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Abstract Missing data, such as item responses in multi-
level data, are ubiquitous in educational research settings.
Researchers in the item response theory (IRT) context have
shown that ignoring such missing data can create problems
in the estimation of the IRT model parameters. Conse-
quently, several imputation methods for dealing with
missing item data have been proposed and shown to be
effective when applied with traditional IRT models.
Additionally, a nonimputation direct likelihood analysis
has been shown to be an effective tool for handling missing
observations in clustered data settings. This study inves-
tigates the performance of six simple imputation methods,
which have been found to be useful in other IRT contexts,
versus a direct likelihood analysis, in multilevel data from
educational settings. Multilevel item response data were
simulated on the basis of two empirical data sets, and some
of the item scores were deleted, such that they were missing
either completely at random or simply at random. An
explanatory IRT model was used for modeling the
complete, incomplete, and imputed data sets. We showed
that direct likelihood analysis of the incomplete data sets

produced unbiased parameter estimates that were compara-
ble to those from a complete data analysis. Multiple-
imputation approaches of the two-way mean and corrected
item mean substitution methods displayed varying degrees
of effectiveness in imputing data that in turn could produce
unbiased parameter estimates. The simple random imputa-
tion, adjusted random imputation, item means substitution,
and regression imputation methods seemed to be less
effective in imputing missing item scores in multilevel data
settings.

Keywords Item response theory .Multilevel data .Missing
data . Imputation methods

Multilevel data in education settings can contain complex
patterns of nested sources of variability. For instance,
suppose that exercise items nested in courses or chapters
with varying difficulty levels are presented to students
nested in schools or classes with varying ability levels. For
each student, scores to the items, along with person and
item properties, can be recorded. The collected data are
clustered or multilevel in nature, consisting of the proper-
ties of schools, students, chapters, and items and the
students’ item scores (e.g., binary, pass/fail) on attempted
items. These data can be modeled statistically—say, using
item response theory (IRT; van der Linden & Hambleton,
1997)—to explain and understand student characteristics in
relation to the item properties.

De Boeck and Wilson (2004) described IRT models
within the framework of generalized linear mixed models
(GLMMs) or nonlinear mixed models (NLMMs), also
accounting for more complex multilevel structures than
the structure of measurement occasions within subjects,
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which is usually accounted for in ordinary IRT models.
When clusters are looked at as being randomly chosen from
a population of clusters, the cluster effects can be treated as
random effects in the GLMMs or NLMMs. In this way, the
GLMMs or NLMMs not only account for within-person
differences in the item response probabilities and between-
person differences in the latent construct(s) (Briggs, 2008),
but also for differences between groups of persons and
groups of items. Moreover, the GLMM and NLMM frame-
works suggest including predictors. This is appealing if one is
interested in using student and item properties to explain
group differences in item scores. In this regard, we follow the
ideas of De Boeck andWilson, who used the term explanatory
item response modeling to refer to the use of IRT as a tool
not only for measurement, but also for explanation.

Explanatory item response modeling

Let Ypi denote a binary score of person p (p = 1, . . . , P) to
item i (i = 1, . . . , I). For a basic IRT model, commonly
referred to as the Rasch model, the score of person p to item
i is regarded as a function of person and item parameters, θp
and βi, that can be interpreted as the person ability and item
difficulty, respectively, such that

logit ppijqp
� � ¼ ln ppi=1� ppi

� �
¼ qp � " i and Ypi � binomial 1; ppi

� �
;

ð1Þ

where πpi is the probability of success for person p on item i.
In addition to Eq. 1, one can assume that persons are a

random sample from a population in which people’s
abilities (the θps) are normally distributed, such that θp ~
N(0, σθ

2). Whereas the Rasch model in Eq. 1 is a purely
descriptive model, we can try to explain differences in item
difficulty by using real item predictors, as in the linear
logistic test model (LLTM; Fischer, 1973), instead of
estimating the difficulty for each item separately. De Boeck
and Wilson (2004) therefore called the LLTM an item
explanatory IRT model. On top of the item predictors,
random item effects can be included, where the variance of
these random item effects refers to the variance in item
difficulty that is not explained by the item predictors in the
model.

In the same way, we can try to explain differences in
person ability using a latent regression IRT model by
including person covariates as fixed effects (Zwinderman,
1991) in addition to the random person effects, to get a
person explanatory IRT model that does not assume that the
person predictors explain all variance (De Boeck & Wilson,
2004). Kamata (2001) for example applied a latent
regression model with person characteristic variables to
analyze the effect of studying at home on science achieve-

ment. Thus, Eq. 1 can be further extended by including
person and item predictors, to get a (doubly) explanatory IRT
model (De Boeck & Wilson, 2004). Formulated as a
GLMM, the probability of a correct response is given by

logit ppi
� � ¼ XJ

j¼ 1

φjXpj þ
XQ
q¼ 1

gqGiq þ wp þ 2i; ð2Þ

where Xpj is the value of predictor j for person p; Giq is the
value of predictor q for item i; φj and γq are the unknown
fixed regression coefficients for Xj and Gq; and ωp and εi are
random effects for persons and items, which are assumed to
have independent normal distributions with means of 0—that
is, ωp ~ N(0, σω

2) and εi ~ N(0, σε
2). This model includes

several popular IRT models as special cases. For instance,
when item predictors (the Gqs) are dummy indicators, such
that Giq = 1 if i = q or 0 if i ≠ q, and dropping the person
predictors and the random item effects, Eq. 2 simplifies to
Eq. 1, the basic Rasch model, with fixed item effects (where
–γq can be interpreted as the difficulty of item i) and random
person effects (where ωp can be interpreted as the ability of
person p).

An advantage of the explanatory item response modeling
framework is its flexibility. Depending on a researcher’s
interest, the model in Eq. 2 can be broken down or
extended to different explanatory IRT models to explain
latent properties of items, persons, groups of items, or
groups of persons. For instance, when persons are grouped
within schools, and if schools k = 1, 2, . . . , K are thought
of as being a random sample from a population of schools,
such that school effects (uks) are normally distributed with
uk ~ N(0, σu

2), and letting πkpi be the probability of success
for person p from school k on item i, then Eq. 2 can be
extended as

logit pkpi
� � ¼ XJ

j¼ 1

φjXpj þ
XQ
q¼ 1

gqGiq þ wp þ uk þ 2i; ð3Þ

The explanatory IRT framework is also an important tool
for the validation of research instruments. When an
instrument or a test is interpreted as a measure of some
postulated attribute of people that is not operationally
defined but is assumed to be reflected in test performance,
construct validation is said to be involved (Embretson,
1983). Modeling random item effects allows one to specify
item features as predictors of item difficulty in order to
assess internal evidence for validity or construct represen-
tation. In other words, the validity of the inferences made
from a test is demonstrated through the underlying relations
between item features and performance (Hoffman, Yang,
Bovaird, & Embretson, 2006), which is not the case in the
LLTM or other traditional IRT models that assume perfect
prediction of item difficulty. Similarly, by including random
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person effects, individual differences can be assessed in
order to understand the degree to which expected relation-
ships are observed with measures of theoretically related
constructs—that is, assessing convergent validity or exter-
nal evidence.

Missing item scores in multilevel data: An example
from e-learning environments

In education settings, students can receive information to
build and improve their knowledge in traditional classroom
settings, via the Internet (and other electronic multimedia),
or through a combination of both. A specific kind of
Internet-based learning is an item-based e-learning envi-
ronment in which persons are required to study and attempt
exercises online. An example of such e-learning environ-
ments is the FraNel project (Desmet, Paulussen, & Wylin,
2006). In such environments, exercise items are structured
within different groups such as chapters, and persons who
are themselves structured in different social communities,
such as schools, can learn by logging into the learning
environment at any time to freely engage exercises.

The use of IRT for analyzing the tracking and logging
data resulting from such learning environments can result in
interesting applications, such as rendering items with
difficulties that are matched with the proficiency of the
persons (Wauters, Desmet, & Van den Noortgate, 2010).
Yet the analyses may be hampered by missing item scores
that might occur due to several mechanisms and factors.
For instance, persons may leave items blank that proved to
be too difficult for them, they may lose interest midway
through the test, they may skip certain sections inadver-
tently, or perhaps they may refuse to respond to sensitive
topics. Large numbers of missing values may also arise
where persons navigate freely through the items and only
engage in a relatively small number of independent
exercises out of a vast number that are normally provided
within learning environments (Wauters et al. 2010). A high
number of missing item scores poses difficulties for using
IRT to estimate item difficulties and person abilities—for
instance, nonconvergence problems in the estimation of the
IRT model parameters. Moreover, during statistical analysis
of data with missing scores, mechanisms that lead to
missing items need to be identified in order to avoid biased
estimates (Little & Rubin, 2002).

Missing-data mechanisms

Item scores can be missing completely at random (MCAR),
missing at random (MAR), or missing not at random
(MNAR). Data missing completely at random occur when
the probability of an item having a missing score does not
depend on any of the observed or unobserved quantities

(item responses or properties of persons or items). Once this
assumption holds, the process(es) generating the missing
values can be ignored during the analysis, and estimators
from a complete case analysis can be unbiased (Horton &
Kleinman, 2007; Molenberghs & Verbeke, 2005), but there
could be substantial efficiency losses (Little & Rubin,
2002). However, MCAR is a strong and unrealistic
assumption in most research experiments, because very
often some degree of relationship exists between the
missing values and some of the covariate data. Thus, it
might be more reasonable to state that data are missing at
random (MAR), which occurs when a missing item
depends only on some observed quantities, which may
include some outcomes and/or covariates. If neither MCAR
norMAR holds, thenmissing items depend on the unobserved
quantities and data are said to be missing not at random
(MNAR). For instance, missing item scores could be due to
those items being too difficult for certain students.

These missing-data mechanisms need to be taken into
account during statistical modeling to be able to produce
estimates that are unbiased and efficient. However, as noted
by Molenberghs and Verbeke (2004), no modeling ap-
proach, whether for MAR or for MNAR, can fully
compensate for the loss of information that occurs due to
incompleteness of the data. In likelihood-based estimation,
a missing item arising from MCAR or MAR is ignorable,
and parameters defining the measurement process are
independent of the parameters defining the missing item
process (Beunckens, Molenberghs, & Kenward, 2005). In
the case of a nonignorable missing item arising from an
MNAR mechanism, a model for the missing data must be
jointly considered with the model for the observed data,
which can, for example, be done using selection models
and/or pattern mixture models (Molenberghs & Verbeke,
2005). However, the causes of an MNAR mechanism are
difficult to ascertain a priori (or are unknown), and the
methods to implement the remediation of such a mecha-
nism are complex and beyond the scope of this study. Thus,
MNAR is not considered further in the present study.

Dealing with missing data in IRT

Most methods for dealing with missing data were devel-
oped outside the IRT context, but some of them have been
applied and examined in traditional item response models.
For instance, Finch (2008) compared the performance of
several missing-data techniques, and noted that several of
these methods exhibited varying degrees of effectiveness in
terms of imputing data for a simulated data set from a three-
parameter logistic model. Whereas Finch investigated
missing scores for the same 4 items out of a set of 20
items, in Web-learning environments missing scores can
occur on any of the items. Sheng and Carrière (2005)
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examined the implications of applying common missing-
data strategies to Rasch models for item response data
under various missing-data mechanisms, but they limited
the investigation to data with continuous measurements,
which may not always be the case with item-based data. In
addition, Sheng and Carrière proposed a bootstrap tech-
nique under imputation for missing item response data and
noted that for the case of 20% missing data, this method
appeared to be the best strategy for efficiently producing
consistent estimators and their variances. The bootstrap
technique method, however, did not work well when a large
proportion of the data were missing, even with a large
number of items being explored. In Web-learning environ-
ments in which persons are free to navigate and engage in a
large number of available exercises, large amounts of
missing item scores (greater than 20%) are common.
Huisman (2000) investigated the effects of several naïve
deterministic imputation methods on the estimation of the
latent ability of respondents and Cronbach’s alpha (indicat-
ing the reliability of a test). Deterministic methods,
however, assume that all conditions leading to missing
item scores are perfectly known, an assertion that may not
be entirely valid. Sijtsma and van der Ark (2003) discussed
some simple methods and proposed two nonparametric
single-imputation methods, one of which seemed to be
superior in recovering several statistical properties of the
original complete data from an incomplete data set. In
addition, van Ginkel, van der Ark, and Sijtsma (2007)
showed that multiple-imputation versions of some methods
discussed by Sijtsma and van der Ark produced small
discrepancies when compared to the statistical properties of
the completely observed data. However, the designs of the
data structures used in both studies to test these methods
did not contain a hierarchical structure, and the proportions
of missing item scores studied were small—between 1%
and 15%.

Another limitation of most of these studies is that they do
not examine explanatory item response models. Moreover,
most studies do not account for more complex multilevel
structures, with persons and/or items nested in groups. This
study therefore extends the fast growing research domain
on missing data in three ways: (1) We focused on
explanatory models, while previous studies focused mainly
on the descriptive Rasch model; (2) we investigated the
performance of some simple-imputation approaches in the
case of multilevel data structures, with persons grouped in,
for instance, schools; and (3) we focused on substantial
amounts of missing item scores, such as are common in
tracking and logging e-learning data. In the remainder of
this article, we discuss some of the common methods for
handling missing item responses, and in a simulation study,
apply and compare their performance on multilevel data
with substantial numbers of item scores missing.

Missing-data methods

Several methods for dealing with missing data in IRT
settings exist and can readily be implemented in such
statistical software as R, SAS, or SPSS. For the present
study, the approaches we discuss are by no means an
exhaustive set, but were selected because previous research
had demonstrated their potential effectiveness in estimating
missing item scores for item response data; as such, they
were deemed worthy candidates for use with multilevel
item response data. For instance, some of the methods we
describe have been shown to be effective in imputing
missing item scores for test and questionnaire data (van
Ginkel et al. 2007), to result in limited bias for item
parameter estimates (Finch, 2008), or to eliminate the
imputation variance of the estimator (Chen, Rao, & Sitter,
2000). Some methods are described or mentioned but not
implemented in this analysis, because they were deemed
superfluous in the presence of other imputation methods. For
a comprehensive overview of missing-data methods, the
interested reader is referred to Schafer and Graham (2002).

To set notation first, suppose a person p ∈ P responds to
Irp items but misses Imp items, with Irp + Imp = I. Similarly,
suppose an item i ∈ I is responded to by Pri persons but is
missed by Pmi persons, with Pri + Pmi = P. Let
Yo
p¼ Yo

p1; Y
o
p2; :::; Y

o
pIrp

for all i ∈ Irp be a vector of the
observed scores for person p, such that Ym

p ¼ Ym
p1;

Ym
p2; :::; Y

m
pImp

, for all i ∈ Imp is a vector of his/her missing

scores. From the item side, let Y 0
i ¼ Y1i0; Y2ii ; :::; Y 0

Prii
for all

p ∈ Pri denote a vector of the observed person scores on
item i, such that Ym

i ¼ Y1im; Y2im; :::; Ym
Pmii for all p ∈ Pmi is a

vector of item i’s missing person scores.

Complete case analysis (CCA)

A “case” in this situation refers to a person. A complete
case analysis ignores persons who did not answer all
items, thereby retaining only part of the observed data
for analysis (see, e.g., Horton & Kleinman, 2007; Little
& Rubin, 2002; Molenberghs & Verbeke, 2005). That is to
say, person p is included within the analysis if he/she
provided a fully observed response vector Y 0

p ¼ Ypi0;Yp20 ;

:::; Y 0
pI
for all I = 1, . . . , I. This approach is problematic in

some item-based research settings. For instance, in e-
learning environments, the large number of items coupled
with navigation freedom at a person’s pace can make it
likely that almost every person will have missing item
scores, resulting in substantial efficiency losses of the
complete case estimator. Moreover, it is unlikely that the
persons that answered all items can be regarded as a
random sample. Therefore, CCA will not be considered
further in this study.
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Simple random imputation (SRI)

Simple random or hot deck imputation (Little & Rubin, 2002),
which is specially designed for categorical data (Rubin &
Schenker, 1986), fills the missing components of a variable by
drawing with replacement and with equal probabilities from
the observed values of that particular variable. In its simplest
form, SRI is fit for random imputation of a single variable
(Little & Rubin, 2002). For item response data, SRI can be
applied person by person or item by item, but for simplicity,
we will consider only one case: item by item. In this case, SRI
selects a simple random sample of size Pmi with replacement
and equal probabilities from Pri, and then uses the associated
Yi
0 values as donors for Yi

m for all p ∈ Pmi; that is, a missing
item score is filled with a value Ypim

» ¼ Yqi0 for some q ∈ Pri.
As such, the distribution of the item values is preserved.

Adjusted random imputation (ARI)

The adjusted random imputation (Chen et al. 2000) method
is an adaptation of SRI that replaces missing item scores
with random estimates in such a way that the average of
each item remains the same as in the raw data table. The

ARI method uses eYm
pi ¼ Y �i þ eYm»

pi � eY »
�i

� �
for all p ∈ Pm

as imputed values for the missing scores instead of Ypim
»
,

where Y �i is the mean of an item’s observed scores and Y
»

�i
is the mean of random values Ypim

»
for all of the p ∈ Pm

obtained from SRI. For binary values, the computed valueseYm
�i must be rounded to 0 or 1 or used as parameters to

make a random draw from the Bernoulli distribution.

Mean imputation (IM and PM)

Two variants of mean imputation can be considered—item
mean substitution (IM) and person mean substitution (PM;
Huisman, 2000). Under IM, the arithmetic mean of an item’s

observed scores, computed as IMi ¼ Y �i ¼ 1
Pri

PPri
p¼ 1 Y

o
pi, is

used to replace every missing score of the said item. For PM,
the arithmetic mean of a person’s observed scores, computed

as PMp ¼ 1
Irp

PIrp
i¼ 1 Y

o
pi, is used to replace all of his/her

missing scores. For either case, the means can be rounded to
0 or 1 binary values, but this creates rounding-off errors.
Alternatively, an IM or PM can be used as a parameter to
make a random draw from the Bernoulli distribution for the
missing binary data (Sijtsma & van der Ark, 2003).

Two-way mean substitution (TW)

IM substitution corrects for score differences between items,
but not for differences between persons. Similarly, PM
substitution corrects for score differences between persons,

but not for differences between items. Therefore, Bernaards
and Sijtsma (2000) proposed two-way mean substitution. Let
OM be the overall mean of all observed item scores. Then a
deterministic TW mean for person p on item i is calculated
as TWpi = PMp + IMi – OM. For binary item scores, the
computed TWpi can be rounded to 0 or 1, or used as a
parameter to sample from a Bernoulli distribution. The TW
method assumes that no person × item interaction is present.

Corrected item mean substitution (CIM)

Corrected item mean (CIM) substitution (Bernaards &
Sijtsma, 2000; Huisman, 2000; Huisman & Molenaar,
2001) improves on unconditional item mean imputation
(IM) by taking into account the overall mean performance
of a person on the items he/she answered, as well as the
difficulty of those items. Here, a weight reflecting the
relative performance of a person on his/her observed item
scores is calculated and applied to the mean performance on
the item across persons, thus increasing the likelihood for
imputing a correct score for persons whose relative
performance is higher (Finch, 2008). In other words, the
item mean is multiplied by a factor reflecting the ratio
between the student’s scores on available items and the
average of available scores on these items. Again, these
means can be rounded to binary values or used as
parameters to sample from a Bernoulli distribution. A
CIM for person p on item i—that is, cell (p, i)—is

calculated as CIMpi ¼ PMp
1
Irp

P
i2Irp lMi

� �
x IMi

Regression imputation (RI)

The regression imputation method (see, e.g., Little &
Rubin, 2002) takes information from observed auxiliary
variables into account. Once again, consider scores on an
item i, with Yi

0 observed for all p ∈ Pri and Yi
m missing for

all p ∈ Pmi. Regression imputation uses persons’ data to
regress Yi

0 on observed auxiliary variables and then
computes the missing values as predictions from the
regression. For a qualitative dependent variable Y, logistic
models may be used, and the auxiliary variables can be
quantitative or qualitative—the latter being incorporated by
means of dummy variables (Kalton & Kasprzyk, 1982). It
is also possible to include useful interaction terms and
transformations of the variables. Specifically, for predictor
variables X = X1, . . . , XJ, a missing value Ypi

m ∈ Yi
m is

imputed using the regression model given as

logit piðX Þ½ � ¼ ai þ
X
j2 J

φijXj; with

piðX Þ ¼ P Ypi
0 ¼ 1jX ¼ X1; :::;XJ

� �
:

ð4Þ
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The imputed score can then be estimated by Ypi
m ~

binomial[1, πi(X)]. A special case of the RI method is the
ratio imputation method, in which Yi

0 is regressed on a
single auxiliary variable and an intercept of zero (see, e.g.,
Arnab & Singh, 2006; Kalton & Kasprzyk, 1982; Shao,
2000). Therefore, ratio imputation will not be considered
separately in this study, but only the more general
regression imputation method.

Multiple imputation (MI)

In all methods discussed up to now, a missing score was
replaced by one single estimated value. Single-value
imputation methods can be easily implemented, but replac-
ing missing values with a single value is likely to decrease
the variance that would be present if data were fully
observed (Schafer & Graham, 2002). For instance, replac-
ing each missing score in Yi

m for all p ∈ Pmi with the mean
of the observed scores in Yi

0 will likely underestimate the
true variance had all item i scores been observed. Through
an example, Baraldi and Enders (2010) illustrated that
several single-value imputation methods introduce bias in
the estimates of means, variances, and correlations. The
main problem is that inferences about parameters based on
the filled-in values do not account for imputation uncer-
tainty, since variability from not knowing the missing
values is ignored (Rubin & Schenker, 1986). As a result,
the standard errors and confidence intervals of estimates
based on imputed data can be underestimated (Little &
Rubin, 2002). One alternative to single-value imputation
methods is multiple imputation.

Multiple imputation (MI; Rubin, 1987) is a technique
in which each missing item score is replaced with a set of
M > 1 plausible values according to a statistical model.
Different imputation models can be adopted—for instance,
using the previously described methods—but the exact choice
typically depends on the nature of the variable to be imputed in
the data set. For categorical variables, the log-linear model
(Schafer, 1997) would be the most appropriate imputation
model. However, the log-linear model can be applied only
when the number of variables used in the imputation model
is small (Vermunt, van Ginkel, van der Ark, & Sijtsma,
2008), whereby it is feasible to set up and process the full
multiway cross-tabulation required for the log-linear analysis.
As an alternative, imputations can be carried out under a fully
conditional specification approach (van Buuren, 2007),
where a sequence of regression models for the univariate
conditional distributions of the variables with missing values
are specified. Under this approach, a variable with missing
binary scores can be modeled as a logistic regression model
of the observed scores Yi

0 on the observed auxiliary variables,
as in Eq. 4, with possible higher-order interaction terms or
transformed variables (van Buuren & Oudshoorn, 2000).

Such a model is used to generate M imputations (or
synthetic values) for the missing observations in the data by
making random draws from a distribution of plausible
values. This step results in M “complete” data sets, each of
which is analyzed using a statistical method that will
estimate the quantities of scientific interest. The resulting M
analyses (instead of one) will differ because the imputations
differ (van Buuren, 2007). Following Rubin’s rules (e.g.,
Little & Rubin, 2002), the results of the M analyses are then
combined into a single estimate of the statistics of interest
by combining the variation within and across the M
imputed data sets. As such, the uncertainty about the
imputed values is taken into account, and under fairly
liberal conditions, statistically valid estimates with unbiased
standard errors can be obtained.

Direct likelihood (DL) analysis

Instead of imputing missing observations, Mallinckrodt, Clark,
Carroll, and Molenberghs (2003) proposed the use of the
direct likelihood methodology to deal with incomplete
correlated data for ignorable missing-data mechanisms—that
is, for MCAR or MAR (Little & Rubin, 2002). This approach
is referred to as likelihood-based ignorable analysis, or
simply direct likelihood analysis (see, e.g., Molenberghs &
Kenward, 2007). Under the DL approach, all of the available
observed data are analyzed without deletion nor imputation
using models that offer a framework from which to analyze
clustered data by including both the fixed and random effects
in the model—for example, GLMMs for non-Gaussian data.
In so doing, appropriate adjustments valid under the ignorable
missing-data mechanism are made to parameters, even when
the data are incomplete, due to the within-person correlation
(Beunckens et al. 2005).

As noted before, IRT models can be reformulated in the
framework of GLMM (De Boeck & Wilson, 2004), with
persons as clusters and items for the repeated observations,
and parameter estimates can easily be obtained using tools
like the lmer function of the lme4 package for the R
software (De Boeck, Bakker, Zwitser, Nivard, Hofman,
Tuerlinckx & Partchev 2011). The GLMM for the observed
binary item scores Ypi

0 is given as logit(πpi) = ηpi and Ypi
0 ~

binomial(1, πpi). For each pair of a person p and an item i,
(p, i), the value of the component ηpi is determined by a
linear combination of the person and item predictors (De
Boeck et al. 2011; De Boeck & Wilson, 2004), as given in
Eq. 3. In other words, the same model that would be used
for a fully observed data set is now fitted with the same
software tools to a reduced data set with persons having
unequal sets of item scores. For an extensive description
of the DL approach as a method for analyzing clustered
data with missing observations, the interested reader is
referred to Molenberghs and Kenward (2007).
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Simulation study

A simulation study was conducted to compare the perfor-
mance of the aforementioned methods. The study was
based on “population” values similar to the estimated
values obtained from two different empirical data sets—
namely, the CTB–McGraw-Hill data used in De Boeck and
Wilson (2004), and the data from a test for assessing
attainment targets of reading comprehension in Dutch for
pupils leaving primary education (De Boeck, Daems,
Meulders, & Rymenans 1997). The latter data were
reanalyzed by Van den Noortgate, De Boeck, and Meulders
(2003) as an application for cross-classification multilevel
logistic models. Both data sets depict a multilevel item
response structure, with students grouped in schools but
differing in the variance values of school effects, person
abilities, and item difficulties. The Dutch comprehension
data have a large difference between the variance of person
abilities and that of item difficulties, with about 15% of the
differences in item scores situated between schools. The
CTB data have a small difference between the variances of
person abilities and item difficulties, with about 30% of the
differences in item scores situated between schools.
Analyses based on the CTB data are used for comparison
purposes, to understand the performance of the discussed
methods given different population values.

Simulating data

Both empirical data sets have a number of predictors,
but for simplicity, one fixed person property and one
fixed item property were considered, and clustering was
done only at the person level, whereby persons are
grouped into schools with equal probabilities. In both
situations, persons, items, and schools were treated as
random effects, while covariates of gender (male = 0,
female = 1) and type of text for item tasks were
considered as fixed effects. Type of text is a dummy
variable, with 0 assigned to evaluation or science items
and 1 assigned to other item types with a probability of
.5, simply to obtain a generally balanced design.
Population values for these factors were obtained by
fitting Eq. 5 to the two empirical data sets.

logit pkpi
� � ¼ g0 þ g1genderp þ g2typei þ wp þ uk þ "i;

ð5Þ

with uk ~ N(0, σu
2), εi ~ N(0, σε

2), ωp ~ N(0, σω
2). The

score on item i by person p from school k (binkpi) was then
generated from a binomial distribution as binkpi ~ binomial
(1, πkpi). For each of the two empirical studies, 1,000 fully
observed sample data sets were simulated, and the
following factors were considered for simulating the data.

Clustering

For simulations based on the Dutch comprehension
data, two cases were considered—namely, no variabil-
ity between person groups (school effects, σu

2 = 0)
versus a case in which there was variability between
schools (σu

2 > 0)—in order to examine the effect of
school clusters. For the simulations based on the CTB
data, only the latter case was considered. The number of
schools was fixed at K = 20 for both simulation cases,
which is the average number of schools in the two
empirical data sets.

Sample sizes

Two item sample sizes were compared—that is, I = 25 and
50—while the persons’ sample size was fixed at P = 120—
that is, 6 persons per school.

Missing proportions (ζ)

In each of the samples, a random selection of 15% or 50%
of the item scores were removed, yielding low and high
proportions of missing scores. These values were based on
our experience with e-learning environments, which tend to
have high levels of item nonresponse.

Missing mechanisms

For all simulated samples, an ignorable missing-data mecha-
nismwas induced in item scores—that is, MCAR orMAR. To
induce MCAR, item scores were removed at random from the
data with equal probabilities of responding π(respkpi = 1) =
.85 and π(respkpi = 1) = .50 for the 15% and 50% proportions
of missing scores, respectively. A new response variable,
mcar_bin, was deducted from the original scores as

mcar binkpi ¼ binkpi; if respkpi ¼ 1
NA; if respkpi ¼ 0

� 	
, with respkpi ~

binomial[1, π(respkpi)] and “NA” meaning that the item
score is missing. To induce MAR, the probability of
responding π(respkpi = 1) was dependent on a person’s
gender. Girls were assigned a high probability of
responding to items relative to boys, as shown in Table 1.
Then, similar procedures were followed for the MCAR
condition, to create a variable mar_binkpi with scores
MAR.

In Table 2, an overview of all of the factors and
design characteristics for both simulation cases is given.
Also presented in Table 2 are the “population” values—
that is, the regression coefficients for the fixed effects and
random effects variance estimates obtained after reana-
lyzing the two empirical data sets using the GLMM in
Eq. 5.
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Imputation methods

Missing data were then estimated according to six
imputation methods: SRI, ARI, IM, TW, CIM, and RI. In
addition, DL analysis was conducted while the completely
observed data (here referred to as CD) were analyzed for
reference purposes. For the ARI, IM, TW, CIM, and RI
imputation methods, three variations were possible—that is,
(a) single-value imputation by rounding each estimated
mean to 0 or 1, (b) single-value imputation by using each
computed mean as a parameter to sample 0 or 1 values from
a Bernoulli distribution, and (c) multiple imputation by
using each computed mean as a parameter to sample, for
each missing value, several values from a Bernoulli
distribution, and then analyzing and combining the esti-
mates to make one inference using Rubin’s rules. Some
preliminary analyses (not discussed further in this text)
showed that deterministic single-value imputation methods
(possibilities a and b) did not perform well, and the results

were unreliable. This was as expected, because single-value
imputation methods do not take uncertainty about the
missing values into account, such that estimates based on
imputed data are biased. Therefore, the ARI, IM, TW, CIM,
and RI methods were adapted to a multiple-imputation
approach (possibility c).

For methods adapted to a multiple-imputation approach,
the basic rule of thumb is that the number of imputations M
is set to 3 ≤ M ≤ 5 to get sufficient inferential accuracy.
Even though Schafer (1997) noted that basing conclusions
on this range might be risky, Molenberghs and Verbeke
(2005) showed that efficiency gains rapidly diminish after
the first M = 2 imputations for small fractions of missing
information, and after the first M = 5 for large fractions of
missing information. For both simulation studies, M = 5
was used in all conditions.

The RI method was implemented using a logistic regres-
sion model as incorporated in multivariate imputation using
chained equations (MICE; van Buuren & Oudshoorn, 2000),
a missing-data package for the R software, but an extra
choice to make was the variables to include in the imputation
model. Even though the MICE software can automatically
select variables to include in the model, a proper multiple
imputation requires correct adjustments to the model to
reflect the variables of interest and any possible interaction
effects—a process that is not straightforward. For this
analysis, a person’s gender, item indicators, and school
indicators, and an interaction between the person’s gender
and an item’s text type were all included as fixed effects.

Table 2 Design characteristics
of the two simulation studies Study 1: Based on Dutch Comprehension Data

Clustering: None and persons in schools

Number of clusters: K = 20

Item sample size: I = 25 and I = 50

Person sample size: P = 120

Predictors: Intercept (γ0 = 0.24), gender (γ1 = −0.14), type (γ2 = 0.50)

Variance of random effects: Persons (σω
2 = 0.45), items (σε

2 = 1.24), schools (σu
2 = 0; σu

2 = 0.08)

Percent of missing scores: ζ = 15% and ζ = 50%

Missing data mechanism: MCAR and MAR

Methods SRI, ARI, IM, TW, CIM, RI, DL and CD

Study 2: Based on CTB Data in De Boeck and Wilson (2004)

Clustering: Persons in schools

Number of clusters: K = 20

Item sample size: I = 50

Person sample size: P = 120

Predictors: Intercept (γ0 = 0.82), gender (γ1 = −0.1), type (γ2 = −0.28)
Variance of random effects: Persons (σω

2 = 0.65), items (σε
2 = 0.75), schools (σu

2 = 0.30)

Percent of missing scores: ζ = 15% and ζ = 50%

Missing data mechanism: MAR

Methods SRI, ARI, IM, TW, CIM, RI, DL and CD

Table 1 Probabilities of responding for creating data missing at random

Level of Response

ζ = 15% ζ = 50% Condition

p respkpi ¼ 1
� � ¼ 0:95; 0:60; if jgenderp ¼ 1

0:75; 0:40; if jgenderp ¼ 0

�

π(respkpi = 1) refers to the probability that person p in school k
responds to item i
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Analysis procedure

In total, there were 18 conditions—namely, 2 (clustering
situations) × 2 (item sample sizes) × 2 (missing proportions) ×
2 (missing mechanisms) for simulations based on the Dutch
comprehension data, and 1 (clustering situation) × 1 (item
sample size) × 2 (missing proportions) × 1 (missing
mechanisms) for simulations based on the CTB data. For all
conditions, the simulated 1,000 data sets were analyzed by
fitting the explanatory IRT from Eq. 5 to the fully observed
data (CD), to the reduced/incomplete data (DL analysis), and
to data whose missing item scores had been substituted using
each of the six imputation methods. The purpose of fitting a
model similar to the one that was used for simulating the
fully observed data was to assess whether “population”
values can be recovered from the data whose originally
observed item scores have been deleted and are analyzed,
either without imputation (for the DL analysis) or after the
deleted item scores have been estimated by one of the
imputation methods, under the different conditions described
in preceding sections.

The outcomes of interest were the accuracy of the fixed
parameters of gender and item type, of the standard errors
of these fixed effects, and of the estimates for random
variables’ variance over persons (σω

2), schools (σu
2), and

items (σε
2). Therefore, we will look at the bias, precision,

and mean squared error (MSE) of the estimates of the fixed
and random parameters. Bias is the difference between an
estimator’s expected value and the true value of the
parameter being estimated. MSE is a measure to quantify
the accuracy of prediction, and is given by the sum of the
variance (or the squared standard error) and the squared
bias of an estimator. Fixed effects’ expected values are
estimated as the mean of the 1,000 estimates, while random
effects’ expected variances were estimated as the median of
the estimates, because variance estimates are bounded
above zero and positively skewed. The standard error
estimates were evaluated by comparing the mean standard
error estimate of each parameter to the standard deviation of
1,000 estimates of the corresponding parameter, and by
looking at the coverage proportions of the respective
confidence intervals. Model fitting and programming were
done in the R statistical software, version 2.12.1. For each
simulated data set, model parameters were estimated using
the lmer() function in the lme4 package (Bates & Maechler,
2010) under REML with the Laplace approximation.

Results

Analyses from the small item samples showed trends similar
to those from the large item samples for all conditions of this
study, although standard errors for the small item samples

seemed to be biased even for a complete data analysis.
Furthermore, there were no differences in the conclusions for
analyses of samples drawn from the Dutch comprehension
data and from the CTB data. Here, we present and discuss
only the results obtained for the large item sample sizes drawn
from the Dutch comprehension data. Results from smaller
samples and from samples drawn from the CTB data were
very similar and can be obtained from the authors.

Fixed-effect parameter estimates

Bias

Tables 3 and 4 show the bias and mean squared errors of
fixed-effect estimates by imputation method, clustering
condition, and missing mechanism at the 15% and 50%
proportions of missing item scores, respectively. For the
two clustering conditions, the results indicated that bias was
generally larger in the MAR condition than in the MCAR
condition across both missing proportions. The DL and TW
methods resulted in bias that was comparable to that of the
CD analysis, in which there were no missing item scores.
Furthermore, bias was largest in all conditions when
missing scores were imputed using the SRI, ARI, and IM
methods. When missing scores were imputed using the
CIM and RI methods, bias was small but not similar to that
in the CD analysis. There was generally an increase in bias
with increases in the proportions of missing item scores,
except with the DL method, as can be seen when
comparing Tables 3 and 4.

Mean squared error

For the 15% proportion of missing item scores and for both
clustering conditions, the MSE estimates in the MAR
condition were similar to those in the MCAR condition, as
can be observed in Table 3. However, for the 50% proportion
of missing item scores, in Table 4, MSE estimates in the
MAR condition were larger than those in the MCAR
condition. For the 15% proportion of missing scores, MSE
values for the DL analysis and the analyses after missing
scores have been imputed using the TW and CIM methods
were comparable to those of the CD analysis. This was not
the case for the 50% proportion of missing scores, where the
MSE was larger for the TW and CIM methods than for CD.
In addition, the results indicate that MSE estimates were
smaller than those from the CD analysis when missing item
scores were imputed using the SRI, ARI, IM, and RI
methods in all conditions. Smaller MSE values for the
analyses after missing item scores have been imputed by the
SRI, ARI, IM, and RI methods are an indication that the
standard errors of fixed-effect estimates were underestimated,
due to reduced variability in the imputed item scores for
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these methods. This was more pronounced for the analyses
of data sets whose missing scores were imputed by the SRI,
ARI, and IM methods, especially because greater biases
were associated with these three methods.

Clustering

With persons clustered in schools (the six columns on the
right of Tables 3 and 4), bias for fixed effects generally
seemed to be slightly larger than when persons were not
clustered within schools for the SRI, ARI, IM, CIM, and RI
imputation methods, in both the MCAR and MAR
conditions. For all methods, MSE values seemed to be
larger for the case of school clustering than when persons
were not clustered within schools. This was not unexpected,
due to the additional variability from school effects.
Generally for both clustering conditions, the DL analysis
and the analysis after imputation of missing scores by the
TW method seemed to result in biases and MSE values
comparable to those of the CD analysis.

Standard errors

Tables 5 and 6 show the mean of the standard errors and
standard deviations of the fixed-effect estimates by impu-

tation method, clustering condition, and missing mecha-
nism for 15% and 50% proportions of missing item scores,
respectively. Standard deviations of the 1,000 estimates
were better approximated by the estimated standard errors
for the condition of no school clustering, as compared to
when persons were clustered within schools. This was
probably due to the small group sample sizes per school.
Standard errors were found to be smaller for the SRI, ARI,
and IM approaches, but this was also true for the standard
deviations. In general, for both the MCAR and MAR
conditions and both high and low proportions of missing
item scores, there was little variation across imputation
methods in the difference between the standard errors and
the corresponding standard deviations.

Coverage probabilities

The 95% confidence interval coverage probabilities by
imputation method and missing mechanism are shown in
Table 7. Good confidence procedures should have coverage
probabilities equal (or close to) the nominal level of 95%.
For all methods, the coverage probabilities of the confi-
dence intervals for all fixed effects were generally close to
the nominal value for the 15% proportion of missing item
scores. However, for the 50% proportion of missing item

Table 3 Bias and mean squared error in fixed-effect estimates by imputation method and missing mechanism for ζ = 15%

Method No School Clustering School Clustering

Bias MSE Bias MSE

γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2

γ0 = 0.24, γ1 = −0.14, γ2 = 0.50

CD .008 –.006 –.001 .059 .018 .101 .004 –.007 .010 .063 .020 .100

MCAR

DL .007 –.005 –.001 .060 .019 .102 .003 –.005 .010 .063 .020 .101

SRI –.009 .020 –.011 .055 .014 .099 –.014 .021 –.002 .058 .015 .097

ARI –.012 .019 –.018 .054 .014 .096 –.017 .021 –.009 .056 .015 .093

IM –.009 .021 –.011 .056 .015 .100 –.014 .021 –.002 .058 .016 .097

TW .007 –.004 –.004 .060 .020 .102 .004 –.005 .006 .064 .022 .101

CIM –.001 –.003 –.007 .060 .020 .101 –.005 –.004 .004 .063 .021 .100

RI .001 –.002 –.009 .057 .015 .100 –.003 –.002 .002 .061 .016 .099

MAR

DL .008 –.007 –.001 .060 .019 .102 .005 –.007 .012 .064 .021 .101

SRI –.020 .024 –.010 .056 .014 .099 –.025 .024 .002 .058 .015 .097

ARI –.026 .031 –.017 .054 .015 .096 –.032 .032 –.008 .057 .016 .093

IM –.020 .025 –.011 .057 .015 .100 –.025 .026 .000 .059 .016 .097

TW .008 –.005 –.004 .061 .020 .102 .004 –.005 .008 .064 .022 .101

CIM –.005 .004 –.005 .060 .020 .102 –.011 .005 .007 .064 .021 .100

RI –.001 .002 –.009 .058 .015 .100 –.005 .002 .003 .062 .016 .099

CD = complete data, DL = direct likelihood, SRI = simple random imputation, ARI = adjusted random imputation, IM = item means, TW = two-
way means, CIM = corrected item means, RI = regression imputation
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Table 5 Standard errors and
standard deviations of fixed-
effect estimates by imputation
method and missing mechanism
for ζ = 15%

CD = complete data, DL = direct
likelihood, SRI = simple random
imputation, ARI = adjusted
random imputation, IM = item
means, TW = two-way means,
CIM = corrected item means,
RI = regression imputation

Method No School Clustering School Clustering

SE SD SE SD

γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2

γ0 = 0.24, γ1 = −0.14, γ2 = 0.50

CD .243 .135 .318 .245 .137 .310 .251 .141 .316 .261 .145 .330

MCAR

DL .244 .138 .320 .246 .140 .310 .252 .143 .317 .261 .148 .331

SRI .235 .117 .314 .240 .118 .304 .239 .121 .311 .253 .123 .324

ARI .231 .117 .309 .236 .116 .300 .236 .120 .305 .249 .122 .318

IM .236 .120 .316 .239 .117 .305 .240 .124 .312 .252 .122 .324

TW .245 .142 .320 .245 .140 .308 .252 .147 .317 .261 .148 .330

CIM .244 .140 .318 .245 .138 .306 .251 .145 .315 .260 .146 .327

RI .239 .123 .316 .242 .138 .305 .247 .127 .315 .256 .146 .326

MAR

DL .245 .138 .319 .247 .142 .310 .252 .143 .317 .264 .148 .331

SRI .236 .118 .315 .237 .119 .305 .240 .122 .311 .252 .124 .324

ARI .232 .118 .309 .233 .117 .301 .236 .122 .306 .247 .123 .318

IM .237 .121 .316 .237 .116 .305 .241 .125 .312 .252 .121 .324

TW .246 .142 .320 .245 .142 .309 .253 .147 .317 .263 .148 .329

CIM .245 .141 .319 .247 .140 .308 .252 .146 .316 .263 .146 .327

RI .241 .124 .317 .241 .141 .307 .249 .127 .314 .258 .147 .326

Table 4 Bias and mean squared error in fixed-effect estimates by imputation method and missing mechanism for ζ = 50%

Method No School Clustering School Clustering

Bias MSE Bias MSE

γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2

γ0 = 0.24, γ1 = −0.14, γ2 = 0.50

CD .008 –.006 –.001 .059 .018 .101 .004 –.007 .010 .063 .020 .100

MCAR

DL .010 –.010 –.002 .062 .022 .105 .004 –.006 .009 .065 .023 .103

SRI –.037 .069 –.021 .053 .011 .100 –.046 .077 –.018 .053 .013 .095

ARI –.046 .073 –.039 .050 .012 .093 –.052 .073 –.031 .051 .012 .090

IM –.039 .071 –.021 .055 .014 .102 –.046 .075 –.018 .055 .015 .098

TW .014 –.010 –.011 .065 .026 .107 .006 –.005 .000 .068 .028 .104

CIM –.021 –.005 –.020 .063 .025 .104 –.030 .001 –.011 .066 .026 .100

RI –.008 –.001 –.020 .061 .012 .107 –.014 .002 –.009 .065 .013 .105

MAR

DL .010 –.009 –.003 .063 .022 .105 .005 –.006 .010 .066 .024 .104

SRI –.054 .074 –.027 .055 .012 .100 –.062 .078 –.016 .055 .013 .096

ARI –.063 .081 –.035 .052 .013 .093 –.067 .080 –.033 .052 .014 .090

IM –.055 .075 –.023 .057 .014 .102 –.061 .078 –.016 .057 .015 .098

TW .013 –.007 –.011 .066 .027 .107 .006 –.004 .002 .069 .028 .105

CIM –.031 .011 –.018 .065 .025 .105 –.014 .017 –.007 .068 .027 .102

RI –.012 .007 –.023 .062 .013 .107 –.017 .009 –.011 .066 .013 .106

CD = complete data, DL = direct likelihood, SRI = simple random imputation, ARI = adjusted random imputation, IM = item means, TW = two-
way means, CIM = corrected item means, RI = regression imputation
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scores, the coverage probabilities of the confidence inter-
vals of estimates obtained after imputations by the SRI,
ARI, and RI methods could fall farther below the nominal
value, while those obtained from the DL analyses and the
analyses after imputations by the IM, TW, and CIM
methods were generally comparable to those of the CD
analyses for all conditions.

Random-effect variance estimates

For both clustering conditions, the CD analysis resulted in
the median variance estimate that was about 95% of the
true variability within person abilities and within item
difficulties, and about 90% of the true variability within
school effects for the case of school clustering. Variance
estimates therefore were slightly negatively biased.

Bias

Tables 8 and 9 show the bias and MSE values of the
random-effect variance estimates by imputation method,
clustering condition, and missing mechanism at the 15%
and 50% proportions of missing item scores, respectively.
For all conditions, the obtained results showed greater bias
of all random effects’ variance estimates at the 50% than at
the 15% proportion of missing item scores. The DL
analysis resulted in bias that was comparable to that of

the CD analysis for all conditions, and more especially at
the 15% proportion of missing item scores. Although the
biases of the DL analyses at the 50% proportion of missing
item scores were increased, they were the least relative to
those obtained after estimating missing scores by any of the
imputation methods. For all conditions, analyses after
imputing missing scores by the SRI, ARI, IM, and RI
methods resulted in larger negative bias, while analyses
after imputations by the TW and CIM methods resulted in
small absolute biases.

Mean squared error

For all conditions, the obtained MSE values based on the
DL analysis for all random-effect variance estimates were
comparable to those of the CD analysis. Analyses of data
sets whose missing item scores were imputed by the TW
and CIM methods showed MSE values that were compa-
rable to those of the CD analysis for the variance estimates
of person abilities and school effects, but not of item
difficulties. This was more noticeable at the 15% than the
50% proportion of missing item scores. For all conditions
shown in Tables 8 and 9, analyses after imputations by the
SRI, ARI, IM, and RI methods resulted in greater MSE
values. In general, there was an increased loss of prediction
accuracy for analyses of data sets whose missing item
scores were estimated using any of the imputation methods

Table 6 Standard errors and
standard deviations of fixed-
effect estimates by imputation
method and missing mechanism
for ζ = 50%

CD = complete data, DL = direct
likelihood, SRI = simple random
imputation, ARI = adjusted ran-
dom imputation, IM = item
means, TW = two-way means,
CIM = corrected itemmeans, RI =
regression imputation

Method No School Clustering School Clustering

SE SD SE SD

γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2

γ0 = 0.24, γ1 = −0.14, γ2 = 0.50

CD .243 .135 .318 .245 .137 .310 .251 .141 .316 .261 .145 .330

MCAR

DL .248 .147 .324 .249 .148 .316 .255 .152 .321 .267 .162 .334

SRI .228 .081 .315 .235 .082 .305 .226 .083 .308 .247 .089 .319

ARI .219 .082 .302 .227 .079 .296 .219 .084 .298 .235 .086 .306

IM .231 .093 .319 .233 .072 .306 .230 .095 .312 .244 .078 .319

TW .255 .162 .326 .248 .149 .311 .261 .166 .322 .265 .162 .327

CIM .250 .157 .321 .250 .144 .307 .255 .161 .317 .263 .157 .321

RI .247 .111 .327 .239 .147 .305 .254 .112 .324 .258 .161 .323

MAR

DL .250 .148 .324 .252 .151 .316 .257 .153 .322 .268 .158 .331

SRI .228 .082 .315 .233 .081 .307 .227 .084 .309 .245 .083 .318

ARI .220 .083 .303 .227 .080 .296 .218 .085 .297 .238 .083 .309

IM .232 .094 .318 .232 .071 .304 .231 .096 .313 .245 .074 .317

TW .257 .163 .327 .252 .154 .311 .262 .168 .324 .267 .157 .325

CIM .252 .157 .323 .252 .146 .308 .257 .162 .319 .267 .152 .321

RI .249 .112 .327 .240 .152 .305 .257 .114 .320 .257 .160 .320
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Table 8 Bias and mean square error in random-effect variance estimates by imputation method and missing mechanism for ζ = 15%

Method No School Clustering School Clustering

Bias MSE Bias MSE

σω
2 σu

2 σε
2 σω

2 σu
2 σε

2 σω
2 σu

2 σε
2 σω

2 σu
2 σε

2

σω
2 = 0.45, σu

2 = 0.00, σε
2 = 1.24 σω

2 = 0.45, σu
2 = 0.08, σε

2 = 1.24

CD –.025 .000 –.050 .006 .000 .079 –.019 –.009 –.078 .007 .003 .074

MCAR

DL –.027 .000 –.052 .007 .000 .081 –.020 –.009 –.076 .007 .004 .076

SRI –.160 .000 –.091 .028 .000 .083 –.157 –.033 –.119 .028 .003 .081

ARI –.166 .000 –.132 .031 .000 .087 –.162 –.033 –.163 .029 .003 .087

IM –.159 .001 –.086 .028 .000 .082 –.157 –.032 –.114 .028 .003 .078

TW .006 .001 –.052 .006 .000 .076 .012 –.010 –.080 .007 .003 .071

CIM –.005 .001 –.067 .005 .000 .076 .003 –.011 –.091 .006 .003 .071

RI –.152 .021 –.076 .026 .001 .081 –.152 .015 –.098 .027 .004 .076

MAR

DL –.026 .000 –.052 .006 .000 .081 –.021 –.008 –.074 .007 .004 .076

SRI –.155 .000 –.083 .027 .000 .082 –.153 –.031 –.111 .027 .003 .080

ARI –.160 .000 –.128 .029 .000 .085 –.153 –.034 –.156 .027 .003 .086

IM –.155 .001 –.084 .027 .000 .081 –.152 –.032 –.117 .026 .003 .080

TW .010 .001 –.053 .006 .000 .075 .015 –.008 –.071 .007 .004 .072

CIM –.001 .001 –.061 .005 .000 .076 .004 –.011 –.083 .006 .003 .073

RI –.148 .021 –.077 .025 .001 .079 –.149 .016 –.094 .026 .004 .076

CD = complete data, DL = direct likelihood, SRI = simple random imputation, ARI = adjusted random imputation, IM = item means, TW = two-
way means, CIM = corrected item means, RI = regression imputation

Table 7 95% confidence
interval coverage probabilities
by imputation method and
missing mechanism

CD = complete data, DL = direct
likelihood, SRI = simple random
imputation, ARI = adjusted ran-
dom imputation, IM = item
means, TW = two-way means,
CIM = corrected item means,
RI = regression imputation

Method No School Clustering School Clustering

ζ = 15% ζ = 50% ζ = 15% ζ = 50%

γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2 γ0 γ1 γ2

CD .95 .94 .95 .95 .94 .95 .94 .94 .94 .94 .94 .94

MCAR

DL .94 .94 .94 .95 .95 .95 .94 .94 .93 .94 .93 .94

SRI .94 .93 .95 .93 .86 .95 .93 .95 .93 .91 .82 .92

ARI .94 .94 .95 .94 .87 .95 .94 .94 .94 .92 .86 .94

IM .94 .94 .95 .94 .94 .95 .94 .96 .94 .93 .91 .94

TW .94 .94 .95 .95 .96 .95 .94 .95 .94 .95 .96 .94

CIM .94 .95 .95 .94 .96 .95 .94 .95 .94 .94 .96 .94

RI .94 .91 .95 .96 .86 .96 .94 .92 .94 .95 .82 .95

MAR

DL .95 .94 .95 .95 .94 .95 .94 .95 .94 .94 .94 .94

SRI .95 .94 .95 .94 .85 .95 .94 .95 .94 .91 .85 .94

ARI .95 .94 .95 .94 .84 .95 .94 .94 .94 .92 .84 .94

IM .95 .95 .95 .95 .93 .96 .94 .96 .94 .93 .92 .94

TW .95 .94 .96 .96 .96 .96 .94 .96 .94 .94 .96 .94

CIM .95 .95 .95 .95 .96 .96 .94 .95 .94 .94 .96 .94

RI .96 .90 .95 .96 .84 .96 .95 .92 .94 .95 .83 .94
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in almost all conditions, while the DL analysis results
remained relatively stable.

Discussion and conclusions

The aim of this study was to compare the performance of
selected simple imputation methods adapted to a multiple-
imputation approach versus a direct likelihood analysis
approach when analyzing multilevel educational data
having missing item scores with an explanatory IRT model.
Therefore, the results obtained when analyzing a fully
observed data set were compared to results from the same
data when a specified number of item scores were
considered missing either at random or completely at
random and were ignored or estimated by an imputation
method. Given that the fitted explanatory IRT model was
specified correctly, a missing-data method was considered
to perform effectively if the analysis results obtained from
the reduced or imputed data were comparable to those
obtained from analyses of the fully observed data sets.

For all conditions and compared to all imputation
methods, the DL analysis approach produced unbiased
fixed and slightly negatively biased random-effect variance
parameter estimates, with MSEs, standard errors (and

standard deviations of the estimates), and confidence
interval coverage probabilities comparable to those of a
CD analysis. This might have been a result of the within-
person correlation due to the repeated item scores, such that
a moderate loss of (ignorable) scores does not necessarily
lead to a substantial loss of predictive information.
Additionally, and as noted by Beunckens et al. (2005), in
DL analysis there is no distortion in the statistical
information, since incomplete observations are neither
removed (such as in the CCA analysis) nor added (such
as in imputation methods).

Analyses of data sets whose missing values were
imputed by the TW and CIM methods at a 15% proportion
of missing item scores resulted in bias, standard errors,
MSE values, and coverage probabilities of fixed-effect
parameter estimates that were generally comparable to
those of the CD analysis, though not as good as those of
the DL analysis. The ability of the TW and CIM methods to
perform better than other imputation methods could be
attributed to the way in which they make imputations—that
is, taking into account the relative performance of each
person and correcting for item differences. These methods,
however, tend to fail with large proportions of missing item
scores, resulting in larger bias and MSEs. This outcome is
in line with previous research. For instance, van Buuren

Table 9 Bias and mean square error in random-effect variance estimates by imputation method and missing mechanism for ζ = 50%

Method No School Clustering School Clustering

Bias MSE Bias MSE

σω
2 σu

2 σε
2 σω

2 σu
2 σε

2 σω
2 σu

2 σε
2 σω

2 σu
2 σε

2

σω
2 = 0.45, σu

2 = 0.00, σε
2 = 1.24 σω

2 = 0.45, σu
2 = 0.08, σε

2 = 1.24

CD –.025 .000 –.050 .006 .000 .079 –.019 –.009 –.078 .007 .003 .074

MCAR

DL –.037 .000 –.066 .009 .001 .090 –.031 –.007 –.084 .010 .004 .082

SRI –.364 .000 –.091 .133 .000 .095 –.363 –.066 –.131 .133 .005 .089

ARI –.366 .000 –.186 .135 .000 .105 –.366 –.067 –.212 .135 .005 .108

IM –.364 .002 –.089 .133 .000 .090 –.363 –.067 –.129 .132 .005 .086

TW .133 .003 –.020 .025 .001 .069 .140 –.010 –.046 .028 .004 .062

CIM .088 .003 –.068 .014 .000 .073 .089 –.014 –.092 .016 .003 .066

RI –.357 .082 –.060 .128 .008 .085 –.359 .074 –.064 .129 .009 .075

MAR

DL –.044 .000 –.053 .011 .001 .085 –.025 –.011 –.082 .010 .004 .083

SRI –.361 .000 –.079 .131 .000 .089 –.358 –.067 –.123 .129 .005 .088

ARI –.364 .000 –.169 .133 .000 .098 –.361 –.069 –.216 .131 .005 .107

IM –.360 .002 –.075 .130 .000 .084 –.358 –.068 –.123 .129 .005 .084

TW .135 .004 –.006 .027 .001 .066 .151 –.010 –.044 .032 .004 .063

CIM .090 .003 –.043 .015 .000 .069 .099 –.018 –.077 .018 .004 .067

RI –.356 .085 –.047 .127 .009 .081 –.355 .078 –.061 .127 .010 .076

CD = complete data, DL = direct likelihood, SRI = simple random imputation, ARI = adjusted random imputation, IM = item means, TW = two-
way means, CIM = corrected item means, RI = regression imputation
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(2010) showed that the TW method tends to fail with large
proportions of missing values set between 48% and 73%,
and van Ginkel et al. (2007) showed that both TW and CIM
methods performed quite well with 5% and 15% propor-
tions of missing item scores. Analyses of data sets imputed
by these two methods seemed to result in biased random-
effect variance estimates (though they were smaller in
magnitude when compared to those of other imputation
methods). This highlights a difficulty faced by the
considered imputation methods in accurately estimating
missing observations in multilevel data sets. Indeed, the
difficulties of multiple imputation with performing well in
multilevel or clustered data settings have been noted with
various existing multiple-imputation software packages
(Yucel, 2008; Yucel, Schenker, & Raghunathan, 2006).

The SRI, ARI, and IM methods make imputations that
result in biased fixed-parameter estimates with relatively
small standard errors (and MSE values) in all conditions.
This is a result of the way in which these methods
substitute missing values. That is to say, due to missing
scores, the set of observed scores from which to make
random draws (for the SRI and ARI methods) or to
compute item means (for the ARI and IM methods)
becomes smaller, and tends to be uniform, thereby making
the imputed item scores more similar (less variable) than
they would have been, had item scores not been missing.
The RI method does not perform well in most conditions
(but not all), and it tends to be worse with higher
proportions of missing items. One reason for this failure
could be that a logistic regression model is not suitable for
analyzing clustered data. Indeed, data structures in which
observational units are clustered within groups (here, scores
were clustered within persons) are in principle to be
handled via multilevel analyses, as noted by Yucel (2008).

Standard errors for the CD and DL analyses, and those
obtained from analyses of all imputed data sets, are larger
when persons are clustered within schools, as compared to
the case of no school clustering, which is an indication of
increased uncertainty with clustering complexity. For
instance, for all methods, standard errors in the no-school-
clustering condition were comparable to their corresponding
standard deviations of estimates, which was not the case in the
school-clustering condition. This upward bias, however,
might also be attributed to the small cluster sizes, as was
highlighted for themixedmodel by Cools, Van den Noortgate,
and Onghena (2009). However, as the confidence interval
coverage probabilities for all analyses with school or no
school clustering were not very different, this did not seem to
affect our conclusions.

The present article has verified that the DL analysis
approach produces (almost) unbiased estimates of the fixed-
effect parameters and random-effect variances of the explana-
tory IRT model, provided that the mechanism inducing the

missing item scores is ignorable (MCAR or MAR). This
approach is further desirable because it can be easily
implemented in most statistical standard software packages,
with no additional programming involved (Beunckens et al.
2005), using the same model that would have been applied to
a complete data set with no missing item scores. However,
inference by multiple imputation may have some practical
advantages over direct likelihood in some situations. For
instance, Yucel (2008) noted that multiple imputation provides
complete data sets for subsequent analyses, allowing analysts
to use their favorite models and software. Molenberghs and
Verbeke (2005) also discussed various situations in which
multiple imputation might be preferred—say, in handling
missing covariates when there is a combination of both
missing covariates and missing outcomes—but these situa-
tions are not a focus of the present study.

We conclude that the direct likelihood analysis approach
performs generally better than the considered imputation
methods in the case of missing item scores in multilevel
data sets. However, if there are reasons for using imputa-
tions, we recommend multiple imputation using the two-
way mean and corrected-item-mean substitution methods,
especially for low proportions of missing item scores. We
advise against use of the simple random imputation,
adjusted random imputation, and item or person mean
imputation methods for multilevel data sets, based on our
research.

Author note Kind acknowledgements to the Hercules Foundation
and the Flemish Government–EWI department for funding the
Flemish Supercomputer Centre (VSC), whose infrastructure we used
to carry out simulations.
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