallest bias] of the true population magni-
tude while eta squared has the smallest sampling variability
[i.e., greatest precision]" (p. 47).

The purpose of the present article is to move beyond the
robustness of estimates of statistical significance (Type I
error rates and power) to evaluate the robustness of estimates
of practical significance (i.e., effect sizes bη2, b"2, and bw2) in a
one-way between-subjects univariate ANOVA. We sought to
understand the utility of these effect sizes in the presence of
assumption violations.

Method

To the extent possible, the conditions for the present Monte
Carlo investigation were chosen on the basis of previous
simulation research findings that demonstrated a need either
to investigate a particular condition or to investigate
particular researcher practices empirically shown to be
common in the extant literature. Thus, the conditions
modeled here are based on what previous research indi-
cates should have an impact on result integrity while still
maintaining an ecologically valid footing by grounding
our simulations in the framework of typical researcher
practices.

Computing the effect sizes

While our study also allowed for confirmation of previous
findings regarding the behavior of estimates of statistical
significance (i.e., Type I error rates and power) under
ANOVA assumption violations, our focus was on the be-
havior of estimates of practical significance (bη2, b"2, and bw2).
Eta squared (bη2 ) is an effect size that is uncorrected for
sampling error influences and quantifies the "proportion of
the variance in the population that is accounted for by
variation in the treatment" (Grissom & Kim, 2005, p. 121).
Eta squared is given by bη2 ¼ SSMODEL SSTOTALð Þ= , or in the
case of a one-way design, can also be computed as [(k − 1) *
(F)]/{[(k − 1) * (F)] + n − k}, where k is the number of
groups and n is the total sample size (Wilcox, 1987). It is

well known that bη2 , like bR2 (Yin & Fan, 2001) and br2
(Skidmore & Thompson, 2011; Wang & Thompson, 2007),
is positively biased. To correct this bias, Kelley (1935) and
Hays (1981) developed b"2 and bw2 , respectively. Epsilon
squared is given by b"2 ¼ SSMODEL� k � 1ð Þ*½ MSERRORÞ

� ��=

SSTOTALð Þ:, or equivalently by (F − 1)/{F + [(n − k)/(k − 1)]}

(Carroll & Nordholm, 1975). Omega squared is given by
bw2 ¼ SSMODEL� k�1ð Þ* MSERRORð Þ½ � SSTOTALþMSERRORð Þ=

or, equivalently, by F � 1ð Þ F þ n� k þ 1ð Þ k � 1ð Þ=½ �f g=

(Carroll & Nordholm, 1975). The presence of the F test
statistic in the formulas underscores the relationships
between all parametric analyses within the general linear
model.

Furthermore, given (1) that assumption violations impact
FCALCULATED, and (2) the potential use of FCALCULATED

when computing ANOVA effects, assumption violations
clearly must also impact effect size estimates. What is less
clear is the degree to which ANOVA effect sizes are robust
to assumption violations and whether certain ANOVA effect
sizes may be more or less robust than others to assumption
violations.

Population effect sizes used in the simulation

Cohen (1988) himself eschewed the thoughtless fixation on
effect size benchmarks, noting that "these proposed conven-
tions were set forth throughout with much diffidence, qual-
ifications, and invitations not to employ them if possible
[italics added]" (p. 532) in result interpretation, because
interpretation ought to be context specific (Thompson,
2002, 2006b). Cohen developed his benchmarks on the
basis of his impressions of what he thought might be about
the smallest (d 0 0.2), the largest (d 0 0.8), and the average
(d 0 0.5) effects across all published social science research.
And Cohen felt that "typicality" was not a useful index of
result import. Typicality is useful to simulation study design.
Therefore, Cohen’s benchmarks are considered in setting the
population parameter values.

In the present study, all distributions had equal means set
to 100.0 for the null condition (i.e., the null condition where
population Cohen's d 0 0.0). Cohen’s d provides a standard-
ized effect size for two population means. When there are
more than k 0 2 means, Cohen’s f is an analogous effect size.
Cohen’s f is “the standard deviation of the standardized k
population means” (1988, p. 276). In determining the nec-
essary mean differences to obtain the given Cohen's f value,
Cohen's (1988) pattern 1 was used, where one mean is at
each end of the range and "the remaining k − 2 means are all
at the midpoint" (p. 277). Cohen’s f, under pattern 1, is
given by formula 8.2.8 provided in Cohen’s text: f 0 d *
sqrt(1/2k). For the k 0 2 case, the formula reduces to d * 0.5.
Thus, Cohen’s f, in this case, is half of d. As the number of
groups increase, the multiplier to obtain f, decreases. Inter-
ested readers can refer to Cohen (1988) for a full explana-
tion. For the present study, we maintained the five Cohen’s d
conditions constant and converted from Cohen’s f value as
appropriate when k > 2. The four nonnull conditions are
Cohen’s d equal to 0.20, 0.50, 0.80, and 1.00.
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Numbers of groups (k) modeled in the simulation

Wilcox et al. (1986) demonstrated that when there were four
groups in the one-way ANOVA, the F test was not as robust
as when there were two groups. Thus, the condition of
number of groups is important to consider when evaluating
the robustness of the F test. In a review of Monte Carlo
studies, the number of groups (k) examined by researchers
in prior ANOVA simulation studies focusing on Type I error
rates and power varied between 2 and 10 for equal group
sizes and between 2 and 6 for unequal group sizes, with 3
groups being the most commonly examined (Harwell et al.,
1992). Therefore, two-level, three-level, and four-level one-
way situations were modeled in the present study.

Total ns modeled in the simulation

Kieffer et al. (2001) examined quantitative articles in 10
volumes of the American Educational Research Journal
and Journal of Counseling Psychology and found that me-
dian sample sizes in some years were as low as 76 and 43,
respectively. Of course, some individual articles had even
lower sample size than these volume medians.

Previous Monte Carlo simulation studies on the robustness
of ANOVA to assumption violations modeled relatively small
total ns. For example, Hsu's (1938) largest total sample size
was 20, and Box's (1954) largest total sample size was 25. A
later study (Donaldson, 1968), which was highlighted as
"exemplary" in Glass et al. (1972, p. 265), examined a mini-
mum sample size of 8 for the two-group ANOVA and a
maximum total sample size of 128 for the four-group
ANOVA.

In a meta-analytic summary of 28 Monte Carlo studies of
ANOVA dynamics, Harwell et al. (1992) found that Monte
Carlo researchers used an average total sample size of 111
(SD 0 154) across the simulation studies reviewed, with a
minimum total sample size of 8 and a maximum of 750. In
our simulation study, we modeled total sample ns of 24 and
48.

Group sizes modeled in the simulation

In a review of the analytical practices of educational
researchers, Keselman and his colleagues (1998) explained
that one-way designs made up 58.3 % of the 61 between-
subjects univariate studies they located in their review.
Furthermore, in the 23 one-way studies with an unbalanced
design, the ratio of the largest to the smallest group size was
greater than 3:1 in 43.5 % of the studies.

For k 0 2, we modeled group sizes of 12:12, 8:16, and
6:18 for a total n of 24 and of 24:24, 16:32, and 12:36 for a
total n of 48. For k 0 3, we modeled group sizes of 8:8:8,
6:6:12, and 5:5:14 for a total n of 24 and of 16:16:16,

12:12:24, and 10:10:28 for a total n of 48. For k 0 4, we
modeled group sizes of 6:6:6:6, 5:5:5:9, and 4:4:4:12 for a
total n of 24 and of 12:12:12:12, 10:10:10:18, and 8:8:8:24
for a total n of 48.

Within-group outcome variable variances modeled

Heterogeneity of variance is a serious assumption violation
in the ANOVA (Harwell et al., 1992; Lix et al., 1996).
Nevertheless, published one-way designs are known to have
an average ratio of the largest to the smallest standard
deviation of 2:1 (Keselman et al., 1998). Furthermore, it is
well documented not only that homogeneity of variances is
an important assumption, but also that the ways in which
sample sizes are paired with heterogeneous variances pro-
duce different results. Smaller sample sizes paired with
larger variances (negative pairing) produce larger Type I
error rates; larger sample sizes paired with larger variances
(positive pairing) produce a lower Type I error rate (e.g.,
Harwell et al., 1992).

We studied both homogeneous and heterogeneous vari-
ance conditions. And for heterogeneous variance situations,
we studied both negative and positive pairings of variances
with group sizes.

For the equal variance conditions, parameter σ2 was set
equal to 225.0 within each group for k 0 2, 3, and 4.
Outcome variable variances for unequal negative pairing
conditions were set at σ2 0 360.0 and 90.0; 385.7, 192.8,
and 96.4; and 400.0, 200.0, 200.0, and 100.0, for k 0 2, 3,
and 4, respectively. Outcome variable variances for unequal
positive pairing conditions were set at σ2 0 90.0 and 360.0;
96.4, 192.8, and 385.7; and 100.0, 200.0, 200.0, and 400.0,
for k 0 2, 3, and 4, respectively. Thus, in all cases the
average variance was equal to 225.0.

Shape conditions modeled in the simulation

As was previously noted, mild departures from normality
have negligible effects on the F test (Harwell et al., 1992);
thus, conditions in the present study were chosen to repre-
sent normal (i.e., coefficient of skewness 0 coefficient of
kurtosis 0 0.0), mildly deviant (i.e., coefficient of skewness
0 coefficient of kurtosis 0 0.5), and moderately deviant
(coefficient of skewness 0 1.0, coefficient of kurtosis 0

3.75) distribution shapes. The population data with the
desired shape parameters were generated using Vale and
Maurelli's (1983) multivariate extension of Fleishman's
(1978) procedure.

To confirm that the program was working in the intended
manner, populations of 100,000 scores were generated for
each of the three distributional shape conditions we mod-
eled. The population parameters closely matched the
expected coefficients of skewness and kurtosis.

Behav Res (2013) 45:536–546 539



Replications

To minimize the standard error of the simulation in explor-
ing Type I error rates and the robustness of the ANOVA
effect sizes across assumption violations, 5,000 samples (see
Robey & Barcikowski, 1992) were drawn for each of the
270 (5 parameter d values × 3 group size ratios × 3 popu-
lation distribution shapes × 3 variance ratios × 2 total ns)
conditions modeled for each of the k 0 2, 3, and 4 group
analyses. According to the SAS for Monte Carlo Studies: A
Guide for Quantitative Researchers, 5,000 replications for
the ANOVA analyses performed provide “reasonable accu-
racy” (Fan, Felsovalyi, Sivo, & Keenan, 2001, p. 130).
Thus, we modeled a total of 270 × 3 0 810 conditions.
Detailed SAS programming explanations, including related
sample programs, can be found in SAS for Monte Carlo
Studies (Fan et al., 2001).

Three indices of practical significance (bη2, b"2, and bw2) and
two indices related to statistical significance (Type I error
rates and power) were computed for each of the 4,050,000
(5,000 × 270 × 3) samples. Estimated (1) sampling error
bias and (2) precision were computed for each of the three
effect size estimates.

Simulation baseline check

When ANOVA assumptions are met, the expectation is that
the actual Type I error rates should closely match the nom-
inal α level. Similarly, when ANOVA assumptions are met,
the expectation is that theoretical power levels should agree
with actual obtained power. When a Monte Carlo study is
conducted, providing both Type I error rates and theoretical
versus empirical power estimates for the null condition
provides evidence that the simulation study was correctly
conducted. Glass et al. (1972) recommended that such
"'baseline checks' of the entire simulation procedure should
be performed and reported" (p. 282). We performed three
such baseline checks for our simulation.

First, we computed actual versus expected Type I error
rates for (1) parameter Cohen's d 0 0.0 (2) with perfect
homogeneity of variance and (3) normally distributed out-
come variables for the 18 (3 group size ratios × 2 total ns ×
k 0 2, 3, and 4 group analyses) simulation conditions relevant
when ANOVA assumptions are perfectly met for the null case.
Across the 5,000 samples in each of these 18 cases, the actual
empirical Type I error rates ranged from 0.043 to 0.054 (M 0

0.050, SD0 0.004). Thus, the empirical Type I error rates were,
as expected, close to or equal to 0.05 when nominal α 0 .05.

Second, for the 24 simulation conditions in which pa-
rameter Cohen's d did not equal 0.0, we compared our actual
empirical power values when ANOVA assumptions were
perfectly met (i.e., normality and homogeneity of variance)
with balanced designs with theoretically expected power

estimates obtained using G*Power (Version 3.1.0; Faul et al.
2007). The deviations of actual minus theoretically expected
power values were quite small (M 0 −0.001, SD 0 0.004).

As a third and final confirmation that our simulation
worked correctly, simulation results for the null case (i.e.,
parameter Cohen's d 0 0.0) for the most severe cases of
assumption violations are presented, when unequal samples
sizes were paired with heterogeneous variances. Table 1
presents Type I error rates for both the smaller and larger
total sample size conditions across k 0 2, 3, and 4. Our
results closely match the findings in previous simulation
studies of effects on Type I error rates of ANOVA assump-
tion violations (cf. Glass et al., 1972; Harwell et al., 1992).

Results

The estimated bias due to sampling error was computed for
each of the 4,050,000 sets of three effect size estimates, by
subtracting the parameter η2 values from the individual
sample bη2, b"2, and bw2 values. Thus, positive sampling error
bias values indicate that sample estimates overestimated the
parameter and negative parameter sampling error bias val-
ues indicate that sample estimates underestimated the pa-
rameter. Finally, precision was estimated by computing the
standard deviations of each of the 5,000 estimates within the
270 conditions modeled each for k 0 2, 3, and 4.

Table 1 Impact of heterogeneity of variance on Type I error rates

k Group size
proportion

Variance
ratio

Type I error

Smaller n (24) Larger n (48)

2 1:1 1:4 0.054 0.052

2 1:2 1:4 0.018 0.017

2 1:3 1:4 0.009 0.005

2 1:1 4:1 0.058 0.055

2 1:2 4:1 0.113 0.105

2 1:3 4:1 0.155 0.145

3 1:1:1 1:2:4 0.058 0.053

3 1:1:2 1:2:4 0.030 0.022

3 1:1:3 1:2:4 0.016 0.013

3 1:1:1 4:2:1 0.062 0.058

3 1:1:2 4:2:1 0.099 0.100

3 1:1:3 4:2:1 0.129 0.130

4 1:1:1:1 1:2:2:4 0.066 0.059

4 1:1:1:2 1:2:2:4 0.035 0.033

4 1:1:1:3 1:2:2:4 0.015 0.016

4 1:1:1:1 4:2:2:1 0.056 0.057

4 1:1:1:2 4:2:2:1 0.086 0.086

4 1:1:1:3 4:2:2:1 0.132 0.129

Note. Cohen's d 0 0.0, shape 0 normal, α 0 .05
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Effect size sampling error bias

The dispersions of the 1,350,000 (i.e., 270 simulation con-
ditions × 5,000 replications) sampling error biases were
relatively homogeneous across the three numbers of groups
(i.e., k 0 2, 3, and 4) and the three ANOVA effect sizes (i.e.,bη2,
b"2, and bw2). For k 0 2, SDη SQUARED 0 0.094, SDε SQUARED 0
0.095, and SDω SQUARED 0 0.097. For k 0 3, SDη SQUARED 0

0.103, SDε SQUARED 0 0.106, and SDω SQUARED 0 0.109. For
k 0 4, SDη SQUARED 0 0.111, SDε SQUARED 0 0.118, and
SDω SQUARED 0 0.121. Considerably more descriptive statistics
for the simulation results are available from the senior author.

The shape conditions modeled resulted in minimal im-
pact to effect size estimates. As was expected, the smaller

total n condition resulted in greater variability than did the
larger total n condition for each of the effect size estimates.
The greatest amount of bias was present when heteroge-
neous variances were paired with unbalanced designs.
Figures 1, 2 and 3 present box-and-whisker plots for sam-
pling error biases of the three ANOVA effect size formulas
across the k 0 2, 3, and 4 number-of-groups cases for balanced
and unbalanced design conditions (with positive and negative
pairing) across the five Cohen’s d conditions. For reference
purposes, each figure includes horizontal lines drawn at 0.0 ±
0.01 to discriminate between relatively biased versus unbiased
estimates (see Kromrey & Hines, 1996; Yin & Fan, 2001).
Thus, estimates outside the two horizontal lines represent
situations in which the use of a particular formula resulted in

Cohen’s d 

B
ia

s

Fig. 1 Box-and-whisker plots
for sampling error biases across
variance homogeneity/
heterogeneity, group size
proportions, and values of
Cohen's d for the k 0 2 group
ANOVA case
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biased effect size estimates for the conditions examined in the
present study. For example, in the two-group case with the
equal variance condition in a balanced design, both b"2 and bw2

were unbiased estimators across the five Cohen’s d conditions
examined. However, in the unbalanced design condition (1:3),
with negative variance pairing, all the effect size formulas
provided positively biased results.

Effect size precision

Researchers want sample estimates of population effect
sizes to be unbiased, but we would also like the estimates
to be precise (i.e., for a given design, we prefer estimates
that are narrowly dispersed over repeated sampling). As
indices of precision, we computed the SDs for the 5,000

effect size estimates within each of the 270 (5 parameter d
values × 3 group size ratios × 3 population distribution
shapes × 3 variance ratios × 2 total ns) simulation conditions
for all three ANOVA effect sizes.

Across these 270 simulation conditions, for k 0 2,
SDη SQUARED for precision 0 0.037, SDε SQUARED 0 0.038,
and SDω SQUARED 0 0.039. For k 0 3, SDη SQUARED for
precision 0 0.033, SDε SQUARED 0 0.036, and SDω SQUARED 0

0.037. For k 0 4, SDη SQUARED for precision 0 0.031,
SDε SQUARED 0 0.037, and SDω SQUARED 0 0.038.

The variability in precisions across the design features
were largely explained by Cohen's d values (i.e., 0.00, 0.20,
0.50, 0.80 or 1.00) and samples sizes (i.e., n 0 24 or 48). For
the k 0 2 group situation, across all three ANOVA effect
sizes, the Cohen's d main effect and the sample size main

B
ia

s

Cohen’s d 

Fig. 2 Box-and-whisker plots
for sampling error biases across
variance homogeneity/
heterogeneity, group size
proportions, and values of
Cohen's d for the k 0 3 group
ANOVA case
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effect explained roughly 60 % and 20 % of the variability in
precision. For the k 0 3 group situation, across all three
ANOVA effect sizes, the Cohen's d main effect and the
sample size main effect explained roughly 50 % and 35 %
of the variability in precision. For the k 0 3 group situation,
across all three ANOVA effect sizes. the Cohen's d
main effect and the sample size main effect explained
roughly 40 % and 50 % of the variability in precision.
Sampling error variance accounts for the fact that Cohen’s d
and sample size impact effect size estimates. All other
design conditions held constant, sampling error variance
is greater in samples with smaller ns than in samples
with larger ns. Similarly, the larger the effect size, the
less sampling error variance. A clear and extended descrip-
tion of these phenomena can be found in (Thompson, 2006a).

Discussion

Our Monte Carlo simulation results suggest a number of
important conclusions regarding the characteristics of three
ANOVA effect sizes (i.e., bη2, b"2, and bw2) under conditions
when analytic assumptions have been met or assumptions
are violated to varying degrees. This information will be
increasingly important to scholars as researchers come off
what has historically been a low baseline of effect size report-
ing in the published literature (cf. Snyder & Thompson, 1998;
Thompson, 1999; Thompson & Snyder, 1998) in response to
the admonitions of various standards (e.g., AERA, 2006;
APA, 2010; Wilkinson & APATask Force, 1999).

Of course, methodologists have long recognized that the
most commonly used effect size estimators (e.g., Cohen's d)

B
ia

s

Cohen’s d 

Fig. 3 Box-and-whisker plots
for sampling error biases across
variance homogeneity/
heterogeneity, group size
proportions, and values of
Cohen's d for the k 0 4 group
ANOVA case
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are not robust. Thus, Algina et al. (2005) recommended
using a robust version of Cohen's d, with 20 % trimmed
means and the square root of a 20 % Winsorized variance.
Similarly, in the presence of heterogeneous variances and
nonnormal data, Keselman et al. (2008a, 2008b) advocated
using an approximate df test statistic based on trimmed
means and Winsorized variances. Zhang and Schoeps
(1997) proposed two nonparametric estimators of effect
size. Among the endearing qualities of the proposed estima-
tors are that they are easy to calculate, robust, and relatively
efficient.

Unfortunately, robust statistical methods have only min-
imally penetrated the contemporary practices of applied
researchers. Penetration has been slowed, first, by the lim-
ited space afforded methodology within doctoral curricula
(Aiken, West, & Millsap, 2008; Capraro & Thompson,
2008; Henson & Williams, 2006). Second, the software
commonly used by applied researchers affords few—and
often nonoptimal—analytic choices. Thus, Pierce, Block,
and Aguinis (2004) noted that "because common statistical
software packages such as SPSS only report eta-squared
values and not omega-squared or epsilon-squared values in
their ANOVA output files, many researchers in education
and psychology report eta-squared values" (p. 918). To
assist researchers in reporting epsilon-squared and omega-
squared values, we provide an Excel sheet to easily calculate
b"2 and bw2 from information currently available in common
statistical software such as SPSS (see http://www.shsu.edu/
~sts008/).

Precision

The precisions of the three ANOVA effect sizes (i.e., bη2, b"2,
and bw2) across the 270 (5 parameter d values × 3 group size
ratios × 3 population distribution shapes × 3 variance ratios ×
2 total ns) simulation conditions were small and similar for all
three effects. These results suggest that precision is not a
relevant consideration with respect to differential preferences
among the three ANOVA effect sizes we studied.

Sampling error bias

Our results support a number of conclusions. First, as
Figs. 1, 2 and 3 indicate, across the five values of Cohen's
d and the balanced and the two unbalanced designs we
considered, when the homogeneity of variance assumption
was met, bη2 had considerable positive sampling error bias,
especially for the k 0 3 and 4 designs. Second, also when the
homogeneity of variance assumption was met, bothb"2, and bw2

tended to have little bias, especially for the k 0 3 and 4 designs.
Third, across the k 0 2, 3, and 4 group designs, when

variances were heterogeneous and involved unbalanced
designs with negative pairings, all three estimators tended

to have positive sampling error biases. Fourth, across the k 0
2, 3, and 4 group designs, when variances were heteroge-
neous and involved unbalanced designs with positive pair-
ings, even the b"2 and bw2 estimators tended to have negative
sampling error bias and not to function as well as they did in
the remaining simulation design conditions.

Limitations

Of course, as in any study, our foci were necessarily limited.
We did not investigate effect sizes in multiway designs (see
Kirk, 1995, pp. 397–399). Furthermore, we studied only
classical effect sizes, rather than robust analogs of these
estimates (e.g., Algina et al., 2005; Keselman et al., 2008a,
2008b). It is also worth noting that classical effect sizes
enjoy widespread use in the contemporary applied social
sciences, while robust estimates to date are almost never
reported, however unfortunate this reality may be.

Summary

Overall, our results corroborate the limited previous re-
search (Carroll & Nordholm, 1975; Keselman, 1975) and
suggest that bη2 should not be used as an ANOVA effect size
estimator, because across the range of conditions we exam-
ined, bη2 had considerable sampling error bias, as reported in
Figs. 1, 2 and 3. Of course, this recommendation flies
directly in the face of both common analytic practice and
the commonly available software choices, as noted previ-
ously (Pierce et al., 2004). We look forward to a day when
researchers will be less susceptible to the appeal of point-
and-click menus within commonly used software and more
willing to venture into the world of simple calculations or
even software syntax and robust statistics.
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