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Abstract To study perceptual grouping processes, vision
scientists often use stimuli consisting of spatially separated
local elements that, together, elicit the percept of a global
structure. We developed a set of methods for constructing
such displays and implemented them in an open-source
MATLAB toolbox, GERT (Grouping Elements Rendering
Toolbox). The main purpose of GERT is to embed a
contour in a field of randomly positioned elements, while
avoiding the introduction of a local density cue. However,
GERT’s modular implementation enables the user to create
a far greater variety of perceptual grouping displays, using
these same methods. A generic rendering engine grants
access to a variety of element-drawing functions, including
Gabors, Gaussians, letters, and polygons.
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Introduction

Empirical studies on perceptual grouping often employ
stimulus displays in which spatially separated local elements
are arranged into a specific global configuration. These

grouping stimuli come in many flavors: textured regions
(e.g., Giora & Casco, 2007; Harrison & Feldman, 2009;
Julesz, 1981; Lamme, 1995; Nothdurft, 1985; Roelfsema,
Lamme, Spekreijse, & Bosch, 2002; Rossi, Desimone, &
Ungerleider, 2001; Wolfson & Landy, 1998), oriented line
fields (e.g., Li & Gilbert, 2002; Tversky, Geisler, & Perry,
2004), Gabor fields (e.g., Dakin & Baruch, 2009; Demeyer,
De Graef, Verfaillie, & Wagemans, 2011; Field, Hayes, &
Hess, 1993; Kovács & Julesz, 1993; Machilsen, Pauwels, &
Wagemans, 2009; Nygård, Van Looy, & Wagemans, 2009;
Persike & Meinhardt, 2008; Sassi, Vancleef, Machilsen,
Panis, & Wagemans, 2010; Watt, Ledgeway, & Dakin,
2008), dot lattices (e.g., Bleumers, De Graef, Verfaillie, &
Wagemans, 2008; Claessens & Wagemans, 2005, 2008;
Kubovy & Wagemans, 1995; Põder, 2011), Glass patterns
(e.g., Khuu, Moreland, & Phu, 2011; Palomares, Pettet,
Vildavski, Hou, & Norcia, 2010; Wilson & Wilkinson,
1998), and many more.

The exact methods used to create these displays are often
unique to a particular study or series of studies, too briefly
summarized in the method section, or both. To facilitate and
standardize stimulus construction in perceptual grouping
research, we here present a coherent set of methods and
their implementation in the generic framework GERT: the
Grouping Elements Rendering Toolbox for MATLAB.
Figure 1 illustrates the diversity of image outputs that
GERT can deliver in a fast, flexible, and transparent
manner.

Although very versatile, GERT is especially well
equipped to generate a specific type of stimulus display,
where an open or closed contour is embedded in a field of
randomly positioned distractor or background elements,
similar to Figs. 1b–e. A difficult problem arises when the
research design requires the elimination of proximity or
local density cues in detecting the embedded contour among
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the background elements. GERT implements a comprehen-
sive solution to this problem. In general, the following
stimulus construction steps can be identified: (1) Define the
underlying contour to be embedded in the display; (2) position
local elements on this contour, and populate the remainder of
the display with randomly positioned background elements;
(3) perform an explicit check for the presence of unwanted
proximity cues in the element positions, and minimize them if
needed; (4) render the display using a customizable element
drawing function. We will describe each of these steps in more
detail below.

Step 1: contour definition

First, the global structure to be evoked perceptually (e.g., a
shape outline) must be defined. Often, this structure is an
open or closed contour, which GERT will define as a
discrete set of Cartesian coordinates ordered along the
contour (e.g., 1,000 pairs of (x, y)-coordinates). Several
methods for obtaining the contour description are available.
The coordinate pairs may be read in directly from a plain
text file or converted from a Scalable Vector Graphics
(SVG) file at a specified resolution. Alternatively, contour
definitions may be generated from mathematical parameters;
we have currently implemented ellipses and radial frequency
patterns (Wilkinson, Wilson, & Habak, 1998). It is also

possible to write your own contour generation function or
to describe the contour by hand in the MATLAB command
window (e.g., use to create a line).

Step 2: element placement

We now want to reduce the full contour description to a
limited set of contour grouping elements, most often
embedded in a field of distractor or background elements.
We propose and implement a number of methods, for both
the contour and the background element placement. Note,
however, that for other types of displays, such as dot
lattices (Fig. 1h), element positions can also be defined
manually, without the use of these specialized GERT
routines.

Contour elements

For simple, smooth contours (Fig. 2a), often a clear percept
can be evoked by placing the elements equidistant along the
contour. In the case of more complex contours, however,
this simple algorithm can result in overlap between contour
elements. We therefore provide a fast method where such
difficult element positions are shifted along the contour to
the next suitable position, while equidistant placement is
maintained for the other element positions. Figure 2b

Fig. 1 Example stimuli generated through GERT. A few lines of
MATLAB code are sufficient to generate each of these stimuli. a
Texture-segregation stimulus using oriented line fragments; b a letter
shape embedded in a field of randomly positioned elements, where
Gabor orientation and luminance are manipulated to evoke the shape
perceptually; c Gaussian blobs on a colored background; d Navon-like

letter display; e shape outline of a hare embedded in a field of small
colored tortoises, where both the hare and the tortoises were imported
from an SVG file; f rotational Glass pattern; g randomly positioned
Gabor elements with phase offsets determined by the luminance
values of an underlying grayscale image; h dot lattice consisting of
Gaussian blobs
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illustrates this for one of the Snodgrass and Vanderwart
shape outlines used by Sassi et al. (2010). Positional jitter
generated from various types of noise distributions can be
applied to both of these methods, either along or perpendicular
to the contour. A third GERT method employs random
placement of elements on the contour, respecting a minimal
Euclidean distance from one another until no more elements
can be placed (Fig. 2c). Finally, GERT also implements a
procedure for generating “snake” contour elements from an
underlying series of connected line segments (Fig. 2d),
comparable to the methods used by Hess and Dakin (1999).

Background elements

Traditionally, the most common approach is to place
background elements according to an underlying grid and
then add positional noise (e.g., Altmann, Deubelius, &
Kourtzi, 2004; Bex, Simmers, & Dakin, 2001; Dumoulin &
Hess, 2006; Field et al., 1993; Kourtzi, Tolias, Altmann,
Augath, & Logothetis, 2003; Kuai & Yu, 2006; Li &
Gilbert, 2002; Mathes & Fahle, 2007a, b; Mathes, Trenner,
& Fahle, 2006; May & Hess, 2007; Mullen, Beaudot, &
McIlhagga, 2000; Nygård, Sassi, & Wagemans, 2011;
Tanskanen, Saarinen, Parkkonen, & Hari, 2008). In a
similar fashion, Hadad, Maurer, and Lewis (2010) placed
background elements on imaginary concentric circles
around the embedded closed contour. Some authors also
apply a systematic algorithm, rather than random noise, to

the initial grid positions (Braun, 1999; Schinkel, Pawelzik,
& Ernst, 2005). In their simplest form, algorithms based on
a grid can be very fast, but in practice, they often require slow
or highly idiosyncratic corrections to produce homogeneous
displays. Moreover, the limitations of using a fixed grid can be
met whenmore complex figures are embedded. In some cases,
the grid structure may even remain visible in the final
stimulus. GERT adheres to a second, more flexible category
of methods (e.g., Dakin & Baruch, 2009; Demeyer et al.,
2011; Geisler, Perry, Super, & Gallogly, 2001; Kovács &
Julesz, 1994; Machilsen & Wagemans, 2011; Verghese,
2009; Watt et al., 2008), where contour elements are first
placed as desired and background element positions are then
added in an entirely random fashion until the display is full.
A minimal distance to previously placed elements is usually
the only restriction imposed.

Two approaches can be taken to this random placement.
First, the Euclidean distances of previously placed elements
to a new randomly generated element position can be
computed, to ensure that a minimal distance is kept (e.g.,
Geisler et al., 2001). The speed of this method does not
scale with the resolution at which elements are placed.
However, it does slow down with the number of elements
already placed in the display, both because the Euclidean
distance matrix to compute grows in size and because less
“good” positions are available in the display. Moreover, the
resulting display is not guaranteed to be filled completely,
since some empty spots might never be picked by the
random algorithm. A second approach is to keep track of all
possible valid positions in the display (i.e., positions
respecting a minimal distance from previously placed
elements) and to update these valid positions after each
element has been placed (e.g., Dakin & Baruch, 2009). This
method allows filling the display to the last remaining
position, avoiding holes larger than twice the minimal
element distance, and will not slow down toward the end.
However, the speed of such an algorithm is highly
dependent on the resolution of the display.

A hybrid method is implemented in GERT, based on
Machilsen et al. (2009). All candidate positions are kept
track of. GERT will then generate a whole batch of new
random positions (default: 200) and will compute the
Euclidean distance matrix between them to eliminate
conflicting elements. A simultaneous update of potential
future positions with all elements remaining from the
batch is then possible. In this way, the size of the
Euclidean distance matrix is kept manageable, and the
slow process of updating the potential future positions
needs to be executed only a handful of times, rather than
after each element placement. Speed gains are consider-
able, especially for high-resolution displays in which
many elements need to be placed. For instance, filling an
800 × 800 pixel display with approximately 1,000

Fig. 2 a With smoothly undulating contours, it is easy to position
elements at equidistant locations along the contour. b If the contour is
more complex, equidistant positioning of contour elements results in
partial overlap between elements. To avoid overlap with previously
placed elements, we shift (red contour segment) difficult elements
along the contour. The black element is placed first; the others are
placed clockwise along the contour. c These elements have been
placed at random positions on a circle. No additional elements can be
placed without violating a specified minimal distance between the
elements. d Contour elements can also be positioned on a backbone of
connected line segments to form a “snake”
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elements takes less than 100 ms on a standard desktop
computer. In addition, GERT includes methods for restricting
background element placement to a specific region of the
display and imposing different minimal distances to different
sets of existing elements.

For displays such as those shown in Fig. 1a or g, where
no explicit contour elements are present, the background
element placement routine was used to place all elements in
the display. To bring forward a perceptual structure, the
local element features are then manipulated by applying a
different orientation within the figural “g” region and by
letting the phase offset of the local Gabor elements depend
on the local luminance in a bitmap image of the same size,
respectively.

Step 3: minimize local density cues

A lack of consensus

A common and challenging problem is the avoidance of
proximity or local density cues that differentiate contour from
background elements, solely on the basis of the relative
element spacing. Eliminating this cue is often required to
study other grouping cues in isolation. For example, theories
of contour integration depend on the collinearity and co-
circularity of neighboring Gabor elements (Hess & Dakin,
1999; Watt et al., 2008). An unwanted difference in spacing
between contour elements and background elements may
then invalidate the conclusions. Many authors (e.g., Braun,
1999; Geisler et al., 2001; Li & Gilbert, 2002; Mathes &
Fahle, 2007b; Mullen et al., 2000; Nygård et al., 2009, 2011;
Tversky et al., 2004) and even more peer referees warn
against local density cues.

It is therefore all the more surprising that few serious
or well-documented attempts to quantify local density
information have been undertaken. Braun (1999) pointed
out that a grid method often results in a different density
profile for contour and background elements and suggested an
iterative correction algorithm to reduce positional cues. Some
researchers (e.g., Mathes & Fahle, 2007a, b; Mathes et al.,
2006; May & Hess, 2007) have heeded this warning and
have attempted to approximate an equal average distance from
contour and background elements to their neighbors, across all
generated displays. Other authors have described how they
have randomly drawn contour and background elements from
a common positional distribution (Nygård et al., 2009, 2011;
Watt et al., 2008), applied boundary conditions to an iterative
element positioning algorithm (Braun, 1999; Schinkel et al.,
2005), or selected stimulus displays on the basis of a subjective
screening (Geisler et al., 2001). None of these studies,
however, have described a formal test for the presence of a
local density cue in a single grouping display.

Controlling the average local density

We have implemented a method for detecting local density
differences in GERT. For each element in the display,
we calculate its local density as the average distance
to the n nearest neighbors. When n is omitted, a Delaunay
triangulation is performed to determine the natural neighbors
for each element (Mathes & Fahle, 2007b). Elements
near the display border are excluded from these computations,
since they have lower local density (i.e., fewer neighbors)
by definition. We decide on the presence of an average
local density cue whenever the average of the contour
element densities differs significantly from the average of
the background element densities. Through performing a
statistical test, the severity of the observed difference in
average density is weighed by the variability in local
densities, as well as the number of elements in the display.
When the resulting p-value falls below a threshold α
(default: 0.1), the display is said to contain a density cue.
In particular, statistical significance is assessed by means
of a nonparametric Monte Carlo permutation test. In such
a test, the contour and background labels of the elements
are randomly reassigned, hundreds to thousands of times.
A random baseline distribution of differences in average
local density can then be obtained, against which the
actually observed difference can be compared. Note that
any two arbitrary sets of elements can be used as the input
to this local density check. For instance, separate tests may
be run for contour versus exterior elements, contour versus
interior elements, and interior versus exterior elements.
Two alternative local density metrics have additionally
been implemented in GERT. The first partitions the display
into polygon regions through a Voronoi tessellation, such
that all display coordinates within each polygon are
closer to the one element enclosed by that polygon than
to any other element. The surface area of the polygon is
taken as the local density metric. The second alternative
metric counts the number of other elements within a
radius r around each element.

Whenever the element placement method contains a
stochastic component, the presence of a local density
cue is in part determined by chance. But it also depends
systematically on the relative parameter values of the
contour and background element placement functions
(e.g., the average spacing along the contour and the
minimal spacing in the background). Determining the
optimal values is often not an easy problem to solve
analytically, as some authors have openly testified (May &
Hess, 2007). GERT therefore offers a tool for evaluating a
range of parameter values. First, the proportion p1 of Monte

1 Note that this is not a p-value in the statistical sense.
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Carlo samples for which the difference in average density
falls below the actually observed difference is computed for
each value in the desired range. GERT then fits a logistic
regression to the resulting proportions p. The method is
illustrated in Fig. 3. A p of 1 indicates that the background is
always more dense than the contour, whereas a p of 0
indicates that the contour is more dense. Where p equals .5,
the probability that the corresponding element placement
parameters will produce a display without a local density cue
is highest. This effectively removes the need to try out
random parameter values. Note, however, that a local density
check should still be performed after each display generation,
even when using the “optimal” parameters.

Controlling the full local density distribution

The methods implemented in GERT work well even for very
regularly placed contour elements, such as the bear outline in
Fig. 3. At the same time, this is a good illustration of the fact
that we have, indeed, controlled only for average local
density differences, but not for differences in positional
regularity. To also eliminate these variability cues in the local
density information, the random method of contour element
placement is often preferable (see Fig. 2c). The main
parameter of this routine, the minimal distance to previously
placed elements, is identical to the main parameter of the
background element placement routine. It is therefore trivial
to determine the optimal value for each; they should be equal.
This does not, however, guarantee that differences do not
exist at the level of an individual display. For each of the
three local density metrics implemented, a measure sensitive
to differences in variability, as well as average distance, is
also supplied, on the basis of the distribution of distances to
the n nearest neighbors for all elements, the distribution of the
Voronoi polygon areas, or the distribution of the number of
other elements within increasingly larger radii around each
element (Braun, 1999). For the two sets of elements that are

to be compared, these distributions are then binned, and the
absolute difference between the (relative) bin frequencies is
summed. A Monte Carlo permutation test similar to the one
described above is then run to determine the significance of
the observed difference. Whether variability in local density
should be controlled for at all is up to the researcher. In some
cases, one might prefer to make the embedded contour more
easily recognizable by using an equidistant contour element
placement, rather than controlling the variability cue (e.g.,
Sassi et al., 2010).

Step 4: render the display

We have until now been concerned only with computing
the positions of individual elements. GERT includes a
generic graphical rendering engine to place graphical
elements at these positions. The user needs to specify a
handle to an element drawing function of his choice, as well
as the corresponding drawing parameters for each element.
It is easy to keep certain parameters fixed (pass the value as
a scalar), while systematically manipulating or randomizing
others (pass the values as a vector). For instance, in Fig. 4,
we opted to render previously computed positions as Gabor
elements with fixed parameters, except for their orientation,
which was manipulated systematically for some elements
and randomized for others. Other drawing functions include
Gaussian blobs, ellipses, and polygons. To define polygons,
SVG files may be read in, allowing their creation in
graphical packages such as Inkscape. A Lanczos anti-
aliasing filter is applied to avoid jaggedness in polygon
element borders. Figure 1e is an example of a display where
both the polygonal element and the embedded global
contour were imported from SVG files. Should the user
require a type of element that is not currently implemented
in GERT, it is easy to write a custom element drawing
function and plug it into the rendering engine.

Fig. 3 The shape outline of a bear is visible in the left-hand panel due
to a systematic difference in local density between contour and
background elements. To remove this proximity cue, we evaluate a

range of background element spacing values (middle panel). Using the
optimal value at p = .5 will render the bear invisible (right-hand panel)
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We believe that this rendering engine can be of great use
even to researchers who do not require any of the previous
steps of contour definition and element placement. For
instance, the dot lattice in Fig. 1h was created using nothing
but the rendering engine and some of the auxiliary GERT
functions discussed below. After a MATLAB image matrix
is generated, it can easily be imported into a suitable
stimulus presentation software package, such as PsychTool-
box (Brainard, 1997; Pelli, 1997).

Auxiliary functions

When constructing a stimulus set, the researcher often needs
to perform the same elementary operations over and over
again. GERT contains additional functionality to speed up the
stimulus creation process. For contour definitions, the total
contour length, center of mass, local tangent lines, and main
axis can be computed. The GERT transform functions allow
the translation, scaling, rotation, and flipping of both contour
definitions and element sets. The plot functions generate a
graphical impression of the data contained within contour
definitions and element sets. Tagging of elements allows the
user to keep track of their status (e.g., background or
contour) and easily retrieve it when needed. Subsetting and
merging of element sets are supported. In addition, it can
easily be determined which elements are located inside and
which outside a closed contour. Finally, the automatic
logging of all GERT activity makes sure that the researcher
will never again lose track of the exact parameter values used
to create a given stimulus display.

Example stimulus

The example stimuli in the Introduction (Fig. 1) already
demonstrated the versatility of GERT. To also illustrate its

succinctness and ease of use, we here provide the full
MATLAB code to embed the shape outline of a tortoise in
an array of Gabor elements (Fig. 4). The contour definition
is constructed from an SVG file,2 and Gabor orientations
are manipulated such that exterior elements are oriented
randomly, contour elements are collinear to the contour, and
interior elements are oriented parallel to the main axis of
the shape.

Box 1. MATLAB code to generate the stimulus in Fig. 4

In the first line of the code, we clear all variables and initiate
the GERT toolbox. We then read in an SVG file to obtain a
detailed contour definition C of a tortoise and shift its center of
mass to the center of a 1,000 × 1,000 pixel display. We ask
GERT to place elements at equidistant positions along the
contour. This returns an element object E and a vector ors with
the orientations of the local tangent lines to the contour, at the
positions of the contour elements. We then fill the remainder of
the display with (pseudo-)randomly positioned elements,
respecting a minimal Euclidean distance of 24.58 pixels
between the element centers. This value minimizes the average
local density cue, according to a previously run optimization
routine. We also retrieve the indices of the elements that are
interior to, exterior to, and exactly on the contour, so that their
orientations can be manipulated separately. Because we want all
Gabor patches to have the same frequency and standard
deviation in the final image, we define these parameter fields
as scalars. For the element orientations, a vector equal in length
to the number of elements is provided. Should the research
design require orientation jitter, this is easily accomplished by
adding a vector, transformed to the appropriate limits
of the uniform noise distribution. The actual rendering is
accomplished in the final line of code, where the first
input argument is a handle to the drawing function that
we want to use.

2 In fact, from the same SVG file that was used for the local element
patches in Fig. 1e.

Fig. 4 The shape outline of a tortoise is embedded in a field of
approximately 1,000 Gabor elements
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Conclusions

We have demonstrated that a considerable variety of
perceptual grouping displays can be created using GERT,
the Grouping Elements Rendering Toolbox for MATLAB.
While mainly focused on the embedding of contours in
fields of randomly positioned elements, GERT can be used
to generate many different types of displays far more
rapidly than would be the case if the researcher were to start
from scratch. Significant methodological advancements on
the topics of element placement and the elimination of local
density cues have been presented.

Requirements, license, and web site

MATLAB 2007b or later is required to use GERT, with the
Image Processing Toolbox installed. Some options also
require the Statistics Toolbox. Basic MATLAB programming
skills are assumed. GERT is available as open-source software
under the GNU General Public License (Version 3) as
published by the Free Software Foundation. A detailed user
manual is available at ourWeb site, http://www.gestaltrevision.
be/GERT/, offering a step-by-step introduction to the full
functionality of GERT for both novice and advanced
programmers. A download link and several example scripts
can be found at the same address.
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