
AUX: A scripting language for auditory signal processing
and software packages for psychoacoustic experiments
and education

Bomjun J. Kwon

Published online: 20 November 2011
The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract This article introduces AUX (AUditory syntaX),
a scripting syntax specifically designed to describe auditory
signals and processing, to the members of the behavioral
research community. The syntax is based on descriptive
function names and intuitive operators suitable for research-
ers and students without substantial training in program-
ming, who wish to generate and examine sound signals
using a written script. In this article, the essence of AUX is
discussed and practical examples of AUX scripts specifying
various signals are illustrated. Additionally, two accompa-
nying Windows-based programs and development libraries
are described. AUX Viewer is a program that generates,
visualizes, and plays sounds specified in AUX. AUX
Viewer can also be used for class demonstrations or
presentations. Another program, Psycon, allows a wide
range of sound signals to be used as stimuli in common
psychophysical testing paradigms, such as the adaptive
procedure, the method of constant stimuli, and the method
of adjustment. AUX Library is also provided, so that
researchers can develop their own programs utilizing AUX.
The philosophical basis of AUX is to separate signal
generation from the user interface needed for experiments.
AUX scripts are portable and reusable; they can be shared
by other researchers, regardless of differences in actual
AUX-based programs, and reused for future experiments.
In short, the use of AUX can be potentially beneficial to all
members of the research community—both those with
programming backgrounds and those without.

Keywords Programming language . Software .

Psychoacoustics . Education

Many experiments in behavioral research use audio signals
for stimuli. Nowadays, signals are generated and processed
predominantly in a digital form, and the presentation of
stimuli is controlled by a computer, as opposed to analog
equipment such as tone/noise generators, filters or mixers.
While researchers appreciate the flexibility and efficiency
provided by digital technology, they are still required to
select or create proper programs to generate and process
signals. Many researchers have adopted MATLAB (The
Mathworks Inc., Natick, MA) as a programming tool,
because it provides an intuitive computing environment that
visualizes the processing of signals in a script-based
language so that users can define and analyze arbitrary
signals with relative ease. However, although the definition
of a single sound is straightforward, operations among
multiple signals can be cumbersome. Because all signals in
MATLAB are processed as matrix or vector operations,
signal lengths must be carefully adjusted before manipu-
lation. This requirement often overshadows the benefits of
using MATLAB in psychoacoustic research. In other
words, conceptually simple manipulations of sound (e.g.,
two short tones with onset/offset smoothing windows,
occurring sequentially but separated by a certain delay
and embedded in noise with a longer duration) often require
lengthy MATLAB expressions with accurate indices and
sample numbers in the signal vectors that correspond to the
actual times desired in (milli)seconds. Although the indices
and sample counts constitute critical elements in MATLAB,
because they specify how sample points in one signal
interact with those in another signal in the discrete-time
domain, they are not intrinsically relevant to conceptual

B. J. Kwon (*)
Department of Otolaryngology–Head and Neck Surgery,
Eye and Ear Institute, The Ohio State University,
915 Olentangy River Road,
Columbus, OH 43212, USA
e-mail: bjkwon@gmail.com

Behav Res (2012) 44:361–373
DOI 10.3758/s13428-011-0161-1

components of the sound. This is due in part to the nature
of MATLAB, which was originally developed to facilitate
computational tasks for engineering problems, not neces-
sarily to generate audio signals.

Therefore, an alternative scripting language—namely,
AUX (AUditory syntaX)—was developed specifically for
generating and processing audio signals. The purpose of this
article is to introduce AUX and the related software packages
AUX Viewer, Psycon, and AUX Library to researchers and
educators in the behavioral sciences. These tools have been
used by the author and by a small number of colleagues for
research and classroom demonstration and have been polished
with feedback from users over several years.

AUX is based on a paradigm of device-independent
programming, where sounds are specified in a concep-
tual representation. This is in contrast to representing
sounds directly as digital samples in conventional
programming languages, such as MATLAB or C, where
the rendition of sounds is dependent on the settings in
the device, such as the digital sampling rate or the data
type chosen for sound playback. The conceptual identity
of sounds sometimes becomes unclear when they are
embedded with device settings. In AUX, an abstract
specification of signals suffices, without the implemen-
tation details of the device.

AUX is available as a syntax module and can be adopted by
other software tools that offer desirable graphical user
interfaces (GUIs), or it could be incorporated in auditory
research tools available in the literature, such as Praat (Boersma
& Weenink, 2010), APEX3 (Francart, van Wieringen, &
Wouters, 2008), DMDX (Forster & Forster, 2003), Paradigm
(López-Bascuas, Carrero Marín & Serradilla García, 1999),
and Alvin (Hillenbrand & Gayvert, 2005).

The primary beneficiaries of AUX would be those who
find programming in MATLAB daunting or who have less
programming knowledge. The primary applications of
AUX would be psychoacoustical research and education
with no heavy engineering requirements, such as sophisti-
cated control of hardware, data acquisition, or real-time
signal processing. AUX was not created to fulfill any signal
generation and processing needs that are impossible to
fulfill with MATLAB or C. Instead, AUX provides an
alternative way of generating signals by representing
sounds using a conceptually simpler syntax in a device-
independent manner.

In this article, the background and crux of AUX are
discussed first, and the operators and rules of the syntax are
explained. Subsequently, the AUX-based software packages
AUX Viewer, Psycon, and AUX Library are described, to
illustrate how AUX can be used in actual programs. These
software packages are distributed under Academic Free
License 3.0 and are available for download from the following
website: http://auditorypro.com/download/aux. Detailed infor-

mation about the software, including the manuals, is also
available on this website for interested readers.

Generation of simple signals in AUX

An AUX script consists of definitions of signals and
arithmetic operations on those signals. Most signals used
in psychoacoustics are based on tonal or noise components,
and AUX provides predefined functions to represent these
components, which are shown in Table 1. The two most
fundamental functions among them are tone and noise,

as in tone(f,d), which represents a tone of f for the

duration of d milliseconds, and noise(d), which

represents white noise for d milliseconds. Another funda-

mental element of AUX is amplitude scaling, based on the
RMS (root-mean square) energy using the scaling operator
@, which adjusts the RMS level of the operand signal to
the specified decibel value. For example,

tone(440,500)@-10

represents a 440-Hz pure tone with a duration of 500 ms,
with its amplitude scaled to 10 dB below full scale. With
this scaling method, two or more signals of different
amplitudes can be added as necessary. For example,

tone(440,500)@-10 + noise(500)@-25

represents a tone–noise mixture with a signal-to-noise
ratio of 15 dB. Multiple signals can also be added
with amplitude coefficients, as in the following:
0.2*tone(440,500) + 0.1*noise(500)

Another unique operator in AUX is the time-shift

operator, >>. Assume that a signal A has been defined,

then A >> (time_in_milliseconds) specifies sig-

nal A shifted in time as indicated (imagine that the symbol

constitutes an arrow →). For example,

tone(300,400) >> 500

is a 300-Hz tone with a duration of 400 ms that begins at
the 500-ms mark—that is, time-shifted by 500 ms. This
time-shift operator is useful when arranging multiple
signals in time. For example, a short, 50-ms tone beginning
at 200 ms while white noise is present in the background
for 500-ms is represented by the following expression:

tone(440,50) >> 200@-10 + noise(500)@-25

As described above, AUX employs unique syntax
rules that are different from the conventions used in
other programming languages, such as MATLAB.

362 Behav Res (2012) 44:361–373

http://auditorypro.com/download/aux

Detailed rules and conventions are presented in the
following sections.

Terminology

Signal/vector While both terms refer to a sequence (or an
array) of scalar values, in this article the former implies a sound,
but the latter does not. Although this distinction (auditory vs.
nonauditory) is relatively arbitrary and can be flexible, it might
be useful for understanding the differences between themwhen
composing or understanding AUX expressions.

Assignment and sole expressions An assignment expression
is used to assign a signal or vector to a variable: for
instance, A = 0.5*tone(440,500) . A sole expression
is the representation of signal without such assignment: for
instance, 0.5*tone(440,500).

Null signal/null portion A signal is referred to as “null” if it
has not been defined. As such, it has no effect during
arithmetic operations. For example, in this signal,
0.5*tone(440,500) >> 300, the null portion is from
0 to 300ms. Note that a null signal is different from a signal with
zeros (a “silence” signal), because a zero signal can be
multiplied with another signal to silence out all or part of the
other signal, whereas a null signal has no effect inmultiplication.

AUX script A script is one or more lines of AUX
statements that represent a signal. In all examples shown
below, the last statement of the AUX script refers to the
signal to be generated, regardless of whether it is an
assignment statement or a sole expression.

AUX user-defined function In addition to built-in functions,
AUX allows users to define their own functions, store them in a
specified file path (determined by each program), and call them
when necessary (see the Appendix). A user-defined function is
called with input arguments to perform an intended task (such

as computation or the generation of a signal), and it produces
specified output arguments (such as signals or vectors),
comparable to user-defined *.m functions in MATLAB.

Operators and rules in AUX

In the AUX expressions below, α and each represent
scalar values, whereas X and Y each represent a signal.

Rule 1—Arithmetic operators: + , -, *, and /

The arithmetic symbols (+, -, *, and /) operate on a point-wise
basis; that is, values are added, subtracted, multiplied, or divided
at each point of time. In a strictly mathematical sense, and in
programming languages such as MATLAB, arithmetic oper-
ations on two vectors are meaningful only if vector dimension
requirements aremet; for example, inX+Y, X and Y must be the
same length. Arithmetic operations in AUX do not have this
unwieldy constraint: X+Y simply means “two signals being put
together.” Depending on the time windows for which X and Y
are defined, this can be addition, concatenation with or without
a silent gap, or a combination of addition and concatenation of
the signals. On the other hand, the “*” operation occurs only
during the intervals in which both signals are defined
(examples are shown in subsequent sections).

Operations between a scalar and a signal/vector apply to
the entire length of the signal/vector. For example, in

0.5*tone(440,500)+0.1, 0.5 is a scaling coefficient,
and 0.1 is a dc term.

Rule 2—Time-shift operator: >>

indicates the signal X time-shifted by α milli-
seconds. By definition, an AUX expression without the
time-shift operator is considered a signal with zero shift
(i.e.,). Therefore, all signals in AUX are
represented with explicit timing information. The use of

Table 1 Examples of built-in AUX functions for signal generation

tone A pure tone with frequency x and duration d milliseconds: tone(x,d)

noise white noise (with uniform distribution) These functions take one argument, the

duration of the signal; e.g., noise(d)

specifies white noise with a duration of

d ms.

gnoise Gaussian noise

dc A dc signal, the unit amplitude (= 1)

silence A silence signal

wave Read a .wav file. Used as wave(filename), where filename is a string in double

quotation marks

fm A frequency-modulated tone. Used as fm(f1,f2,fm,d), where the frequency of this

tone, with a duration of d ms, modulates between f1 and f2 at fm Hz.

For a complete list of functions and detailed descriptions of input arguments, refer to the manual available on the website mentioned earlier

Behav Res (2012) 44:361–373 363

“time-shifted” signals with arithmetic operators, discussed
above, is useful when arranging multiple signals in time or
applying amplitude modulation to different signals.

Rule 3—Array operations with []

AUX adopts some MATLAB conventions for array
operations. An array can be defined using brackets: []. A
sequence of values can also be represented with one or two
colons (:), and the user can access parts of an array using
parentheses and indices delimited by a colon. These
MATLAB conventions were adopted in AUX primarily to
facilitate management of vectors (nonauditory arrays), and
users are discouraged from using these conventions when
handling signals (auditory arrays). For example, a half-
second, 440-Hz tone could be generated by manipulating an
array in the following way (assuming that the intended
sampling rate is 16000 Hz):

0.5*sin(2*3.14*440*[0:.5*15999]/16000)

Although the expression above is valid in AUX, it is not
aligned with the principle of device-independent programming,
since each sample is explicitly determined by the sampling rate.
Instead, the following simpler and more descriptive represen-
tation is recommended: 0.5*tone(440,500). Similarly,
while it is possible to access a portion of a signal by indices,
as in MATLAB, using the extraction operator ~ with time
markers (see Rule 6) is recommended, because it eliminates
the burden of tracking sample indices.

Rule 4—Concatenation operator: ++

A++B indicates signal A followed immediately in time by

signal B, and is equivalent to A + B>>dur(A), where

dur(A) is a built-in AUX function that returns the

duration of signal A in milliseconds.

Rule 5—RMS scaling operator: @

The scaling operator @ is used to adjust the magnitude of a
signal by specifying the desired RMS level of the signal in
decibels. There are two uses of the @ operator, absolute
scaling and relative scaling:

X @ to scale the signal X at α dB RMS relative
to full scale (absolute scaling)

X @ Y @ to scale the signal X at α dB RMS above

the signal Y (relative scaling).

In AUX, the full-scale amplitude of a signal is from 1 to −1.
A signal generation function, such as tone or noise,
without a scaling factor creates the signal at full scale. By

definition, the RMS of a pure tone with full-scale amplitude
is 0 dB. For example, generates the
tone at full scale with an RMS of 0 dB.

Rule 6—Extraction operator: ~

X(~) indicates the portion of signal X between α and

milliseconds. If < , the extracted signal is time-

reversed. For example, assuming that X has a duration

greater than 500 ms, X(300~500) is the extracted portion
of the waveform from 300 to 500 ms. In general,

X(dur(x)~0) is a time-reversed version of the signal

(see Table 2 for the definition of the dur function).

Rule 7—Playback adjustment operator: %

The % operator changes the playback rate of the
signal—for instance, modulating the pitch and increas-
ing or decreasing the duration. For example, X%2 is
the signal with half the pitch and double the duration,
and X%.5—or X%(1/2)—is the signal with doubled
pitch and half of the duration.

Rule 8—Stereo signal

[X; Y] is a stereo signal: X on the left channel, Y on the

right channel. As with the “+” operator, X and Y do not
need to have the same duration or time interval. Note that a
semicolon is the delimiter between channels, and this should
not be confused with the use of brackets for arrays, as used in
MATLAB and specified in Rule 3. [X; Y] does not
indicate a two-dimensional array or matrix as in MATLAB.

Rule 9—Conditional statements, logical operators, and loop
control

To support programming needs, AUX provides condi-
tional and looping control statements, such as

if...end,for...end,or while...end. The fol-
lowing relational or logical operators are used for
logical statements: >,>=,<,<=,== (conditional equal),

!= (conditional not equal), && (and), and || (or).

Rule 10—Mathematical functions

AUX also provides mathematical functions, such as

sin, cos, log, log10 , abs, exp, sqrt, and the
power operator ^. If the input is a vector, the output is
also a vector where each element is the result of the
function applied to the corresponding input element. If
the input array has invalid values for the function, the

364 Behav Res (2012) 44:361–373

corresponding output for those input values will be null.
For example, negative values for the square-root
function, sqrt, return null as output.

Rule 11—A symbol for commenting: //

The symbol // can be used to leave a comment for the
user’s own reference in AUX scripts and user-defined
functions.

AUX viewer

Before illustrating further examples of AUX scripts, the
AUX Viewer program, running on the Windows
operating system, is described in this section. All
example scripts in this article can be run in AUX
Viewer. This program allows the user to create, view,
and play arbitrary audio signals generated with AUX
scripts using a minimal GUI. The AUX script is placed
in the multiline edit box, as seen in Fig. 1, and pressing
the “Generate and Plot” button creates a signal window,
as seen in Fig. 2. This audio signal can be played through
the PC sound card by pressing the space bar. The
spectrum of the signal can be seen by pressing the F4
key in this window. The “+” or “-” key on the number pad
will zoom in or out of the viewing area of the signal, and
the left and right arrow keys will move the viewing area
accordingly. The signal displayed on the screen can be
saved as a *.wav file by pressing the “/” key on the

number pad. A right click of the mouse on the signal
window will open a pop-up menu for the actions
mentioned above.

Examples of AUX scripts

Several examples are included in this section to
demonstrate how to use the fundamental features of
AUX. These examples provide an effective illustration
for beginners learning AUX and are appropriate for
class demonstrations of the various signals used in
psychoacoustic experiments. In AUX Viewer, multiple
signal windows can be generated for comparing signals
side by side. The built-in AUX functions used in these
examples are displayed in Tables 1, 2 and 3 with
parameter specifications and brief descriptions.

Example 1

An illustration of the wave function, the dur function,
filtering, and mixing signals with specified RMS levels is
below.

target = wave("speech_target.wav")

d = dur(target)
//the duration of target

noi = noise(d)
//white noise for the same duration as the wave file

filt_noi = bpf(noi,500,2000)
//bandpass filtering between 500 and 2000 Hz

//the combined signal for the output
target@-20 + filt_noi@-30

The last line indicates the speech target (from the
.wav file) presented with band-pass-filtered noise of the
same duration, with RMS levels of −20 and −30 dB,
respectively, resulting in a signal-to-noise ratio of 10 dB.

For class demonstration, the following modifications can
be made to generate different signals: varying signal-to-
noise ratios, varying cutoff frequencies, or different filtering
functions, such as low-pass (lpf) or high-pass (hpf)
filtering.Fig. 1 Screenshot of AUX Viewer

Table 2 Examples of built-in AUX functions for computations of signal properties or frequently used conversion

dur Duration of the signal in milliseconds, as in dur(X)

rms RMS energy of the signal in decibels below full scale, as in rms(X)

db Convert a decibel value into a linear coefficient, as in db(scalar_value_in_dB). For

example, db(-6) returns 0.501.

Refer to the manual on the website for the complete list of built-in AUX functions

Behav Res (2012) 44:361–373 365

Example 2

The sigma function (i=id1:id2,expression)sigma
is equivalent to the mathematical symbol

Xid2

i¼id1

expressionð Þ:

One use of the sigma function is to define a complex
tone with desired magnitudes in decibels for harmonic
components, as follows:

mag=[-3 -6 -18 -25 -40]
// magnitude vector in dB below full scale

X=sigma(i=1:5,tone(500*i,500)@mag(i))

X @ -10
// Amplitude scaled at 10 dB below full scale for the output

For class demonstration, the number of harmonics and/or
the distribution of the magnitudes of harmonics can be
adjusted. Complex signals with a missing fundamental

frequency component, or partial components with shifted
frequencies, can also be generated, and their perceptual
effects can be demonstrated in the classroom.

Example 3

The sigma function with the time-shift operator >> can be
used to generate an echo or reverberation effect. The db
function takes an array of decibel values as input and returns
an equivalent array of magnitude coefficients (cf. Rule 10).

x = wave("test.wav")

mag = db([0 -6 -15 -20 -25])
// creates an array of attenuation coefficients

delay = [0 300 400 450 480]
sigma(i=1:5, mag(i)*x >>delay(i))

In addition to the examples above, other examples in
which the sigma function could be useful include generat-
ing a Schroeder phase tone complex (Schroeder, 1970) or
iterated rippled noise (Yost, 1996).

Table 3 Examples of built-in AUX functions for signal processing

am Sinusoidal amplitude modulation of the signal, used as am(X, rate), where the signal X is

amplitude-modulated with rate Hz.

lpf Low-pass filtering Used as lpf(X,f), hpf(X,f), bpf(X,f1,f2), or

bsf(X,f1,f2), applying a filter to signal X, with

specified cutoff frequency(-ies)

hpf High-pass filtering

bpf Band-pass filtering

bsf Band-stop filtering

ramp Apply a smooth, cosine-square window at the beginning and ending of the signal, to avoid

spectrum splatter, used as ramp(signal, ramping_time_in_ms)

Refer to the manual on the website for the complete list of built-in AUX functions

Fig. 2 Signal displayed in AUX
Viewer. The x-axis is specified
in seconds. The spectrum of the
signal (not shown) can be seen
by pressing the F4 key in this
window

366 Behav Res (2012) 44:361–373

Example 4

Mathematical manipulations of signals can be efficiently
represented in AUX. A nonlinear amplitude compression
using the mathematical function sqrt, which takes only
positive values and returns null otherwise, is as follows (cf.
Rules 1 and 10):

x = wave("speech_target.wav")

sqrt(x)-sqrt(-x)

Example 5

In this example of binaural hearing, the same signal is
presented on both sides, but depending on the binaural
delay, the sound can be perceived as a single object (fusion)
with a clear lateralization or a sound with a distinct spatial
echo. The precedence effect can occur with different upper
limits, depending on the stimulus (Gelfand, 1998, pp. 412–
416). With this example, the perceptual consequences of
binaural delay can be studied using three stimuli (tone,
click, and speech sound). The delay should be adjusted
from less than one millisecond to tens of milliseconds.

delay = 3 // adjust here
tone_pip = .2 * tone(1000,5)
click = .2 * dc(5)
speech = wave("test")
// Each of the following three lines can be the output.
[tone_pip; tone_pip>>delay]
[click; click>>delay]
[speech; speech>>delay]

Example 6

The following example illustrates binaural signals used
to examine spatial release of masking or the binaural
masking level difference (Gelfand, 1998, pp. 416–418).

noi is wideband noise between 100 and 6000 Hz. Several
versions of the speech–noise mixture can be made in a
binaural presentation, depending on whether the speech
or noise is presented diotically or monaurally, denoted
respectively by the character o or m: First, SoNo refers
to a diotic presentation of both speech and noise, mixed
with −5 dB SNR in this example. Second, SmNm is a
monaural presentation (on the left side). Speech intelligi-
bility could be improved from these conditions in
different versions of binaural presentation: SmNo,

SoNpi (where the binaural phase difference of 180º or

π exists), or SmNu (where the noise is uncorrelated
between channels). For class demonstration, the intelligi-

bility of these binaural signals can be compared (prefer-
ably through headphones).

X = wave("speech_target.wav")

noi = bpf(noise(dur(X)),100,6000)

// noise scaled at -5 dB SNR

SoNo = noi + X

SmNm = [X+noi; []]

// an empty signal in the right channel

SmNo = [X+noi; noi]

SoNpi = [X+noi; X-noi]

// second noise source
noi2 = bpf(noise(dur(X)),100,6000)

SoNu = [X+noi; X+noi2]

noi = noi @ X @ 5

noi2 = noi2 @ X @ 5

Example 7

This example illustrates (a) the use of the extraction
operator ~ and (b) looping or conditional statements as a
signal from a .wav file is analyzed and modified automat-
ically. Suppose that a .wav file has a silent portion (or a
portion of low-level background noise) in the beginning,
and the user wishes to remove it. In the script below, the
RMS energy of the signal is analyzed for each 50-ms
segment, and the signal is trimmed until an analyzed
segment exceeds −40 dB relative to full scale.

x = wave("sample_speech.wav")

tmark = 0
count = 0
while tmark < dur(x)

tmark = tmark + count * 50 // 50 ms
segment = x(tmark ~ tmark + 50)
if rms(segment) > -40

 break
end
count = count + 1

end
x(tmark~dur(x))

Example 8

This example illustrates how the multiplication (*) operation
works. The function silence generates a signal with
zeros for the specified duration. This can be useful to generate
an interrupted signal, as this can, when multiplied, silence out

Behav Res (2012) 44:361–373 367

the specified duration without modifying other portions of the
signal. Consider the following example demonstrating tem-
poral induction (Dannenbring, 1976), where a short middle
portion of a tone glide is replaced with noise and a continuity
illusion occurs (i.e., the tone is not perceived as interrupted):

A = ramp(tone([1000 1500], 500), 10)
B = silence(50) >> 225
noi = lpf(noise(50),4000) >> 225
noi@-20 + A*B @ noi @ -10

On the first line, A is a tone glide with the frequency
changing from 1000 to 1500 Hz. On the second line, B is a

silence signal for 50 ms, time-shifted by 225 ms. Then A*B
means the tone with an interrupted interval in the middle
(from 225 to 257 ms). noi is low-pass noise to be inserted
into that interrupted interval.

While many features are covered in the examples thus
far, a beginning user might learn and use only the features
of AUX that are required for the complexity of the signals
that he or she wishes to create. For example, if one needs
to generate relatively simple signals, consisting of a small
number of tonal and noise components, but with specific
temporal arrangements or intensity relations, one needs to
be familiar with basic built-in functions and operators
(such as >>, ++, or @). A wide range of signals that are
covered in psychoacoustic textbooks and behavioral
listening tests can be created using only these language
features. Finally, since this article is intended to introduce
only the fundamental features of AUX, interested readers
are highly encouraged to refer to the website mentioned
earlier for more in-depth information, such as user-defined
functions, cell arrays, and string manipulations. Some
select examples of user-defined functions are included in
the Appendix.

Psycon

Overview

Psycon is a Windows-based program for administering
psychoacoustic experiments using multiple presentation
intervals. It offers three commonly used experimental
modules: adaptive procedure (Levitt, 1971), the method of
constant stimuli, and the method of adjustment. A diverse
range of signals can be tested in Psycon, because the
signals are specified in AUX.

Structure and basic operations

Psycon supports experimental procedures in which the
stimulus is presented in multiple intervals, either

“standard/reference” or “odd-ball/variable,” in a random
order. The subject’s task is to pick the interval with the
odd-ball stimulus. Two executables are included in the
program: psycon.exe and psycon_reseponse.exe. The
former is for the experimenter, while the latter is for
the subject. Upon presentation of the stimulus, the
subject responds with a mouse click on the response
screen, which can be on the same computer or on
another computer connected via a network (TCP/IP).
The program on the experimenter’s side, psycon.exe,
administers the entire procedure: presenting the stimuli
as specified in the AUX script, collecting the subject’s
response, providing feedback if desired, and displaying
and saving the result upon completion of the session.
During the testing session, the progress of the procedure
is visualized with graphs (such as the excursion of
values for the adaptive procedure).

Specification of signals

Figure 3 shows a screenshot of Psycon. The signals are
specified in two edit boxes labeled “Standard” and “Odd-
ball.” For example, for a frequency discrimination exper-
iment with a 1000-Hz tone, the AUX script for the
standard interval is

ramp(tone(1000,500),10) @ -20,

and the AUX script for the odd-ball interval is

ramp(tone(1000+v, 500), 10) @ -20.

Note that v is a reserved variable, specific to Psycon,
that denotes the amount of adjustment (or adaptation)
between trials during the procedure. In addition to the
example above, the signals for other psychoacoustic experi-
ments can be specified, as follows (the first and second
statements are for the standard and odd-ball intervals,
respectively):

ramp(tone(1000,500),10) @ -20 and

ramp(tone(1000,500),10) @ -20-v

for intensity discrimination, or

ramp(tone(1000,500),10) @ -20 and

ramp(tone(1000,500+v),10) @ -20

for duration discrimination, or

ramp(noise(500),10) @ -20 and
ramp(am(noise(500),8,db(v)),10) @ -20

368 Behav Res (2012) 44:361–373

for 8-Hz amplitude modulation (AM) detection with a noise
carrier.

The “Variable Definitions” box is used to define
variables for complex signal generation. For example, in a
forward masking experiment, detection of a short tone is
measured shortly after a narrow-band noise masker is
turned off. The corresponding AUX statements would be

ramp(bpf(noise(500),950,1050),10) @ -20

for the standard interval (masker only), and

for the odd-ball interval (masker plus probe). However, note
that in this case the two intervals produce different instances of

noise. If the use of “frozen” noise is desired—that is, the same
generation of noise in all presentations—the “Variable
Definitions” box should contain the following:

and the standard and odd-ball are

respectively. Upon beginning the testing session, AUX state-
ments in “Variable Definitions” are executed once, and the
variables are used throughout trials. The other box, “Variables
per trial,” serves a similar purpose, but AUX statements in this
box are updated in each trial. Therefore, the use of this box
allows presentation of “frozen” noise within each trial.

Fig. 3 The experimenter console screen of the Psycon program, used
for a wide range of psychoacoustic experiments. The signals are
defined in AUX for the standard and odd-ball intervals. Additional
definitions can be written in other edit boxes (“Variable Definitions”

and “Variables per trial”). Currently, three experimental modules—
adaptive procedure, the method of constant stimuli, and the method of
adjustment—are included

Behav Res (2012) 44:361–373 369

Procedure control—Adaptive

The control tab of the adaptive procedure is circled in
Fig. 3. The number of responses before adjusting the
stimuli up or down and the direction of adjustment are
specified by the experimenter. In Fig. 3, these are set as “3
down, 1 up” and “descending,” indicating that the
adjustment will be made in the direction of the decrease
in the value (v). The “Initial Value” box specifies the value

that v starts with when the testing session begins, in units
implied by the AUX script used for testing. In the examples
above, it could be 20 (Hz) for frequency discrimination, 6
(dB) for intensity discrimination, 100 (ms) for duration
discrimination, or −10 (dB) for AM detection, and so on.
Likewise, the “Step sizes” boxes indicate desired step sizes
in the implied unit, along with the number of reversals for
the adaptive procedure. Upon completion of all reversals,
the mean of the v values at a specified number of reversal
points is calculated and presented as the result of the
session.

Procedure control—Constant

In this procedure, signals are prepared with preselected
values of v and presented in random order with repetition.
At the completion of the testing session, the data for a
psychometric function—that is, the percent scores of
performance as a function of v—are obtained. Figure 4
shows a cropped view of the control tab for the method
of constant stimuli from the Psycon screen. Here, the
values are specified in the “Independent variable/con-
ditions” box, and the repeat count is indicated in the
“Repeat” box. For example, if frequency differences of
1, 3, 5, and 10 Hz were to be tested for frequency
discrimination, the “Independent variable” box should
indicate [1 3 5 10].1

Procedure control—Adjustment

In this procedure, a pair of stimuli are presented in the
fixed order of standard and odd-ball/adjustable intervals.
In each presentation, subjects adjust the second stimu-
lus, according to the instructions they have been given.
They are given adjustment buttons, two up and two
down, with “big” and “small” step sizes for each
direction. The subjects end the procedure by pressing
the “done” button once they are satisfied that the
adjustment is complete. For example, imagine an
experiment to test a listener’s ability to adjust the pitch

of a tone to be an octave higher than the pitch of a
reference tone. The standard signal would be

ramp(tone(500,500),10)@-20, and the adjustable

signal would be ramp(tone(v,500),10)@-20. The
initial value could be somewhere close to the target
1000 Hz, but to avoid a bias, it could be specified with a
random number, as seen in Fig. 5: 900+rand(200),
indicating a random value between 900 and 1100. The
step sizes could be set to 10 and 3 for big and small steps,
respectively. Then the subject is presented with the pair of
tones, the first one fixed at 500 Hz and the second one
adjustable by the subject.

Settings in common

In all three procedures, customized instructions for the
subject can be used for testing sessions. The number of
intervals to present and the use of feedback can also be
specified. The definitions of signals and variables can
be saved into a file and retrieved later from the File
menu.

Decision/adjustment of the sampling rate

Although consideration of the sampling rate extends
beyond the scope of AUX scripting, a sensible decision or
adjustment of the sampling rate is required in actual
programs using AUX, such as Psycon. For example, in
order to represent a 10000-Hz tone, an AUX user may
simply write it as tone(10000, duration), but in
order to generate this signal, the sampling rate must be set
properly in Psycon (i.e., greater than 20000 Hz), which can
be done in “Settings” under the File menu. In addition to

Fig. 4 The experimenter console screen of the Psycon program,
cropped to show the “Constant” tab, used for the method of constant
stimuli. Values for the predefined variable v in Psycon are shown

1 This bracket notation also supports the use of a colon (:), the MATLAB-
style expression.

370 Behav Res (2012) 44:361–373

the tone function, other functions in AUX require proper
setting of the sampling rate.2

Signal calibration

Because Psycon uses the sound card in the PC, it does
not provide functionality for calibration of the reference
signal level, but it can generate a continuous tone for
calibration purposes. The user ought to measure the
output from the playback device (e.g., speakers or
headphones) with this tone, which corresponds to the
“full-scale level” mentioned throughout this article. The
user should also be aware that the output level changes
if the Windows “Volume Control” switch is adjusted,
which can occur not only by the user’s explicit control,
but also by any other Windows programs that control
the default sound card in the PC. For this reason, the
use of a dedicated sound card that is not used by other
Windows programs is recommended. The “Settings”
control in the File menu provides a way to designate
or change the sound card for a PC with multiple sound
cards.

AUX library

AUX Library provides a programming tool that allows
users to create their own programs, just like AUX
Viewer or Psycon. This is provided in the form of
DLLs (dynamically linked libraries) with the calling
convention of C. In addition, the AUX interface can be
used in MATLAB through MEX (MATLAB executable),
where a string input of AUX expressions (including
variable definitions across multiple lines) is interpreted
and the intended signal is generated. These program-
ming tools are particularly useful to individuals who
have invested significant effort or resources to develop
programs for their own particular needs—for instance, a
procedure with special adaptive staircase rules. They
would only need to replace the signal generation
routines with the codes calling AUX C Library or
AUX MEX.

In the current release, both tools can be used only in the
Windows environment (Windows 95 and later), since AUX
was developed in Microsoft Visual C++. However, the core
codes of AUX are not Microsoft-specific. Therefore, the
library can be easily built for other platforms, such as
Linux. The author welcomes modifications and redistrib-
utions of AUX Library for Linux under the terms of
Academic Free License 3.0.

Discussion

AUX was developed to benefit psychoacoustic research-
ers, educators, and students by relieving them of the
burden of programming in C or MATLAB that would
otherwise be necessary to generate and analyze sound
signals. According to the author’s own experience, most
students, regardless of their training history in program-
ming, demonstrated command of AUX after a relatively
short introduction. In recent years, MATLAB has often
been taught in research methods courses covering
instrumentation in the curricula of experimental psy-
chology, behavioral neuroscience, or speech–language–
hearing sciences. As mentioned earlier, MATLAB is a
general tool for engineering needs. Attempts to teach
MATLAB to students without programming or engi-
neering backgrounds often yield only questionable
profits, despite considerable time and effort expended.
AUX might be presented as an alternative.

While the device-independent representation of
sounds in AUX is beneficial, in that sounds can be
specified as conceptual entities, this also delineates a
limit to the application of AUX. For example, AUX is
not applicable when signal handling involves real-time
signal processing—that is, synthesis or modification of

Fig. 5 The experimenter console screen of the Psycon program, cropped
to show the “Adjustment” tab, used for the method of adjustment. The
initial value and step size amounts, “Big” and “Small,” are shown

2 In addition, users should be mindful of the effect of sampling rate
when using the wave function. In actual AUX-based programs, it
opens the .wav file and resamples it to the chosen sampling rate in the
current program, if is not already sampled at that rate. Careful
consideration of the sampling rate is needed to ensure that the desired
spectral information is retained during the resampling process. From a
purist’s view, the wave function is a violation of the device-
independence principle, since a .wav file already includes information
about the implementation (the sampling rate). This function was
included in AUX as a realistic consideration, and for convenience’s
sake.

Behav Res (2012) 44:361–373 371

signals by real-time analysis. C or other programming
languages would be more appropriate to handle those
needs. Thus, AUX, MATLAB, and C cover different
scopes of demands, and AUX is not intended to replace
either MATLAB or C. The convenient features that
AUX offers for generation and processing of signals
could be emulated with tools developed as a MATLAB
toolbox or a C library. However, to the extent that
issues of engineering applications are of little or no
concern to the researcher, AUX can be an appropriate
tool to represent sounds. In fact, it is the author’s
intention that AUX will be used in environments of
other programming languages when specifying sounds,
which is why AUX Library was created. For example,
the AUX Viewer program has been replicated to run in
the MATLAB environment using AUX MEX. While
AUX Viewer for MATLAB runs the same way as the
original AUX Viewer, it provides an improved screen
layout and greater flexibility in viewing and analyzing
signals, because it is based on MATLAB graphics.

Though AUX is capable of representing a variety of
sounds, as discussed in this article, AUX and the
accompanying software are still works in progress. It
would be an overstatement to suggest that AUX allows
any conceivable signal to be specified in a simple form,
because each AUX statement is still a manifestation of
semimathematical and algorithmic operations. Therefore,
there might be several signals that are conceptually
simple but problematic to represent using simple AUX
statements without specific algorithms from the user,
especially if the processing involves analyses of speech
sounds (e.g., the fundamental frequency or formant
frequencies). While this can be handled by user-
defined functions (see the Appendix), in future releases
of AUX some of these functionalities might be realized
through operators or built-in functions. Debugging support
in AUX is another area that needs improvement. The
software currently provides only limited debugging sup-
port,3 though a debugging tool is under development as
part of AUX Library.

The benefits of AUX include the portability and
reusability of scripts and the separation of signal definition
from the software. In the context of research software
development, researchers do not need to develop software
for signal generation, as this can be handled by AUX.
Instead, they can focus on the user interface or testing

paradigm specific to their needs. Yet, signals used by one
researcher can be easily shared in the research community
through AUX scripts. Even if the actual program that uses
the script is not shared, other researchers can easily
regenerate the signals in AUX Viewer or Psycon and
examine them for subsequent studies. Thus, the widespread
use of AUX could ultimately promote research productivity
and collaboration among researchers.

Author Note The support was provided by NIH/NIDCD
(R03DC009061) and The Ohio State University Medical Center.
All due credit must go to Jae Heung Park for his improvement of
author’s original source codes with yacc/lex. The author thanks
Trevor Perry for developing AUX Viewer for MATLAB and for
valuable comments on earlier drafts of the manuscript, John
Galvin III for useful editorial comments, and the users of Psycon
of earlier versions for the feedback on software features. Finally,
the author expresses appreciation to Judy Dubno for her
encouragement to publish this manuscript.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

Appendix: User-defined functions

In addition to built-in functions, users can define and use
customized functions, referred to as user-defined functions
(UDFs). This shares the same motivation and style used in
MATLAB functions that users create and save as *.m files.
On the first line of a UDF is a function declaration with
input and output variables, as follows:

function output = my_udf_name (input)

Multiple input and output variables can be declared
with commas, the same way as in MATLAB. AUX
expressions follow on subsequent lines, generating
output variables. Unlike AUX scripts, there is no
peculiar meaning attached to the last line, but the
function body must include expressions to generate all
output variables. This is saved as a text file. The file
name must be the same as the function name with a .
aux extension—for instance, my_udf_name.aux.
When a function is called in an AUX-based program, if
it is not one of the built-in functions, the program searches
for the UDF in the specified directories and uses it if
found. For example, AUX Viewer searches for UDFs in
the same directory as the program directory (where auxgv.
exe is located). In Psycon, one or more paths can be
specified as UDF directories in “Settings” under the File
menu.

3 Current tools for debugging AUX code are relatively crude. Users
can debug their AUX scripts or user-defined functions either by
displaying intermediate results of values on the screen with a show
function or by successively saving the intermediate results in the file
with fprintf.

372 Behav Res (2012) 44:361–373

In the script of Example 6, on the first line the speech
signal is read from a .wav file, and the last line is the
resulting signal. This script can be turned into a UDF by
changing the first and last lines, as follows:

function y = trimsilence(x)
tmark = 0
count = 0

while tmark < dur(x)
tmark = tmark + count * 50 //50 ms
segment = x(tmark ~ tmark + 50)

if rms(segment) > -40
break

end

count = count + 1

end
y = x(tmark ~ dur(x))

Once this is saved as trimsilence.aux in the
program directory of AUX Viewer, this UDF is ready for
use, and the user can simply type the following script in
AUX Viewer.

x = wave("sample_speech.wav")
trimsilence(x)

Use of UDFs results in efficient coding, because it
facilitates modularization of work flow. For example,
trimming out the silent portion at the end of the waveform
can be done by a subsequent call in the script to

trimsilence with a time-reversed version.

x = wave("sample_speech.wav")
a = trimsilence(x)
b = trimsilence(a(dur(a)~0))
b(dur(b)~0)

When using UDFs with broad or generalized applica-
tions, the user might need to consider modifying the

structure of the UDF to allow for more inputs (e.g., the
criterion for the silence, –40 dB below full scale, could be
given as the second argument). AUX checks the expres-
sions in a UDF and properly alerts users to syntax errors,
but the author of the UDF should check for logic and
control flow errors. For further information and additional
UDF examples, readers should refer to the documents on
the website.

References

Boersma, P., & Weenink, D. (2010). Praat: Doing phonetics by
computer [Software]. Retrieved July 1, 2010, from www.fon.
hum.uva.nl/praat/

Dannenbring, G. L. (1976). Perceived auditory continuity with
alternately rising and falling frequency transitions. Cana-
dian Journal of Psychology, 30, 99–114. doi:10.1037/
h0082053

Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows
display program with millisecond accuracy. Behavior Re-
search Methods, Instruments, & Computers, 35, 116–124.
doi:10.3758/BF03195503

Francart, T., van Wieringen, A., & Wouters, J. (2008). APEX 3:
A multi-purpose test platform for auditory psychophysical
experiments. Journal of Neuroscience Methods, 172, 283–
293.

Gelfand, S. A. (1998). Hearing an introduction to psychological and
physiological acoustics. New York: Dekker.

Hillenbrand, J. M., & Gayvert, R. T. (2005). Open source
software for experiment design and control. Journal of
Speech, Language, and Hearing Research, 48, 45–60.
doi:10.1044/1092-4388(2005/005)

Levitt, H. (1971). Transformed up-down methods in psychoacoustics.
Journal of the Acoustical Society of America, 49(2), 467–477.
doi:10.1121/1.1912375

López-Bascuas, L. E., Carrero Marín, C., & Serradilla García,
F. J. (1999). A software tool for auditory and speech
perception experimentation. Behavior Research Methods,
Instruments, & Computers, 31, 334–340. doi:10.3758/
BF03207729

Schroeder, M. (1970). Synthesis of low-peak-factor signals and binary
sequences with low autocorrelation [Letter]. IEEE Transactions
on Information Theory, 16, 85–89.

Yost, W. A. (1996). Pitch of iterated rippled noise. Journal of the
Acoustical Society of America, 100, 511–518. doi:10.1121/
1.415873

Behav Res (2012) 44:361–373 373

http://www.fon.hum.uva.nl/praat/
http://www.fon.hum.uva.nl/praat/
http://dx.doi.org/10.1037/h0082053
http://dx.doi.org/10.1037/h0082053
http://dx.doi.org/10.3758/BF03195503
http://dx.doi.org/10.1044/1092-4388(2005/005)
http://dx.doi.org/10.1121/1.1912375
http://dx.doi.org/10.3758/BF03207729
http://dx.doi.org/10.3758/BF03207729
http://dx.doi.org/10.1121/1.415873
http://dx.doi.org/10.1121/1.415873

	AUX: A scripting language for auditory signal processing and software packages for psychoacoustic experiments and education
	Abstract
	Generation of simple signals in AUX
	Terminology

	Operators and rules in AUX
	Rule 1—Arithmetic operators: + , -, *, and /
	Rule 2—Time-shift operator: >>
	Rule 3—Array operations with []
	Rule 4—Concatenation operator: ++
	Rule 5—RMS scaling operator: @
	Rule 6—Extraction operator: ~
	Rule 7—Playback adjustment operator: %
	Rule 8—Stereo signal
	Rule 9—Conditional statements, logical operators, and loop control
	Rule 10—Mathematical functions
	Rule 11—A symbol for commenting: //

	AUX viewer
	Examples of AUX scripts
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	Psycon
	Overview
	Structure and basic operations
	Specification of signals
	Procedure control—Adaptive
	Procedure control—Constant
	Procedure control—Adjustment
	Settings in common
	Decision/adjustment of the sampling rate
	Signal calibration

	AUX library
	Discussion
	Appendix: User-defined functions
	References

